PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

Resistance of a light bulb filament.

Thin tungsten coil.

$$
\begin{aligned}
& \mathrm{R}=150 \Omega \\
& \rho=73 \times 10^{-8} \Omega-\mathrm{m}(\text { at } 2000 \mathrm{C}) \\
& \mathrm{L}=0.5 \mathrm{~m}
\end{aligned}
$$

Find the diameter of the wire.

Resistance of a light bulb filament.

Thin tungsten coil.

$$
\begin{aligned}
& \mathrm{R}=150 \Omega \\
& \rho=73 \times 10^{-8} \Omega-\mathrm{m}(\text { at } 2000 \mathrm{C}) \\
& \mathrm{L}=0.5 \mathrm{~m}
\end{aligned}
$$

Find the diameter of the wire.

$$
\begin{aligned}
& R=\frac{\rho L}{A}=\frac{4 \rho L}{\pi d^{2}} \\
& d=\sqrt{\frac{4 \rho L}{\pi R}}=\sqrt{\frac{4\left(73 \times 10^{-8}\right)(0.5)}{\pi(150)}}=5.5 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

$55 \mu \mathrm{~m}$

Ch 17.6

Temperature dependence of resistance

 metal conductors

At higher T the collisions with the lattice are more frequent.

v_{D} becomes lower
R becomes larger

Temperature coefficient of resistivity

For small changes in T

$\rho=\rho_{o}\left[1+\alpha\left(T-T_{o}\right)\right]$

T

Material
Copper
Tungsten
Silicon
$\alpha\left(\mathrm{C}^{\circ}\right)^{-1}$ near $20^{\circ} \mathrm{C}$
3.9×10^{-3}
4.5×10^{-3}
-7.5×10^{-3}

Thermometry

A platinum resistance thermometer uses the change in resistance to measure temperature. If a student with the flu has a temperature rise of $4.5^{\circ} \mathrm{C}$ measured with a platinum resistance thermometer and the initial $R=50.00$ ohms. What is the final resistance? $\alpha=3.92 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$

Thermometry

A platinum resistance thermometer uses the change in resistance to measure temperature. If a student with the flu has a temperature rise of $4.5^{\circ} \mathrm{C}$ measured with a platinum resistance thermometer and the initial $R=50.00$ ohms. What is the final resistance? $\alpha=3.92 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
$R \propto \rho$

Thermometry

A platinum resistance thermometer uses the change in resistance to measure temperature. If a student with the flu has a temperature rise of $4.5^{\circ} \mathrm{C}$ measured with a platinum resistance thermometer and the initial $R=50.00$ ohms. What is the final resistance? $\alpha=3.92 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$

$$
\begin{aligned}
& \mathrm{R} \propto \rho \\
& R=R_{o}\left[1+\alpha\left(T-T_{o}\right)\right] \\
& R=50.00\left[1+3.92 \times 10^{-3}(4.5)\right] \\
& R=50.00[1.018]=50.88 \Omega
\end{aligned}
$$

17. 8
 Electrical energy, power

The power dissipated in a resistor is due to collisions of charge carriers with the lattice.

Electrical potential energy is converted to Kinetic energy is converted into heat.

$$
-\Delta \mathrm{V}
$$

Energy dissipated in a resistor

Voltage drop
Change in $P E=q \Delta V$
Dissipated as heat

Power dissipated in a resistor

$$
P=\frac{\text { work }}{\text { time }}=\frac{q \Delta V}{\Delta t}
$$

Three equivalent relations for the power

Power dissipated in a resistor

$$
\begin{aligned}
& P=\frac{\text { work }}{\text { time }}=\frac{q \Delta V}{\Delta t} \\
& P=I \Delta V \\
& P=I(I R)=I^{2} R \\
& P=\left(\frac{\Delta V}{R}\right) \Delta V=\frac{\Delta V^{2}}{R}
\end{aligned}
$$

Three equivalent relations for the power

A lightbulb has an output of 100 W when connected to a 120 V household outlet. What is the resistance of the filament?

