YOUR NAME \qquad (PRINT NEATLY!)

YOUR PID NUMBER \qquad (PRINT NEATLY!)

INSTRUCTIONS: THERE ARE 10 QUESTIONS ON THIS QUIZ. PLEASE FILL IN THE SCANTRON FORM USING A NUMBER 2 PENCIL. Note: Any confirmed case of cheating will result in an " F " grade in Physics 1B and referral to the dean for disciplinary action.

1. A proton $\left(+1.6 \times 10^{-19} \mathrm{C}\right)$ moves 10 cm on a path in the direction of a uniform electric field of strength $3.0 \mathrm{~N} / \mathrm{C}$. How much work is done on the proton by the electrical field?

$$
\begin{aligned}
& V=E . d=3 \times 10 \times 10^{-2}=0.3 \\
& W=V q=0.3 \times 1.6 \times 10^{-19}=4.8 \times 10^{-20}
\end{aligned}
$$

a. $-4.8 \times 10^{-20} \mathrm{~J}$
b. $4.8 \times 10^{-20} \mathrm{~J}$
c. $1.6 \times 10^{-20} \mathrm{~J}$
d. zero
2. A $10.0-\mu \mathrm{F}$ capacitor is attached to a $20-\mathrm{V}$ power supply. How much energy is stored in the capacitor?

$$
W=\frac{1}{2} C V^{2}=\frac{1}{2} \times 10 \times 10^{-6} \times 20^{2}=2.0 \times 10^{-3} J
$$

a. $2.0 \times 10^{-3} \mathrm{~J}$
b. $1.2 \times 10^{-3} \mathrm{~J}$
c. $2.0 \times 10^{-4} \mathrm{~J}$
d. $5.2 \times 10^{-4} \mathrm{~J}$
3. Increasing the voltage across the two plates of a capacitor will produce what effect on the capacitor?

The capacitance doesn't change as a result the charge should increase for capacitance to remain unchanged.
a. increase capacitance
b. decrease charge
c. increase charge
d. decrease capacitanc
4. Two point charges of values +3.4 and $+6.6 \mu \mathrm{C}$ are separated by 0.10 m . What is the electrical potential at the point midway between the two point charges? $\left(k_{e}=8.99 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}\right)$

$$
\begin{gathered}
V=k_{e} \frac{q}{r} \\
V_{1}=8.99 \times 10^{9} \frac{3.4 \times 10^{-6}}{0.05}=+6.1 \times 10^{6} \mathrm{~V} \\
V_{1}=8.99 \times 10^{9} \frac{6.6 \times 10^{-6}}{0.05}=+1.2 \times 10^{6} \mathrm{~V} \\
V=V_{1}+V_{2}=+1.8 \times 10^{6} \mathrm{~V}
\end{gathered}
$$

a. $+1.8 \times 10^{6} \mathrm{~V}$
b. $-0.90 \times 10^{6} \mathrm{~V}$
c. $+0.90 \times 10^{6} \mathrm{~V}$
d. $+3.6 \times 10^{6} \mathrm{~V}$
5. An electron is released from rest at the negative plate of a parallel-plate capacitor. If the distance across the plate is 5.0 mm and the potential difference across the plate is 5.0 V , with what velocity does the electron hit the positive plate? $\left(m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}\right)$

$$
\begin{gathered}
F=q E=m a, \quad E=\frac{V}{d}, a=\frac{q V}{d m} \\
a=\frac{1.6 E-19 \times 5}{5 E-3 \times 9.1 E-31}=1.8 E 14 \\
V_{f}^{2}-V_{i}^{2}=2 a x, \quad V_{f}^{2}-0=2 \times 1.8 E 14 \times 5 E-3 \\
V_{f}=1.3 E 6 m / s
\end{gathered}
$$

a. $2.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$
b. $5.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
c. $1.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$
d. $1.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
6. If $C=36 \mu \mathrm{~F}$, determine the equivalent capacitance for the combination shown.

