Chapter 18 Direct-Current Circuits

Problem Solutions

18.1 From $\Delta V=I(R+r)$, the internal resistance is

$$
r=\frac{\Delta V}{I}-R=\frac{9.00 \mathrm{~V}}{0.117 \mathrm{~A}}-72.0 \Omega=4.92 \Omega
$$

18.3 For the bulb in use as intended,

$$
R_{\text {bulb }}=\frac{(\Delta V)^{2}}{\mathrm{P}}=\frac{(120 \mathrm{~V})^{2}}{75.0 \mathrm{~W}}=192 \Omega
$$

Now, presuming the bulb resistance is unchanged, the current in the circuit shown is

$$
I=\frac{\Delta V}{R_{e q}}=\frac{120 \mathrm{~V}}{0.800 \Omega+192 \Omega+0.800 \Omega}=0.620 \mathrm{~A}
$$

and the actual power dissipated in the bulb is

$$
\mathrm{P}=I^{2} R_{\text {bulb }}=(0.620 \mathrm{~A})^{2}(192 \Omega)=73.8 \mathrm{~W}
$$

18.5 (a) The equivalent resistance of the two parallel resistors is

$$
R_{p}=\left(\frac{1}{7.00 \Omega}+\frac{1}{10.0 \Omega}\right)^{-1}=4.12 \Omega
$$

Thus,

$$
R_{a b}=R_{4}+R_{p}+R_{9}=(4.00+4.12+9.00) \Omega=17.1 \Omega
$$

(b) $I_{a b}=\frac{(\Delta V)_{a b}}{R_{a b}}=\frac{34.0 \mathrm{~V}}{17.1 \Omega}=1.99 \mathrm{~A}$, so $I_{4}=I_{9}=1.99 \mathrm{~A}$

Also, $(\Delta V)_{p}=I_{a b} R_{p}=(1.99 \mathrm{~A})(4.12 \Omega)=8.18 \mathrm{~V}$

Then, $\quad I_{7}=\frac{(\Delta V)_{p}}{R_{7}}=\frac{8.18 \mathrm{~V}}{7.00 \Omega}=1.17 \mathrm{~A}$
and $\quad I_{10}=\frac{(\Delta V)_{p}}{R_{10}}=\frac{8.18 \mathrm{~V}}{10.0 \Omega}=0.818 \mathrm{~A}$
18.7 If a potential difference is applied between points a and b, th \not vertical resistor with a free end is not part of any closed current path. Hence, it has no effect on the circuit and can be ignored. The remaining four resistors between a and x reduce to a Aingle equivalent resistor, $R_{e q}=2.5 R$, as shown below:

18.13 The resistors in the circuit can be combined in the stages shown below to yield an equivalent resistance of $R_{a d}=(63 / 11) \Omega$.

Fepres 1

Figuez

Fipures

Figne 4

PGer 5

From Figure 5, $\quad I=\frac{(\Delta V)_{a d}}{R_{a d}}=\frac{18 \mathrm{~V}}{(63 / 11) \Omega}=3.14 \mathrm{~A}$
Then, from Figure 4, $(\Delta V)_{b d}=I R_{b d}=(3.14 \mathrm{~A})(30 / 11 \Omega)=8.57 \mathrm{~V}$
Now, look at Figure 2 and observe that

$$
I_{2}=\frac{(\Delta V)_{b d}}{3.0 \Omega+2.0 \Omega}=\frac{8.57 \mathrm{~V}}{5.0 \Omega}=1.71 \mathrm{~A}
$$

so $\quad(\Delta V)_{b e}=I_{2} R_{b e}=(1.71 \mathrm{~A})(3.0 \Omega)=5.14 \mathrm{~V}$
Finally, from Figure 1, $\quad I_{12}=\frac{(\Delta V)_{b e}}{R_{12}}=\frac{5.14 \mathrm{~V}}{12 \Omega}=0.43 \mathrm{~A}$
18.17 We name the currents I_{1}, I_{2}, and I_{3} as shown. Using Kirchhoff's loop rule on the rightmost loop gives

$$
\begin{align*}
+12.0 \mathrm{~V}- & (1.00+3.00) I_{3} \\
& -\left(5.00+1.00 I_{2}-4.00 \mathrm{~V}=0\right. \\
\text { or } \quad(2.00) I_{3}+ & (3.00) I_{2}=4.00 \mathrm{~V} \tag{1}
\end{align*}
$$

Applying the loop rule to the leftmost loop yields

$$
+4.00 \mathrm{~V}+(1.00+5.00) I_{2}-(8.00) I_{1}=0
$$

or

$$
\begin{equation*}
(4.00) I_{1}-(3.00) I_{2}=2.00 \mathrm{~V} \tag{2}
\end{equation*}
$$

