Chapter 17 Current and Resistance

Problem Solutions

17.1 The charge that moves past the cross section is $\Delta Q = I(\Delta t)$, and the number of electrons is

$$n = \frac{\Delta Q}{|e|} = \frac{I(\Delta t)}{|e|}$$
$$= \frac{(80.0 \times 10^{-3} \text{ C/s}) \left[(10.0 \text{ min}) (60.0 \text{ s/min}) \right]}{1.60 \times 10^{-19} \text{ C}} = \boxed{3.00 \times 10^{20} \text{ electrons}}$$
The negatively charged electrons move in the direction opposite to the conventional current flow.

17.3 The current is $I = \frac{\Delta Q}{\Delta t} = \frac{\Delta V}{R}$. Thus, the change that passes is $\Delta Q = \left(\frac{\Delta V}{R}\right) \Delta t$, giving $\Delta Q = \left(\frac{1.00 \text{ V}}{10.0 \Omega}\right) \Delta t$ = (0.100 A)(20.0 s) = 2.00 C

70 CHAPTER 17

17.8 Assuming that, on average, each aluminum atom contributes one electron, the density of charge carriers is the same as the number of atoms per cubic meter. This is

$$n = \frac{density}{mass \ per \ atom} = \frac{\rho}{M/N_A} = \frac{N_A \rho}{M},$$

or
$$n = \frac{(6.02 \times 10^{23}/\text{mol}) \left[(2.7 \ \text{g/cm}^3) (10^6 \ \text{cm}^3/1 \ \text{m}^3) \right]}{26.98 \ \text{g/mol}} = 6.0 \times 10^{28}/\text{m}^3$$

The drift speed of the electrons in the wire is then

$$v_{d} = \frac{I}{n|e|A} = \frac{5.0 \text{ C/s}}{\left(6.0 \times 10^{28}/\text{m}^{3}\right) \left(1.60 \times 10^{49} \text{ C}\right) \left(4.0 \times 10^{6} \text{ m}^{2}\right)} = \frac{1.3 \times 10^{-4} \text{ m/s}}{1.3 \times 10^{-4} \text{ m/s}}$$

- 17.9 (a) The carrier density is determined by the physical characteristics of the wire, not the current in the wire. Hence, *n* is unaffected.
 - (b) The drift velocity of the electrons is $v_d = I/nqA$. Thus, the drift velocity is doubled when the current is doubled.

17.11
$$(\Delta V)_{\max} = I_{\max} R = (80 \times 10^{-6} \text{ A}) R$$

Thus, if $R = 4.0 \times 10^5 \Omega$, $(\Delta V)_{\text{max}} = 32 \text{ V}$

and if
$$R = 2\,000 \,\Omega$$
, $(\Delta V)_{\rm max} = 0.16 \,\rm V$

17.13 From
$$R = \frac{\rho L}{A}$$
, we obtain $A = \frac{\pi d^2}{4} = \frac{\rho L}{R}$, or

$$d = \sqrt{\frac{4\rho L}{\pi R}} = \sqrt{\frac{4(5.6 \times 10^{-8} \ \Omega \cdot m)(2.0 \times 10^{-2} \ m)}{\pi (0.050 \ \Omega)}} = 1.7 \times 10^{-4} \ m = 0.17 \ mm$$

17.16 We assume that your hair dryer will use about 400 W of power for 10 minutes each day of the year. The estimate of the total energy used each year is

$$E = \mathbf{P}(\Delta t) = (0.400 \text{ kW}) \left[\left(10 \frac{\min}{d} \right) \left(\frac{1 \text{ hr}}{60 \text{ min}} \right) (365 \text{ d}) \right] = 24 \text{ kWh}$$

If your cost for electrical energy is approximately ten cents per kilowatt-hour, the cost of using the hair dryer for a year is on the order of

$$cost = E \times rate = (24 \text{ kWh}) \left(0.10 \frac{\$}{\text{kWh}} \right) = \$2.4 \text{ or } \checkmark\$1$$

17.19 The volume of material, $V = AL_0 = (\pi r_0^2) L_0$, in the wire is constant. Thus, as the wire is stretched to decrease its radius, the length increases such that $(\pi r_f^2) L_f = (\pi r_0^2) L_0$ giving

$$L_f = \left(\frac{r_0}{r_f}\right)^2 L_0 = \left(\frac{r_0}{0.25r_0}\right)^2 L_0 = (4.0)^2 L_0 = 16L_0$$

