

Instructor: Melvin Okamura email: mokamura@physics.ucsd.edu

Course Information

Course Syllabus on the web page http://physics.ucsd.edu/students/courses/fall2009/physics1c

Instructor: Mel Okamura – <u>mokamura@physics.ucsd.edu</u> Office: 4517Mayer Hall Addition Office Hrs. Mon 2-3 pm or by appointment

TA: Chris Murphy Office: TBA Office Hrs: TBA

Text. Physics 1 Serway and Faughn, 7^{th} edition, UCSD custom edition. Volume 1 and Volume 2

Class Schedule

• Lectures

- Tu, Thu. 11:00-12:20 pm York Hall 2722
- Quizzes

 Third Tue.
 - 11:00-12:200 pm York Hall 2722
- Problem Session – TBA

Grades

- Quizzes (3) will be held on Tue as scheduled. You are allowed to drop 1 quizzes. There will be no make-up quizzes.
- Final exam covering the whole course.
- The final grade will be based on Quizzes 60% (best 2 out of 3 quizzes) Final exam 40% Extra credit 5% (clicker responses)

Homework

- · Homework will be assigned each week.
- Homework will not be graded but quiz questions will resemble the homework.
- Solutions to the homework problems will be posted on the web page.

Clickers

Interwrite Personal Response System (PRS) Available at the bookstore

Clicker questions will be asked during class. Student responses will be recorded.

- 2 points for each correct answer
- 1 point for each incorrect answer.

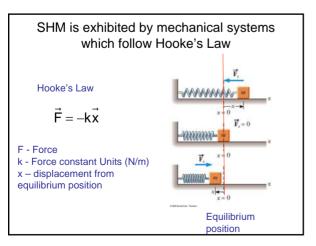
The clicker points (up to 5%) will be added to your score at the end of the quarter

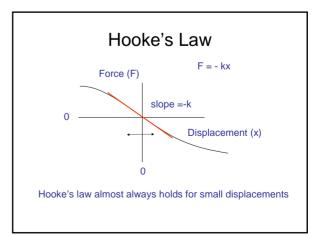
Laboratory

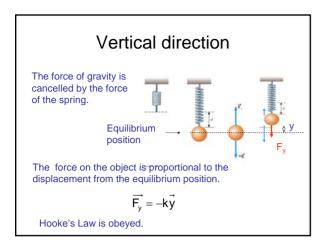
• The laboratory is a separate class which will be taught by Professor Anderson.

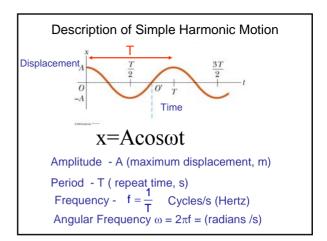
Waves and Modern Physics

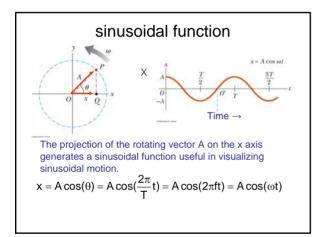
- Oscillations and Waves
 - Sound, light, radio waves, microwaves
- Optics
 - Lenses, mirrors, cameras, telescopes.
 - Interference, diffraction, polarization
- Quantum Mechanics

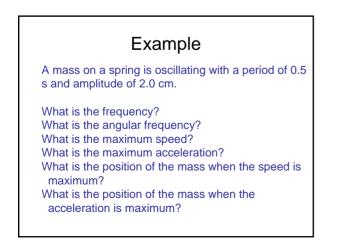

 Quantum mechanics, atoms, molecules,
 - transistors, lasers
- Nuclear Physics

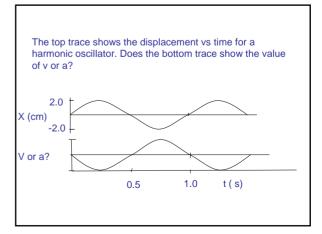

 Radioactivity, nuclear energy

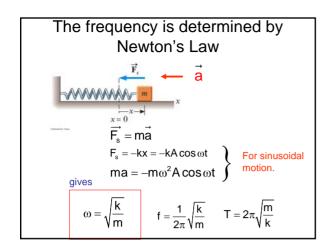

- 1.1 Simple Harmonic Motion
- Kinematics Sinusoidal motion
- Dynamics -Newton's law and Hooke's law.
- Energetics Conservation of Energy
- Examples
 - Mass on a spring
 - Pendulum

