Chapter 16

Electrical Energy and Capacitance

Problem Solutions

16.1 (a) The work done is $W=F \cdot s \cos \theta=(q E) \cdot s \cos \theta$, or

$$
W=\left(1.60 \times 10^{-19} \mathrm{C}\right)(200 \mathrm{~N} / \mathrm{C})\left(2.00 \times 10^{-2} \mathrm{~m}\right) \cos 0^{\circ}=6.40 \times 10^{-19} \mathrm{~J}
$$

(b) The change in the electrical potential energy is

$$
\Delta P E_{e}=-W=-6.40 \times 10^{-19} \mathrm{~J}
$$

(c) The change in the electrical potential is

$$
\Delta V=\frac{\Delta P E_{e}}{q}=\frac{-6.40 \times 10^{-19} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{C}}=-4.00 \mathrm{~V}
$$

16.3 The work done by the agent moving the charge out of the cell is

$$
\begin{aligned}
W_{\text {input }} & =-W_{\text {feld }}=-\left(-\Delta P E_{e}\right)=+q(\Delta V) \\
& =\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(+90 \times 10^{-3} \frac{\mathrm{~J}}{\mathrm{C}}\right)=1.4 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

$16.5 \quad E=\frac{|\Delta V|}{d}=\frac{25000 \mathrm{~J} / \mathrm{C}}{1.5 \times 10^{-2} \mathrm{~m}}=1.7 \times 10^{6} \mathrm{~N} / \mathrm{C}$
16.8 From conservation of energy, $\frac{1}{2} m v_{f}^{2}-0=|q(\Delta V)|$ or $v_{f}=\sqrt{\frac{2|q(\Delta V)|}{m}}$
(a) For the proton, $\quad v_{f}=\sqrt{\frac{2\left|\left(1.60 \times 10^{-19} \mathrm{C}\right)(-120 \mathrm{~V})\right|}{1.67 \times 10^{-27} \mathrm{~kg}}}=1.52 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(b) For the electron, $\quad v_{f}=\sqrt{\frac{2\left(-1.60 \times 10^{-19} \mathrm{C}\right)(+120 \mathrm{~V}) \mid}{9.11 \times 10^{-31} \mathrm{~kg}}}=6.49 \times 10^{6} \mathrm{~m} / \mathrm{s}$
16.12 $V=V_{1}+V_{2}=k_{e}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}\right)$ where $r_{1}=0.60 \mathrm{~m}-0=0.60 \mathrm{~m}$, and

$$
\begin{aligned}
& r_{2}=0.60 \mathrm{~m}-0.30 \mathrm{~m}=0.30 \mathrm{~m} . \text { Thus, } \\
& V=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(\frac{3.0 \times 10^{-9} \mathrm{C}}{0.60 \mathrm{~m}}+\frac{6.0 \times 10^{-9} \mathrm{C}}{0.30 \mathrm{~m}}\right)=2.2 \times 10^{2} \mathrm{~V} \\
& \\
& V=\sum_{i} \frac{k_{e} q_{i}}{r_{i}}
\end{aligned}
$$

16.15 (a)

$$
\begin{aligned}
& =\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(\frac{5.00 \times 10^{-9} \mathrm{C}}{0.175 \mathrm{~m}}-\frac{3.00 \times 10^{9} \mathrm{C}}{0.175 \mathrm{~m}}\right)=103 \mathrm{~V} \\
P E & =\frac{k_{e} q_{i} q_{2}}{r_{12}}
\end{aligned}
$$

(b)

$$
=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right) \frac{\left(5.00 \times 10^{-9} \mathrm{C}\right)\left(-3.00 \times 10^{9} \mathrm{C}\right.}{0.350 \mathrm{~m}}=-3.85 \times 10^{-7} \mathrm{~J}
$$

