20.2 Lenz's Law

Motional emf Lenz's law Applications of Faraday's Law

Demo show the eddy current effect of dropping a magnet in a conducting tube

Demo

Electrical generator- show that the motor can be used as a generator. first start the motor then switch it to the generator mode the light bulb should go on (turn down the lights_

Magnetic induction use the iron core inductor to levitate a ring. show that the ring does not levitate if it is cut. then show that a light bulb can be lit using magnetic induction. Energy transfer through space. Electro magnetic energy.

Electrical Generator

Uses mechanical work to generate electrical current

Changing flux through a rotating coil produces emf Faraday's Law

Alternating current is produced

Direct current can be produced using a commutator.

• Wednesday 12/2

•Final Exam (40% of grade) on Monday December 7th 1130a-230pm in York 2622

•You can bring *two* 8.5x11" pages, front and back, of notes

•Calculators may be used

• multiple choice like quizzes, only longer by about 2-3x more questions...

•Covers ALL of 1B: Ch15 - 21, inclusive

- Bring your own Scantron forms and pencils
- Final Review Problem Session: Tomorrow Night

35. In a model ac generator, a 500 turn rectangular coil 8.0 cmx 20 cm rotates at 120 rev/min in a uniform magnetic field of 0.60 T. a) What is the maximum emf induced in the coil?

$$\varepsilon = NBA\omega \sin \omega t$$

The maximum value of $\boldsymbol{\epsilon}$

$$\varepsilon_{max} = NBA\omega$$

 $\varepsilon_{max} = (500)(0.6)(0.08x0.2)\frac{(120x2\pi)}{60} = 60V$

Self-Inductance

- a property of a circuit carrying a current
- a voltage is induced that opposes the change in current
- used to make devices called inductors

A 10 microfarad capacitor is in an ac circuit with a voltage source with RMS voltage of 10 V. a) Find the current for a frequency of 100 Hz. b) Find the current for a frequency of 1000 Hz. a) $\Delta V_c = X_c I$ $I = \frac{\Delta V_c}{X_c} = \frac{\Delta V_c (2\pi fC)}{1}$ $I = 10(2\pi)(100)(10^{-5}) = 6.3 \times 10^{-2} A$ b) The frequency is 10 x higher, the current is 10 x higher $I=10x6.3x10^{-2}$ $=6.3x10^{-1}A$

A inductor with L= 10⁻⁵ H is driven by a 10 V ac source.
a) Find the current at f=100 Hz.
b) Find the current at f=1000Hz
a)
$$I_{RMS} = \frac{\Delta V_{L,RMS}}{X_L} = \frac{\Delta V_{L,RMS}}{2\pi fL}$$

 $I = \frac{10}{2\pi (100)(10^{-5})} = 1.6 \times 10^3 A$
b) the frequency is 10x greater
the current is inversely proportional to f
the current is 10x lower
I=1.6x10³/10=1.6x10²A

• Friday 12/4

•Final Exam (40% of grade) on Monday December 7th 1130a-230pm in York 2622

•You can bring *two* 8.5x11" pages, front and back, of notes

•Calculators may be used

• multiple choice like quizzes, only longer by about 2-3x more questions...

•Covers ALL of 1B: Ch15 - 21, inclusive

- Bring your own Scantron forms and pencils
- Final Review Problem Session: Tomorrow Night

21 Electromagnetic Radiation

Maxwell's prediction properties of electromagnetic waves

James Clerk Maxwell

- Electricity and magnetism were originally thought to be unrelated
- in 1865, James Clerk Maxwell provided a mathematical theory that showed a close relationship between all electric and magnetic phenomena

Maxwell discovered that it does.

Consider a current flowing into a capacitor. The current changes the charge on the capacitor. Changing the E field across the capacitor. The changing E field results in a displacement current.

Maxwell's relations

Gauss' Law in Free space– Electric flux through a surface is zero in the absence of charge

Gauss' Law for magnetism - Magnetic lines form closed loops (no magnetic monopoles)

Faraday's Law - A changing magnetic field produces an electric field.

Ampere's Law in Free space - A changing electric field is equivalent to a current. Thus, a changing electric field produces a magnetic field.

Using the equations relating these ideas (Maxwell's equations) Maxwell predicted the existence of electromagnetic radiation.

Electromagnetic radiation

- Electric and magnetic fields radiate as waves from an accelerating charge
- The waves propagate at the speed of light
- The waves propagate in a vacuum.
- Carries energy and momentum

Speed of light is a universal constant.

3.00x 10⁸ m/s

approximately 1 ft per nanosecond (10-9 s)

The time for light to travel halfway around the earth

 $2x10^8$ m is about 0.7 s

Some properties of electromagnetic radiation

Speed of light c=2.99x10⁸ m/s

Electric and magnetic fields both present in fixed ratio

$$\frac{E}{B} = c$$

Energy is carried by both E field and B field The average power / area carried by the E field and B field are equal.

$$\frac{Power}{area} = \frac{B_{max}^2 c}{2\mu_o} = \frac{E_{max}^2}{2\mu_o c} = \frac{E_{max}B_{max}}{2\mu_o}$$

A radio transmitter has a range of 50 km and a power output of 1.0 kW. What is the max E field at the edge of the range if the signal is transmitted uniformly over a hemisphere?

$$\frac{power}{area} = \frac{p}{2\pi R^2} = \frac{E_{max}^2}{2\mu_o c}$$
$$E_{max} = \sqrt{\frac{p\mu_o c}{\pi R^2}} = \sqrt{\frac{(1000)(4\pi x 10^{-7})(3x 10^8)}{\pi (50x 10^3)^2}} = 7x 10^{-3} V / m$$

Antennas Dipole antenna detects the E field Loop antenna detects the B field

What is the direction of the E fields and B fields?

What is the direction to the TV station?

The direction of propagation is perpendicular to E and B The station is to the left or right

Red Laser visible light λ ~650 nm oscillations due to excited electrons losing energy in going from excited high energy states.
visible light λ ~650 nm oscillations due to excited electrons losing energy in going from excited high energy states.
oscillations due to excited electrons losing energy in going from excited high energy states.
oscillations due to excited electrons losing energy in going from excited high energy states.
Diffraction effects occur when light passes through Periodic structures with same length scale as the wavelength

<u>Summary</u>

Electric Fields -produced by charges and changing magnetic fields

Magnetic Fields -produced by moving charges and changing electric fields

Electromagnetic radiation- results from changing electric and magnetic fields- Carries energy and momentum through space.