A lightbulb has an output of 100 W when connected to a 120 V household outlet. What is the resistance of the filament?
$P=\frac{\Delta V^{2}}{R}$
$R=\frac{V^{2}}{P}=\frac{120^{2}}{100}=144 \Omega$

A heating element in an electric range is rated at 2000 W . Find the current required if the voltage is 240 V . Find the resistance of the heating element.

A heating element in an electric range is rated at 2000 W . Find the current required if the voltage is 240 V . Find the resistance of the heating element.

$$
\begin{aligned}
& P=I V \\
& I=\frac{P}{V}=\frac{2000}{240}=8.3 \mathrm{~A}
\end{aligned}
$$

A heating element in an electric range is rated at 2000 W . Find the current required if the voltage is 240 V . Find the resistance of the heating element.

$$
\begin{aligned}
& P=I V \\
& I=\frac{P}{V}=\frac{2000}{240}=8.3 A \\
& P=I^{2} R \\
& R=\frac{P}{I^{2}}=\frac{2000}{8.3^{2}}=29 \Omega
\end{aligned}
$$

Cost of electrical power
Kilowatt hour $=1 \mathrm{~kW} \times 1 \mathrm{hr}=1000 \mathrm{~J} / \mathrm{s}(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~J}$
1 kW hr costs ~ \$0.15

How much does it cost to keep a 100W light on for 24 hrs?

Cost of electrical power
Kilowatt hour $=1 \mathrm{~kW} \times 1 \mathrm{hr}=1000 \mathrm{~J} / \mathrm{s}(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~J}$
1 kW hr costs ~ \$0.15

How much does it cost to keep a 100W light on for 24 hrs?

$$
\text { Cost }=\frac{\$}{k w h r} k w h r=0.15(0.10)(24)=\$ 0.36
$$

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

$$
P_{f}=I \Delta V_{f}
$$

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

$$
\begin{aligned}
& P_{f}=I \Delta V_{f} \\
& I=\frac{P_{f}}{\Delta V_{f}}=\frac{10^{5}}{120}=8.3 \times 10^{2} \mathrm{~A}
\end{aligned}
$$

A large current is required to provide this power at low voltage

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

$$
\begin{aligned}
& P_{f}=I \Delta V_{f} \\
& I=\frac{P_{f}}{\Delta V_{f}}=\frac{10^{5}}{120}=8.3 \times 10^{2} \mathrm{~A} \\
& P_{c}=I^{2} R_{c}=\left(8.3 \times 10^{2}\right)^{2}(0.24)=1.6 \times 10^{5} \mathrm{~W}
\end{aligned}
$$

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

$$
\begin{aligned}
& P_{f}=I \Delta V_{f} \\
& I=\frac{P_{f}}{\Delta V_{f}}=\frac{10^{5}}{120}=8.3 \times 10^{2} \mathrm{~A}
\end{aligned}
$$

A large current is required to provide this power at low voltage

$$
P_{c}=I^{2} R_{c}=\left(8.3 \times 10^{2}\right)^{2}(0.24)=1.6 \times 10^{5} \mathrm{~W}
$$

Very lossy cable

Power Transmission

High voltage

$$
\Delta V_{\text {trans }}=10^{5} \mathrm{~V} \quad \text { Power loss }=I^{2} R_{\text {wire }}
$$

Power transferred $=\Delta \mathrm{V}_{\text {trans }} I$
transformer

$$
\begin{aligned}
& \Delta \mathrm{V}=120 \mathrm{~V} \\
& \text { Low voltage }
\end{aligned}
$$

High voltage transmission- power transmitted with lower current. Therefore lower I2R loss in the line.

Chapter 18

- Resistors in Series
- Resistors in Parallel
- Combinations of Parallel and Series
- Combinations of Capacitors and Resistors

Ch 18.2

Resistors in Series

What is the equivalent resistance $R_{\text {eq }}$?

I same, $\Delta \mathrm{V}$ different

Ch 18. 2

Resistors in Series

What is the equivalent resistance $R_{\text {eq }}$?