The negative sign means that positive work must be done to separate the charges (that is, bring them up to a state of zero potential energy).
16.19 From conservation of energy, $\left(K E+P E_{e}\right)_{f}=\left(K E+P E_{e}\right)_{i}$, which gives

$$
\begin{aligned}
& 0+\frac{k_{e} Q q}{r_{f}}=\frac{1}{2} m_{\alpha} v_{i}^{2}+0 \text { or } r_{f}=\frac{2 k_{e} Q q}{m_{\alpha} v_{i}^{2}}=\frac{2 k_{e}(79 e)(2 e)}{m_{\alpha} v_{i}^{2}} \\
& r_{f}=\frac{2\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)(158)\left(1.60 \times 10^{-19} \mathrm{C}^{2}\right.}{\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(2.00 \times 10 \overline{\mathrm{~m}} \mathrm{~s}^{2}\right.}=2.74 \times 10^{-14} \mathrm{~m}
\end{aligned}
$$

16.22 (a) $Q=C(\Delta V)=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(12.0 \mathrm{~V})=48.0 \times 10^{-6} \mathrm{C}=48.0 \mu \mathrm{C}$
(b) $\quad Q=C(\Delta V)=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(1.50 \mathrm{~V})=6.00 \times 10^{-6} \mathrm{C}=6.00 \mu \mathrm{C}$
16.23 (a) $C=\epsilon_{0} \frac{A}{d}=\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right) \frac{\left(1.0 \times 10^{6} \mathrm{~m}^{2}\right)}{(800 \mathrm{~m})}=1.1 \times 10^{-8} \mathrm{~F}$

$$
Q_{\max }=C(\Delta V)_{\max }=C\left(E_{\max } d\right)
$$

(b)

$$
=\left(1.11 \times 10^{-8} \mathrm{~F}\right)\left(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\right)(800 \mathrm{~m})=27 \mathrm{C}
$$

16.25 (a) $E=\frac{\Delta V}{d}=\frac{20.0 \mathrm{~V}}{1.80 \times 10^{-3} \mathrm{~m}}=1.11 \times 10^{4} \mathrm{~V} / \mathrm{m}=11.1 \mathrm{kV} / \mathrm{m}$ directed toward the negative plate
(b) $C=\frac{\in_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\right)\left(7.60 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.80 \times 10^{-3} \mathrm{~m}}$

$$
=3.74 \times 10^{-12} \mathrm{~F}=3.74 \mathrm{pF}
$$

(c) $Q=C(\Delta V)=\left(3.74 \times 10^{-12} \mathrm{~F}\right)(20.0 \mathrm{~V})=7.47 \times 10^{-11} \mathrm{C}=74.7 \mathrm{pC}$ on one plate and -74.7 pC on the other plate.
16.29 (a) For series connection, $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \Rightarrow C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

$$
\begin{aligned}
Q & =C_{e q}(\Delta V)=\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right) \Delta V \\
& =\left[\frac{(0.050 \mu \mathrm{~F})(0.100 \mu \mathrm{~F})}{0.050 \mu \mathrm{~F}+0.100 \mu \mathrm{~F}}\right](400 \mathrm{~V})=13.3 \mu \mathrm{C} \text { on each }
\end{aligned}
$$

(b) $Q_{1}=C_{1}(\Delta V)=(0.050 \mu \mathrm{~F})(400 \mathrm{~V})=20.0 \mu \mathrm{C}$

$$
Q_{2}=C_{2}(\Delta V)=(0.100 \mu \mathrm{~F})(400 \mathrm{~V})=40.0 \mu \mathrm{C}
$$

16.31 (a) Using the rules for combining capacitors in series and in parallel, the circuit is reduced in steps as shown below. The equivalent capacitor is shown to be a $2.00 \mu \mathrm{~F}$ capacitor.