$$
\begin{aligned}
& \qquad \frac{1}{C_{1}}=\frac{1}{2 C}+\frac{1}{2 C}=\frac{1}{C}, \quad C_{1}=C \\
& C_{2}+C_{1}=2 C \\
& \frac{1}{C_{\text {tot }}}=\frac{1}{C_{2}}+\frac{1}{C}, C_{t o t}=\frac{2 C}{3}=24 \mu \mathrm{~F} \\
& \begin{array}{l}
\text { a. } 36 \mu \mathrm{~F} \\
\text { b. } 24 \mu \mathrm{~F} \\
\text { c. } 28 \mu \mathrm{~F} \\
\text { d. } 32 \mu \mathrm{~F}
\end{array}
\end{aligned}
$$

7. In the figure below, if $C_{1}=25 \mu \mathrm{~F}, C_{2}=20 \mu \mathrm{~F}, C_{3}=10 \mu \mathrm{~F}$, and $\Delta V_{0}=21 \mathrm{~V}$, determine the energy stored by C_{2}.

$$
\begin{gathered}
C^{\prime}=C_{2}+C_{3}=30 E-6 \\
\frac{1}{C_{\text {tot }}}=\frac{1}{C_{1}}+\frac{1}{C^{\prime}}=>C_{\text {tot }}=13.6 E-6 \\
Q=C_{\text {tot }} V=13.6 E-6 \times 21=2.9 E-4 C \\
\text { Voltage across } C_{1} \text { and } C_{2}=> \\
V^{\prime}=\frac{Q}{C^{\prime}}=9.7 \mathrm{~V} \\
\text { as a result } \\
W=\frac{1}{2} C V^{2}=>W_{2}=0.91 \mathrm{~mJ}
\end{gathered}
$$

a. 0.72 mJ
b. 0.32 mJ
c. 0.40 mJ
d. 0.91 mJ

8. An electron with velocity $v=1.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is sent between the plates of a capacitor where the electric field is $E=500 \mathrm{~V} / \mathrm{m}$. If the distance the electron travels through the field is 1.0 cm , how far is it deviated (Y) in its path when it emerges from the electric field? $\left(m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}\right)$

$$
\begin{gathered}
F=E=m a_{y} \\
a_{y}=\frac{500 \times 1.6 E-19}{9.1 E-31} \\
a_{y}=8.8 E 13 \\
t_{\text {moving }}=\frac{x}{v_{x}}=\frac{0.01}{10^{6}}=10^{-8} \\
y=\frac{1}{2} a_{y} t^{2} \\
y=4.4 \mathrm{~mm}
\end{gathered}
$$

a. 2.2 mm
b. 4.4 mm
c. 2.2 cm
d. 4.4 cm

9. Four identical 1 mF capacitors are connected together electrically. What is the least possible capacitance of the combination?
The least possible capacitance when we connect the capacitors

$$
\text { in series }=>C_{\min }=\frac{1}{4} m F
$$

a. 4 mF
b. 1 mF
c. $1 / 4 \mathrm{mF}$
d. $1 / 8 \mathrm{mF}$
10. How much charge can be placed on a capacitor of plate area $10 \mathrm{~cm}^{2}$ with air between the plates before it reaches "atmospheric breakdown" where $E=3.0 \times 10^{6} \mathrm{~V} / \mathrm{m} ?\left(\sum_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\right)$

$$
\begin{gathered}
V=E d, Q=C V, C=\frac{A \varepsilon_{o}}{d} \\
Q=E A \varepsilon_{o}=2.7 E-8 C
\end{gathered}
$$

a. $2.7 \times 10^{-8} \mathrm{C}$
b. $4.0 \times 10^{-7} \mathrm{C}$
c. $5.3 \times 10^{-6} \mathrm{C}$
d. $6.6 \times 10^{-5} \mathrm{C}$

