PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

19.1 Magnetism

Magnets
Earth's magnetic field Magnetic Field-force on a moving charge

19.1 Magnetism

Magnets
 Earth's magnetic field
 Magnetic Field-force on a moving charge

Magnetism
Magnetism results from Magnetic fields that are produced by moving charges. There are many applications of magnetism involving the interconversion of mechanical energy and electrical energy.

Applications-
magnets
Electrical generators
Electrical motors
Magnetic resonance imaging
Magnetic data storage- magnetic tape, computer drives

Magnets

Permanent Magnets- atomic magnetism due to motion of electrons

Electro magnets- magnetism results from current flow.

Magnets

A magnet has two poles (magnetic dipole) North -South

Opposite poles attract

Like poles repel

No Magnetic Monopoles are found (i.e. there is no magnetic equivalent of charge)

$$
N
$$

Cut a magnetic in two

GET

N
S

no matter how small the magnet

Magnetic Fields

Magnetic field lines around magnetic dipole go from N to S

Magnetic dipoles are oriented in magnetic fields parallel to magnetic field lines. e.g. compass needle

N pole toward S
S pole toward N

Magnetic field lines of magnets
Visualized using iron filings- magnetic particles
Originate at N pole- terminate at S pole

Magnetic field lines of magnets
Visualized using iron filings- magnetic particles
Originate at N pole- terminate at S pole

Magnetic field lines of magnets
Visualized using iron filings- magnetic particles
Originate at N pole- terminate at S pole

Magnetic field lines of magnets
Visualized using iron filings- magnetic particles
Originate at N pole- terminate at S pole

Magnetic field lines of magnets
Visualized using iron filings- magnetic particles
Originate at N pole- terminate at S pole

Earth's Magnetic Field

Earth's Magnetic Field

Earth's Magnetic Field

Earth's magnetic field has a vertical component Points down in Northern hemisphere Points up in Southern hemisphere Zero at the magnetic equator

Earth's Magnetic Field

Earth's magnetic field has a vertical component Points down in Northern hemisphere Points up in Southern hemisphere Zero at the magnetic equator

Earth's Magnetic Field

Earth's magnetic field has a vertical component Points down in Northern hemisphere Points up in Southern hemisphere Zero at the magnetic equator

Earth's Magnetic Field

Earth's magnetic field has a vertical component Points down in Northern hemisphere Points up in Southern hemisphere Zero at the magnetic equator

Magnetic bacteria

Migrate to north pole in northern hemisphere

Migrate to south pole in southern hemisphere
Generally downward to the mud

Magnetic particles

Magnetic bacteria

Migrate to north pole in northern hemisphere

Migrate to south pole in southern hemisphere
Generally downward to the mud

Magnetic particles

Magnetic bacteria

Migrate to north pole in northern hemisphere

Migrate to south pole in southern hemisphere
Generally downward to the mud

Magnetic particles

Magnetic field produces force on moving charges

A charge q moving with velocity v in a magnetic field B experiences a force F.

$$
F=q v B \sin \theta
$$

Force

Depends on the velocity and magnetic field
Depends on angle between v and B
Is max when v and B are perpendicular
Is perpendicular to the direction of B and v

Right hand rule

F is perpendicular to the plane of v and B direction of F given by the right hand rule

Right hand rule

Right hand
F is perpendicular to the plane of v and B direction of F given by the right hand rule

Magnetic field magnitude defined

$$
\begin{aligned}
& F=q v B \sin \theta \\
& B=\frac{F}{q v \sin \theta}
\end{aligned}
$$

Units of B

$$
\frac{N s}{C m} \quad \text { Tesla (T) }
$$

Also

$$
\frac{\text { weber }}{m^{2}} \quad\left(\frac{W b}{m^{2}}\right)
$$

Also commonly used gauss (g) 10^{4} gauss=1 Tesla

Typical magnetic field strengths
Field (T)
Earth's field $\quad 0.5 \times 10^{-4} \quad(0.5 \mathrm{~g})$
Bar magnets $\quad 10^{-2}$
Laboratory magnet 5
Superconducting Magnet

20-30

A proton is moving at $10^{4} \mathrm{~m} / \mathrm{s}$ from left to right In a magnetic field of 0.4 T that is in the upward direction. (a) Find the magnitude of the force. (b) Find the direction of the force. (c) What would be the force if the particle was an electron?
(a) $\mathrm{F}=$
(b) direction

(c) For electron,

A proton is moving at $10^{4} \mathrm{~m} / \mathrm{s}$ from left to right In a magnetic field of 0.4 T that is in the upward direction. (a) Find the magnitude of the force. (b) Find the direction of the force. (c) What would be the force if the particle was an electron?
(a) $\mathrm{F}=q v B \sin \theta$

(b) direction | B |
| :--- |
| F |

(c) For electron,

A proton is moving at $10^{4} \mathrm{~m} / \mathrm{s}$ from left to right In a magnetic field of 0.4 T that is in the upward direction. (a) Find the magnitude of the force. (b) Find the direction of the force. (c) What would be the force if the particle was an electron?
(a) $\mathrm{F}=q v B \sin \theta=1.6 \times 10^{-19}\left(10^{4}\right)(0.4)(1)=6.4 \times 10^{-16} \mathrm{~N}$

(b) direction | B |
| :--- |
| F |

(c) For electron,

A proton is moving at $10^{4} \mathrm{~m} / \mathrm{s}$ from left to right In a magnetic field of 0.4 T that is in the upward direction. (a) Find the magnitude of the force. (b) Find the direction of the force. (c) What would be the force if the particle was an electron?
(a) $\mathrm{F}=q v B \sin \theta=1.6 \times 10^{-19}\left(10^{4}\right)(0.4)(1)=6.4 \times 10^{-16} \mathrm{~N}$
(b) direction
B