(b) From Figure 3: $\quad Q_{a c}=C_{a c}(\Delta V)_{a c}=(2.00 \mu \mathrm{~F})(12.0 \mathrm{~V})=24.0 \mu \mathrm{C}$

From Figure 2: $\quad Q_{a b}=Q_{b c}=Q_{a c}=24.0 \mu \mathrm{C}$
Thus, the charge on the $3.00 \mu \mathrm{~F}$ capacitor is $Q_{3}=24.0 \mu \mathrm{C}$
Continuing to use Figure 2, $(\Delta V)_{a b}=\frac{Q_{a b}}{C_{a b}}=\frac{24.0 \mu \mathrm{C}}{6.00 \mu \mathrm{~F}}=4.00 \mathrm{~V}$
and $\quad(\Delta V)_{3}=(\Delta V)_{b c}=\frac{Q_{b c}}{C_{b c}}=\frac{24.0 \mu \mathrm{C}}{3.00 \mu \mathrm{~F}}=8.00 \mathrm{~V}$
From Figure 1, $(\Delta V)_{4}=(\Delta V)_{2}=(\Delta V)_{a b}=4.00 \mathrm{~V}$
and

$$
\begin{aligned}
& Q_{4}=C_{4}(\Delta V)_{4}=(4.00 \mu \mathrm{~F})(4.00 \mathrm{~V})=16.0 \mu \mathrm{C} \\
& Q_{2}=C_{2}(\Delta V)_{2}=(2.00 \mu \mathrm{~F})(4.00 \mathrm{~V})=8.00 \mu \mathrm{C}
\end{aligned}
$$

16.33

(a) The equivalent capacitance of the upper branch between points a and c in Figure 1 is

$$
C_{s}=\frac{(15.0 \mu \mathrm{~F})(3.00 \mu \mathrm{~F})}{15.0 \mu \mathrm{~F}+3.00 \mu \mathrm{~F}}=2.50 \mu \mathrm{~F}
$$

Then, using Figure 2, the total capacitance between points a and c is

$$
C_{a c}=2.50 \mu \mathrm{~F}+6.00 \mu \mathrm{~F}=8.50 \mu \mathrm{~F}
$$

From Figure 3, the total capacitance is

$$
\begin{aligned}
& C_{e q}=\left(\frac{1}{8.50 \mu \mathrm{~F}}+\frac{1}{20.0 \mu \mathrm{~F}}\right)^{-1}=5.96 \mu \mathrm{~F} \\
Q_{a b}= & Q_{a c}=Q_{c b}=(\Delta V)_{a b} C_{e q} \\
& =(15.0 \mathrm{~V})(5.96 \mu \mathrm{~F})=89.5 \mu \mathrm{C}
\end{aligned}
$$

(b)

Thus, the charge on the $20.0 \mu \mathrm{C}$ is $Q_{20}=Q_{c b}=89.5 \mu \mathrm{C}$

$$
(\Delta V)_{a c}=(\Delta V)_{a b}-(\Delta V)_{b c}=15.0 \mathrm{~V}-\left(\frac{89.5 \mu \mathrm{C}}{20.0 \mu \mathrm{~F}}\right)=10.53 \mathrm{~V}
$$

Then, $Q_{6}=(\Delta V)_{a c}(6.00 \mu F)=63.2 \mu \mathrm{C}$ and

$$
Q_{15}=Q_{3}=(\Delta V)_{a c}(2.50 \mu F)=26.3 \mu \mathrm{C}
$$

16.35

Figue 1

Figume2

Fignes

The circuit may be reduced in steps as shown above.
Using the Figure 3, $Q_{a c}=(4.00 \mu \mathrm{~F})(24.0 \mathrm{~V})=96.0 \mu \mathrm{C}$
Then, in Figure 2, $(\Delta V)_{a b}=\frac{Q_{a c}}{C_{a b}}=\frac{96.0 \mu \mathrm{C}}{6.00 \mu \mathrm{~F}}=16.0 \mathrm{~V}$
and $\quad(\Delta V)_{b c}=(\Delta V)_{a c}-(\Delta V)_{a b}=24.0 \mathrm{~V}-16.0 \mathrm{~V}=8.00 \mathrm{~V}$