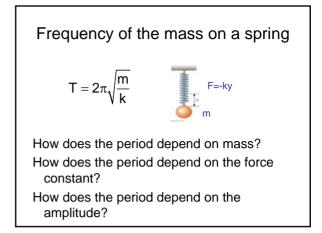


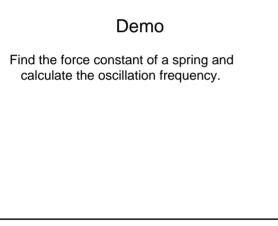

- Time for oscillations is independent of the amplitude of the oscillation.
- Useful as a timing device.









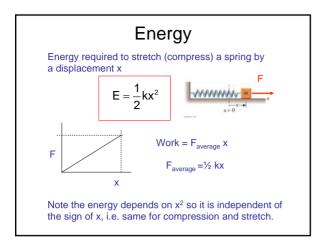


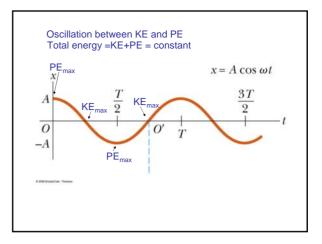
A 75 kg student steps into a car with a mass of 1500 kg and the car is displaced downward by 1.0 cm. As she drives off she goes over a bump and the car (which has poor shock absorbers) oscillates. What is the frequency of oscillation.

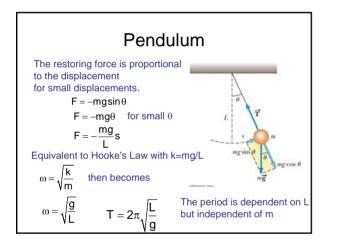
Springs in parallel

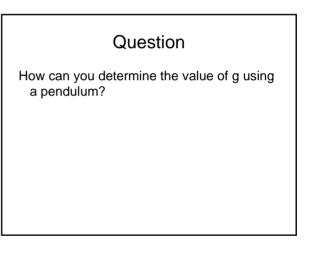
Suppose you had two identical springs each with force constant k from which an object of mass m was suspended. The oscillation period for one spring is T_o .

What would the oscillation period be if the two springs were connected in parallel?


- A. 2T_o
- B. T_o/2
- C. 2^{1/2}T_o
- D. T₀/2^{1/2}


Springs in series


Suppose you had two identical springs each with force constant k from which an object of mass m was suspended. The oscillation period for one spring is T_o .


What would the oscillation period be if the two springs were connected in series?

- A. 2T_o
- B. T_o/2
- C. 2^{1/2}T_o
- D. T₀/2^{1/2}

Question

How does the period of a pendulum depend on L?

How does the period depend on M?

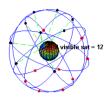
How does the period depend on amplitude?

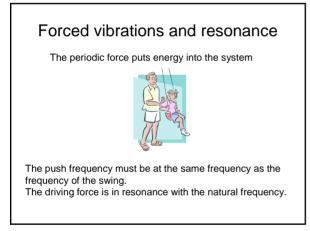
Question

Suppose you drop a ball to the floor and it rebounds after a perfectly elastic collision with the floor and continues to bounce.

Does the ball display simple harmonic motion?

Would this system be useful as a clock device?

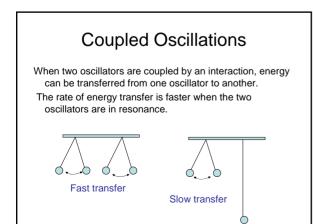

Applications of harmonic oscillators


- Pendulum clocks -10s/day
- Crystal oscillators- Quartz watches 0.1s/day
- Atomic clocks Time standards based on atomic transition frequencies. -10⁻⁹s/day

Clocks are important for navigation Longitude: The True Story Global positioning satellites Of The Lone Genius Who Solved The Greatest accurate clocks Scientific Problem Of His Time

John Harrison

determine positioning using



Resonance

When the driving oscillations has a frequency that matches the oscillation frequency of the standing waves in the system then a large amount of energy can be put into the system.