F outward from the page
(c) For electron,

A proton is moving at $10^{4} \mathrm{~m} / \mathrm{s}$ from left to right In a magnetic field of 0.4 T that is in the upward direction. (a) Find the magnitude of the force. (b) Find the direction of the force. (c) What would be the force if the particle was an electron?
(a) $\mathrm{F}=q v B \sin \theta=1.6 \times 10^{-19}\left(10^{4}\right)(0.4)(1)=6.4 \times 10^{-16} \mathrm{~N}$
(b) direction

> B

F outward from the page
(c) For electron, q negative, the force would have the same magnitude but opposite direction. Into the page

Magnetic field notations

B field out of the page
think of arrows

PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=$
Force due to $\mathrm{E}=$
Forces cancel

velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\operatorname{evB}$
Force due to $\mathrm{E}=$
Forces cancel

velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $B=\quad e v B \quad$ (downward, q is negative)
Force due to $\mathrm{E}=$
Forces cancel
velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\quad e v B \quad$ (downward, q is negative)
Force due to $\mathrm{E}=\mathrm{eE}$
Forces cancel
velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\quad \operatorname{evB} \quad$ (downward, q is negative)
Force due to $\mathrm{E}=\mathrm{eE} \quad$ (upward, q is negative)
Forces cancel
velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\operatorname{evB} \quad$ (downward, q is negative)
Force due to $\mathrm{E}=\quad \mathrm{eE} \quad$ (upward, q is negative)
Forces cancel $\quad F_{m}=F_{E}$
velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\quad e v B \quad$ (downward, q is negative)
Force due to $\mathrm{E}=\quad \mathrm{eE} \quad$ (upward, q is negative)
Forces cancel $\quad \mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{E}} \quad e v B=e E$
velocity of un-deflected electron =

Velocity selector
Perpendicular E and B fields can be used to select electrons having a specific velocity

Force due to $\mathrm{B}=\quad \mathrm{evB} \quad$ (downward, q is negative)
Force due to $\mathrm{E}=\quad \mathrm{eE} \quad$ (upward, q is negative)
Forces cancel

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{E}} \quad e v B=e E \\
& \text { cted electron }=\quad V=\frac{E}{B}
\end{aligned}
$$

Problems in Magnetism

- Magnetic Force Problems
- Electron moving in a Magnetic Field (like electron moving in electric field produced by a parallel plate capacitor).

A velocity selector has perpendicular electric and magnetic field of $E=1000 \mathrm{~V} / \mathrm{m}$ and $\mathrm{B}=0.3 \mathrm{~T}$. Find the velocity of the electrons that pass through undeflected. What would happen to faster electrons? Slower?

$$
v=\frac{E}{B}=\frac{1000}{0.3}=3.3 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

(uniform magnetic field)

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

After Δt particle is in the same plane
(uniform magnetic field)

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

After Δt particle is in the same plane

Particle moves in a plane perpendicular to B
(uniform magnetic field)

Motion of particle in plane perpendicular to B

The particle moves in a circular path

A proton with $v=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

A proton with $\mathrm{v}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

$$
r=\frac{m v}{q B}
$$

A proton with $\mathrm{v}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

$$
\begin{aligned}
& r=\frac{m v}{q B} \\
& r=\frac{1.67 \times 10^{-27}\left(1 \times 10^{6}\right)}{1.6 \times 10^{-19}(0.2)} \\
& r=5.2 \times 10^{-2} \mathrm{~m}=5.2 \mathrm{~cm}
\end{aligned}
$$

Application

Mass spectrometer

Molecular ions At velocity v

$$
r=\frac{m v}{q B}
$$

Ions separated by mass

A mass spectrometer with a ion velocity selector at the inlet selects ions with $v=5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. What B field is necessary to rotate a molecular ion $\mathrm{CO}_{2}{ }^{+}$with a mass of $6.67 \times 10^{-26} \mathrm{~kg}$ through radius of 0.20 m ?

A mass spectrometer with a ion velocity selector at the inlet selects ions with $v=5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. What B field is necessary to rotate a molecular ion $\mathrm{CO}_{2}{ }^{+}$with a mass of $6.67 \times 10^{-26} \mathrm{~kg}$ through radius of 0.20 m ?

$$
q v B=\frac{m v^{2}}{r}
$$

A mass spectrometer with a ion velocity selector at the inlet selects ions with $v=5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. What B field is necessary to rotate a molecular ion $\mathrm{CO}_{2}{ }^{+}$with a mass of $6.67 \times 10^{-26} \mathrm{~kg}$ through radius of 0.20 m ?

$$
q v B=\frac{m v^{2}}{r}
$$

$$
B=\frac{m v}{q r}
$$

A mass spectrometer with a ion velocity selector at the inlet selects ions with $v=5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. What B field is necessary to rotate a molecular ion $\mathrm{CO}_{2}{ }^{+}$with a mass of $6.67 \times 10^{-26} \mathrm{~kg}$ through radius of 0.20 m ?

$$
q v B=\frac{m v^{2}}{r}
$$

$$
B=\frac{m v}{q r}=\frac{\left(6.67 \times 10^{-26}\right)\left(5 \times 10^{4}\right)}{\left(1.6 \times 10^{-19}\right)(0.2)}=1.04 \times 10^{-1} T
$$