From Kirchhoff's junction rule, $I_{1}+I_{2}=I_{3}$
Solving equations (1), (2) and (3) simultaneously gives

$$
I_{1}=0.846 \mathrm{~A}, I_{2}=0.462 \mathrm{~A}, \text { and } I_{3}=1.31 \mathrm{~A}
$$

All currents are in the directions indicated by the arrows in the circuit diagram.
18.21 First simplify the circuit by combining the series resistors. Then, apply Kirchhoff's junction rule at point a to find

$$
I_{1}+I_{2}=2.00 \mathrm{~A}
$$

Next, we apply Kirchhoff's loop rule to the rightmost loop to obtain

$$
\begin{aligned}
& \text { } \\
& -8.00 \mathrm{~V}+(6.00) I_{1}-(12.0) I_{2}=0 \\
& \text { or } \quad \\
& -8.00 \mathrm{~V}+(6.00) I_{1}-(12.0)\left(2.00 \mathrm{~A}-I_{1}\right)=0 \quad \text { This yields } \quad I_{1}=1.78 \mathrm{~A}
\end{aligned}
$$

Finally, apply Kirchhoff's loop rule to the leftmost loop to obtain

$$
\begin{aligned}
& +\varepsilon_{1}-(4.00)(2.00 \mathrm{~A})-(6.00) I_{1}+8.00 \mathrm{~V}=0 \\
\text { or } & \varepsilon_{1}=(4.00)(2.00 \mathrm{~A})+(6.00)(1.78 \mathrm{~A})-8.00 \mathrm{~V}=10.7 \mathrm{~V}
\end{aligned}
$$

18.26 Using Kirchhoff's loop rule on the outer perimeter of the circuit gives

$$
\begin{array}{ll}
& +12 \mathrm{~V}-(0.01) I_{1}-(0.06) I_{3}=0 \\
\text { or } & I_{1}+6 I_{3}=1.2 \times 10^{3} \mathrm{~A} \tag{1}
\end{array}
$$

For the rightmost loop, the loop rule gives

$$
\begin{array}{ll}
& +10 \mathrm{~V}+(1.00) I_{2}-(0.06) I_{3}=0 \\
\text { or } & I_{2}-0.06 I_{3}=-10 \mathrm{~A} \tag{2}
\end{array}
$$

Applying Kirchhoff's junction rule at either junction gives

$$
\begin{equation*}
I_{1}=I_{2}+I_{3} \tag{3}
\end{equation*}
$$

Solving equations (1), (2), and (3) simultaneously yields

$$
I_{2}=0.28 \mathrm{~A}(\text { in dead battery }) \text { and } I_{3}=1.7 \times 10^{2} \mathrm{~A} \text { (in starter) }
$$

18.31 (a) $\tau=R C=\left(2.0 \times 10^{6} \Omega\right)\left(6.0 \times 10^{-6} \mathrm{~F}\right)=12 \mathrm{~s}$
(b) $Q_{\text {max }}=C \varepsilon=\left(6.0 \times 10^{-6} \mathrm{~F}\right)(20 \mathrm{~V})=1.2 \times 10^{-4} \mathrm{C}$
$18.33 Q_{\text {max }}=C \varepsilon=\left(5.0 \times 10^{-6} \mathrm{~F}\right)(30 \mathrm{~V})=1.5 \times 10^{-4} \mathrm{C}$, and

$$
\tau=R C=\left(1.0 \times 10^{6} \Omega\right)\left(5.0 \times 10^{-6} \mathrm{~F}\right)=5.0 \mathrm{~s}
$$

Thus, at $t=10 \mathrm{~s}=2 \tau$

$$
Q=Q_{\max }\left(1-e^{-t / \tau}\right)=\left(1.5 \times 10^{-4} \mathrm{C}\right)\left(1-e^{-2}\right)=1.3 \times 10^{-4} \mathrm{C}
$$

18.35 From $Q=Q_{\max }\left(1-e^{-t / \tau}\right)$, we have at $t=0.900 \mathrm{~s}$,

$$
\frac{Q}{Q_{\max }}=1-e^{-0.900 \mathrm{~s} / \tau}=0.600
$$

Thus, $e^{-0.900 \mathrm{~s} / \tau}=0.400$, or $-\frac{0.900 \mathrm{~s}}{\tau}=\ln (0.400)$
giving the time constant as $\tau=-\frac{0.900 \mathrm{~s}}{\ln (0.400)}=0.982 \mathrm{~s}$

$R(\Omega)$	$\mathrm{P}_{L}(\mathrm{~W})$
1.00	1.19
5.00	3.20
10.0	3.60
15.0	3.46
20.0	3.20
25.0	2.94
30.0	2.70

The curve peaks at $\mathrm{P}_{L}=3.60 \mathrm{~W}$ at a load resistance of $R=10.0 \Omega$.