Finally, using Figure 1, $\quad Q_{1}=C_{1}(\Delta V)_{a b}=(1.00 \mu \mathrm{~F})(16.0 \mathrm{~V})=16.0 \mu \mathrm{C}$

$$
Q_{5}=(5.00 \mu \mathrm{~F})(\Delta V)_{a b}=80.0 \mu \mathrm{C}, \quad Q_{8}=(8.00 \mu \mathrm{~F})(\Delta V)_{b c}=64.0 \mu \mathrm{C}
$$

and

$$
Q_{4}=(4.00 \mu \mathrm{~F})(\Delta V)_{b c}=32.0 \mu \mathrm{C}
$$

16.43 The capacitance is

$$
C=\frac{\epsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(2.00 \times 10^{4} \mathrm{~m}^{2}\right)}{5.00 \times 10^{-3} \mathrm{~m}}=3.54 \times 10^{-13} \mathrm{~F}
$$

and the stored energy is

$$
W=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}\left(3.54 \times 10^{-13} \mathrm{~F}\right)(12.0 \mathrm{~V})^{2}=2.55 \times 10^{-11} \mathrm{~J}
$$

16.45 The capacitance of this parallel plate capacitor is

$$
C=\epsilon_{0} \frac{A}{d}=\left(8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}\right) \frac{\left(1.0 \times 10^{6} \mathrm{~m}^{2}\right)}{(800 \mathrm{~m})}=1.1 \times 10^{-8} \mathrm{~F}
$$

With an electric field strength of $E=3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}$ and a plate separation of $d=800 \mathrm{~m}$, the potential difference between plates is

$$
\Delta V=E d=\left(3.0 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)(800 \mathrm{~m})=2.4 \times 10^{9} \mathrm{~V}
$$

Thus, the energy available for release in a lightning strike is

$$
W=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}\left(1.1 \times 10^{-8} \mathrm{~F}\right)\left(2.4 \times 10^{9} \mathrm{~V}\right)^{2}=3.2 \times 10^{10} \mathrm{~J}
$$

16.47 The initial capacitance (with air between the plates) is $C_{i}=Q /(\Delta V)_{i}$, and the final capacitance (with the dielectric inserted) is $C_{f}=Q /(\Delta V)_{f}$ where Q is the constant quantity of charge stored on the plates.

Thus, the dielectric constant is $\kappa=\frac{C_{f}}{C_{i}}=\frac{(\Delta V)_{i}}{(\Delta V)_{f}}=\frac{100 \mathrm{~V}}{25 \mathrm{~V}}=4.0$
16.49 (a) The dielectric constant for Teflon ${ }^{\circledR}$ is $\kappa=2.1$, so the capacitance is

$$
\begin{aligned}
& C=\frac{\kappa \epsilon_{0} A}{d}=\frac{(2.1)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(175 \times 10^{-4} \mathrm{~m}^{2}\right)}{0.0400 \times 10^{-3} \mathrm{~m}} \\
& C=8.13 \times 10^{-9} \mathrm{~F}=8.13 \mathrm{nF}
\end{aligned}
$$

(b) For Teflon ${ }^{\circledR}$, the dielectric strength is $E_{\max }=60.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$, so the maximum voltage is

$$
\begin{aligned}
& V_{\max }=E_{\max } d=\left(60.0 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)\left(0.0400 \times 10^{-3} \mathrm{~m}\right) \\
& V_{\max }=2.40 \times 10^{3} \mathrm{~V}=2.40 \mathrm{kV}
\end{aligned}
$$

16.60 From $Q=C(\Delta V)$, the capacitance of the capacitor with air between the plates is

$$
C_{0}=\frac{Q_{0}}{\Delta V}=\frac{150 \mu \mathrm{C}}{\Delta V}
$$

After the dielectric is inserted, the potential difference is held to the original value, but the charge changes to $Q=Q_{0}+200 \mu \mathrm{C}=350 \mu \mathrm{C}$. Thus, the capacitance with the dielectric slab in place is

$$
C=\frac{Q}{\Delta V}=\frac{350 \mu \mathrm{C}}{\Delta V}
$$

The dielectric constant of the dielectric slab is therefore

$$
\kappa=\frac{C}{C_{0}}=\left(\frac{350 \mu \mathrm{C}}{\Delta V}\right)\left(\frac{\Delta V}{150 \mu \mathrm{C}}\right)=\frac{350}{150}=2.33
$$