The new resistance is then

$$R_{f} = \rho \frac{L_{f}}{A_{f}} = \rho \frac{L_{f}}{\pi r_{f}^{2}} = \rho \frac{16L_{0}}{\pi (r_{0}/4)^{2}} = 16(4)^{2} \left(\rho \frac{L_{0}}{\pi r_{0}^{2}}\right) = 256R_{0} = 256(1.00\,\Omega) = 256\Omega$$

17.20 Solving $R = R_0 [1 + \alpha (T - T_0)]$ for the final temperature gives

$$T = T_0 + \frac{R - R_0}{\alpha R_0} = 20^{\circ}\text{C} + \frac{140 \ \Omega - 19 \ \Omega}{\left[4.5 \times 10^{-3} \ (^{\circ}\text{C})^{-1}\right](19 \ \Omega)} = \boxed{1.4 \times 10^3 \ ^{\circ}\text{C}}$$

17.23 At 80°C,

or

$$I = \frac{\Delta V}{R} = \frac{\Delta V}{R_0 \left[1 + \alpha (T - T_0) \right]} = \frac{5.0 \text{ V}}{(200 \Omega) \left[1 + \left(-0.5 \times 10^{-3} \circ \text{C}^{-1} \right) (80^\circ \text{C} - 20^\circ \text{C}) \right]}$$
$$I = 2.6 \times 10^{-2} \text{ A} = \boxed{26 \text{ mA}}$$

17.31
$$I = \frac{P}{\Delta V} = \frac{600 \text{ W}}{120 \text{ V}} = \boxed{5.00 \text{ A}}$$

and $R = \frac{\Delta V}{I} = \frac{120 \text{ V}}{5.00 \text{ A}} = \boxed{24.0 \Omega}$

17.33 The maximum power that can be dissipated in the circuit is

$$P_{max} = (\Delta V) I_{max} = (120 \text{ V})(15 \text{ A}) = 1.8 \times 10^3 \text{ W}$$

Thus, one can operate at most 18 bulbs rated at 100 W per bulb.

17.39 The resistance per unit length of the cable is

$$\frac{R}{L} = \frac{\mathbf{P}/I^2}{L} = \frac{\mathbf{P}/L}{I^2} = \frac{2.00 \text{ W/m}}{(300 \text{ A})^2} = 2.22 \times 10^{-5} \text{ }\Omega/\text{m}$$

From $R = \rho L/A$, the resistance per unit length is also given by $R/L = \rho/A$. Hence, the cross-sectional area is $\pi r^2 = A = \frac{\rho}{R/L}$, and the required radius is

$$r = \sqrt{\frac{\rho}{\pi (R/L)}} = \sqrt{\frac{1.7 \times 10^{-8} \ \Omega \cdot m}{\pi (2.22 \times 10^{-5} \ \Omega/m)}} = 0.016 \ m = 1.6 \ cm$$

17.45 The energy saved is

$$\Delta E = (\mathsf{P}_{high} - \mathsf{P}_{low}) \cdot t = (40 \text{ W} - 11 \text{ W})(100 \text{ h}) = 2.9 \times 10^3 \text{ Wh} = 2.9 \text{ kWh}$$

and the monetary savings is

$$savings = \Delta E \cdot rate = (2.9 \text{ kWh})(\$0.080/\text{kWh}) = \$0.23 = 23 \text{ cents}$$

17.52 The resistance of the 4.0 cm length of wire between the feet is

$$R = \frac{\rho L}{A} = \frac{\left(1.7 \times 10^{-8} \ \Omega \cdot m\right) (0.040 \ m)}{\pi (0.011 \ m)^2} = 1.79 \times 10^{-6} \ \Omega ,$$

so the potential difference is

$$\Delta V = IR = (50 \text{ A}) (1.79 \times 10^{-6} \Omega) = 8.9 \times 10^{-5} \text{ V} = 89 \mu \text{V}$$

17.60 Each speaker has a resistance of $R = 4.00 \Omega$ and can handle 60.0 W of power. From $P = I^2 R$, the maximum safe current is

$$I_{\rm max} = \sqrt{\frac{\tilde{A}}{R}} = \sqrt{\frac{60.0 \text{ W}}{4.00 \,\Omega}} = 3.87 \text{ A}$$

Thus, the system is not adequately protected by a 4.00 A fuse.