Chapter 17

Current and Resistance

Problem Solutions

17.1 The charge that moves past the cross section is $\Delta Q=I(\Delta t)$, and the number of electrons is

$$
\begin{aligned}
n & =\frac{\Delta Q}{|e|}=\frac{I(\Delta t)}{|e|} \\
& =\frac{\left(80.0 \times 10^{-3} \mathrm{C} / \mathrm{s}\right)[(10.0 \mathrm{~min})(60.0 \mathrm{~s} / \mathrm{min})]}{1.60 \times 10^{-19} \mathrm{C}}=3.00 \times 10^{20} \text { electrons }
\end{aligned}
$$

The negatively charged electrons move in the direction opposite to the conventional current flow.
17.3 The current is $I=\frac{\Delta Q}{\Delta t}=\frac{\Delta V}{R}$. Thus, the change that passes is $\Delta Q=\left(\frac{\Delta V}{R}\right)(\Delta t)$, giving

$$
\left.\Delta Q=\left(\frac{1.00 \mathrm{~V}}{10.0 \Omega}\right) \Delta t\right)=(0.100 \mathrm{~A})(20.0 \mathrm{~s})=2.00 \mathrm{C}
$$

17.8 Assuming that, on average, each aluminum atom contributes one electron, the density of charge carriers is the same as the number of atoms per cubic meter. This is

$$
\begin{aligned}
n & =\frac{\text { density }}{\text { mass per atom }}=\frac{\rho}{M / N_{A}}=\frac{N_{A} \rho}{M} \\
\text { or } \quad n & =\frac{\left(6.02 \times 10^{23} / \mathrm{mol}\right)\left[\left(2.7 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(10^{6} \mathrm{~cm}^{3} / 1 \mathrm{~m}^{3}\right)\right]}{26.98 \mathrm{~g} / \mathrm{mol}}=6.0 \times 10^{28} / \mathrm{m}^{3}
\end{aligned}
$$

The drift speed of the electrons in the wire is then

$$
v_{d}=\frac{I}{n|e| A}=\frac{5.0 \mathrm{C} / \mathrm{s}}{\left(6.0 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\left(4.0 \times 10^{6} \mathrm{~m}^{2}\right)\right.}=1.3 \times 10^{-4} \mathrm{~m} / \mathrm{s}
$$

17.9 (a) The carrier density is determined by the physical characteristics of the wire, not the current in the wire. Hence, n is unaffected.
(b) The drift velocity of the electrons is $v_{d}=I / n q A$. Thus, the drift velocity is doubled when the current is doubled.
$17.11(\Delta V)_{\max }=I_{\max } R=\left(80 \times 10^{-6}\right.$ A $) R$

Thus, if $R=4.0 \times 10^{5} \Omega,(\Delta V)_{\max }=32 \mathrm{~V}$ and if $R=2000 \Omega,(\Delta V)_{\max }=0.16 \mathrm{~V}$
17.13 From $R=\frac{\rho L}{A}$, we obtain $A=\frac{\pi d^{2}}{4}=\frac{\rho L}{R}$, or

$$
d=\sqrt{\frac{4 \rho L}{\pi R}}=\sqrt{\frac{4\left(5.6 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(2.0 \times 10^{-2} \mathrm{~m}\right)}{\pi(0.050 \Omega)}}=1.7 \times 10^{-4} \mathrm{~m}=0.17 \mathrm{~mm}
$$

17.16 We assume that your hair dryer will use about 400 W of power for 10 minutes each day of the year. The estimate of the total energy used each year is

$$
E=\mathrm{P}(\Delta t)=(0.400 \mathrm{~kW})\left[\left(10 \frac{\mathrm{~min}}{\mathrm{~d}}\right)\left(\frac{1 \mathrm{hr}}{60 \mathrm{~min}}\right)(365 \mathrm{~d})\right]=24 \mathrm{kWh}
$$

If your cost for electrical energy is approximately ten cents per kilowatt-hour, the cost of using the hair dryer for a year is on the order of

$$
\text { cost }=E \times \text { rate }=(24 \mathrm{kWh})\left(0.10 \frac{\$}{\mathrm{kWh}}\right)=\$ 2.4 \quad \text { or } \quad \sim \$ 1
$$

17.19 The volume of material, $V=A L_{0}=\left(\pi r_{0}^{2}\right) L_{0}$, in the wire is constant. Thus, as the wire is stretched to decrease its radius, the length increases such that $\left(\pi r_{f}^{2}\right) L_{f}=\left(\pi r_{0}^{2}\right) L_{0}$ giving

$$
L_{f}=\left(\frac{r_{0}}{r_{f}}\right)^{2} L_{0}=\left(\frac{r_{0}}{0.25 r_{0}}\right)^{2} L_{0}=(4.0)^{2} L_{0}=16 L_{0}
$$

