PHYSICS 200A : CLASSICAL MECHANICS PROBLEM SET \#1

[1] Minimize the functional

$$
F[y(x)]=\int_{0}^{\ln 2} d x\left(\frac{1}{2} y^{\prime 2}+\frac{1}{2} y^{2}+y\right)
$$

when the values of y are not specified at the endpoints.
[2] Find the extrema of the functional

$$
F[y(x), z(x)]=\int_{0}^{\frac{\pi}{2}} d x\left(y^{\prime 2}+z^{\prime 2}+2 y z\right)
$$

subject to the boundary conditions

$$
y(0)=z(0)=0 \quad, \quad y\left(\frac{\pi}{2}\right)=z\left(\frac{\pi}{2}\right)=1 .
$$

[3] Find the extrema of the functional

$$
F[y(x)]=\int_{0}^{1} d x\left(y^{\prime 2}+x^{2}\right)
$$

subject to the boundary conditions

$$
y(0)=0 \quad, \quad y(1)=1 \quad, \quad \int_{0}^{1} d x y^{2}=2 .
$$

[4] Consider the functional

$$
E[y(x)]=\frac{1}{2} \int_{0}^{L} d x\left(y^{\prime \prime 2}+2 a y^{\prime 2}+b^{2} y^{2}\right),
$$

with the boundary conditions

$$
y(0)=y_{0} \quad, \quad y(L)=y_{L} \quad, \quad y^{\prime}(0)=y_{0}^{\prime} \quad, \quad y^{\prime}(L)=y_{L}^{\prime} .
$$

(a) Find $K_{1}(x)=\frac{\delta E}{\delta y(x)}$.
(b) Solve $\frac{\delta E}{\delta y(x)}=0$.
(c) Find $K_{2}\left(x, x^{\prime}\right)=\frac{\delta^{2} E}{\delta y(x) \delta y\left(x^{\prime}\right)}$.
(d) What is the condition which determines the eigenvalues of $K_{2}\left(x, x^{\prime}\right)$?