The new resistance is then

$$
R_{f}=\rho \frac{L_{f}}{A_{f}}=\rho \frac{L_{f}}{\pi r_{f}^{2}}=\rho \frac{16 L_{0}}{\pi\left(r_{0} / 4\right)^{2}}=16(4)^{2}\left(\rho \frac{L_{0}}{\pi r_{0}^{2}}\right)=256 R_{0}=256(1.00 \Omega)=256 \Omega
$$

17.20 Solving $R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$ for the final temperature gives

$$
T=T_{0}+\frac{R-R_{0}}{\alpha R_{0}}=20^{\circ} \mathrm{C}+\frac{140 \Omega-19 \Omega}{\left[4.5 \times 10^{-3}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right](19 \Omega)}=1.4 \times 10^{3}{ }^{\circ} \mathrm{C}
$$

17.23 At $80^{\circ} \mathrm{C}$,

$$
I=\frac{\Delta V}{R}=\frac{\Delta V}{R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]}=\frac{5.0 \mathrm{~V}}{(200 \Omega)\left[1+\left(-0.5 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}\right)\left(80^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right]}
$$

or

$$
I=2.6 \times 10^{-2} \mathrm{~A}=26 \mathrm{~mA}
$$

17.31 $I=\frac{\mathrm{P}}{\Delta V}=\frac{600 \mathrm{~W}}{120 \mathrm{~V}}=5.00 \mathrm{~A}$
and $\quad R=\frac{\Delta V}{I}=\frac{120 \mathrm{~V}}{5.00 \mathrm{~A}}=24.0 \Omega$
17.33 The maximum power that can be dissipated in the circuit is

$$
\mathrm{P}_{\max }=(\Delta V) I_{\max }=(120 \mathrm{~V})(15 \mathrm{~A})=1.8 \times 10^{3} \mathrm{~W}
$$

Thus, one can operate at most 18 bulbs rated at 100 W per bulb.
17.39 The resistance per unit length of the cable is

$$
\frac{R}{L}=\frac{P / I^{2}}{L}=\frac{P / L}{I^{2}}=\frac{2.00 \mathrm{~W} / \mathrm{m}}{(300 \mathrm{~A})^{2}}=2.22 \times 10^{-5} \Omega / \mathrm{m}
$$

From $R=\rho L / A$, the resistance per unit length is also given by $R / L=\rho / A$. Hence, the cross-sectional area is $\pi r^{2}=A=\frac{\rho}{R / L}$, and the required radius is

$$
r=\sqrt{\frac{\rho}{\pi(R / L)}}=\sqrt{\frac{1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}}{\pi\left(2.22 \times 10^{-5} \Omega / \mathrm{m}\right)}}=0.016 \mathrm{~m}=1.6 \mathrm{~cm}
$$

17.45 The energy saved is

$$
\Delta E=\left(\mathrm{P}_{\text {high }}-\mathrm{P}_{\text {loww }}\right) \cdot t=(40 \mathrm{~W}-11 \mathrm{~W})(100 \mathrm{~h})=2.9 \times 10^{3} \mathrm{~Wh}=2.9 \mathrm{kWh}
$$

and the monetary savings is

$$
\text { savings }=\Delta E \cdot \text { rate }=(2.9 \mathrm{kWh})(\$ 0.080 / \mathrm{kWh})=\$ 0.23=23 \text { cents }
$$

17.52 The resistance of the 4.0 cm length of wire between the feet is

$$
R=\frac{\rho L}{A}=\frac{\left(1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(0.040 \mathrm{~m})}{\pi(0.011 \mathrm{~m})^{2}}=1.79 \times 10^{-6} \Omega,
$$

so the potential difference is

$$
\Delta V=I R=(50 \mathrm{~A})\left(1.79 \times 10^{-6} \Omega\right)=8.9 \times 10^{-5} \mathrm{~V}=89 \mu \mathrm{~V}
$$

17.60 Each speaker has a resistance of $R=4.00 \Omega$ and can handle 60.0 W of power. From $\mathrm{P}=I^{2} R$, the maximum safe current is

$$
I_{\max }=\sqrt{\frac{\tilde{\mathrm{A}}}{R}}=\sqrt{\frac{60.0 \mathrm{~W}}{4.00 \Omega}}=3.87 \mathrm{~A}
$$

Thus, the system is not adequately protected by a 4.00 A fuse.