I same, $\Delta \mathrm{V}$ different
$\Delta \mathrm{V}=\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}$

Ch 18.2

Resistors in Series
What is the equivalent resistance $R_{\text {eq }}$?

I same, $\Delta \mathrm{V}$ different
$\Delta V=\Delta V_{1}+\Delta V_{2}$
$\Delta V=\mathrm{IR}_{\text {eq }}=\mathrm{IR}_{1}+\mathrm{IR}_{2}$

Ch 18. 2

Resistors in Series
What is the equivalent resistance $R_{\text {eq }}$?

I same, $\Delta \mathrm{V}$ different

$$
\begin{gathered}
\Delta V=\Delta V_{1}+\Delta V_{2} \\
\Delta V=I R_{e q}=I R_{1}+\mathrm{IR}_{2}
\end{gathered}
$$

$$
R_{e q}=R_{1}+R_{2}
$$

Ch 18. 2

Resistors in Series
What is the equivalent resistance $R_{\text {eq }}$?

I same, $\Delta \mathrm{V}$ different

$$
\begin{gathered}
\Delta \mathrm{V}=\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2} \\
\Delta \mathrm{~V}=\mathrm{IR}_{\mathrm{eq}}=\mathrm{IR}_{1}+\mathrm{IR}_{2} \\
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}
\end{gathered}
$$

For N resistors in series

$$
R_{e q}=R_{1}+R_{2}+\ldots \ldots . R_{N}
$$

$R_{\text {eq }}$ is larger than any R

Why is the series law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

R~L

Why do we care?
Consider Simple Circuit: Two resistors in Series

Why do we care?
Consider Simple Circuit: Two resistors in Series

A B
C
D
E
F

Why do we care?
Consider Simple Circuit: Two resistors in Series

Why is the parallel law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

$$
R \sim 1 / \text { Area }
$$

Why is the parallel law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

Why is the parallel law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

Why is the parallel law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

$$
R \sim 1 / \text { Area }
$$

$$
\begin{aligned}
& A_{\text {tot }}=A_{1}+A_{2} \\
& A_{\text {tot }}=1 / R_{1}+1 / R_{2} \\
& R_{\text {tot }} \sim 1 / A_{\text {tot }} \sim 1 /\left(1 / R_{1}+1 / R_{2}\right)
\end{aligned}
$$

Resistors in parallel, ΔV same, I different

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

Resistors in parallel, ΔV same, I different

Resistors in parallel, $\Delta \mathrm{V}$ same, I different

Resistors in parallel, $\Delta \mathrm{V}$ same, I different

$$
I=I_{1}+I_{2}
$$

$$
\frac{\Delta V}{R_{e q}}=I=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}
$$

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

For N resistors in parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots \ldots . .+\frac{1}{R_{N}}
$$

Resistors in parallel, $\Delta \mathrm{V}$ same, I different

$$
I=I_{1}+I_{2}
$$

$$
\frac{\Delta V}{R_{e q}}=I=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}
$$

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

For N resistors in parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots \ldots . .+\frac{1}{R_{N}}
$$

$R_{e q}$ is smaller than any R

PHYSICS 1B - Fall 2009

Electricity \&

 MagnetismProfessor Brian Keating

Monday 11/2
SERF Building. Room 333

Comparisons: Resistors \& Capacitors

- Resistors in series are like capacitors in parallel.
- Resistors in parallel are like capacitors in series.
- This is because $R \sim L$ and $C \sim 1 / L$
- And because R~1/A and C~A

Ch 18 Kirchoff's 2 Rules

1. Junction rule 2. Loop rule

Rule \#1. "Junction rule"

The current flowing into a junction is equal to the current flowing out.

$$
\eta_{1}=\int_{2}+I_{3}
$$

Rule \#1. "Junction rule"

The current flowing into a junction is equal to the current flowing out.

$$
\eta_{1}=/_{2}+I_{3}
$$

This comes from 'conservation of charge'

\#2. Loop rule

"The sum of voltage differences in going around a closed current loop is equal to zero"

\#2. Loop rule

The sum of voltage differences in going around a closed current loop is equal to zero

$\sum_{\text {Doop }} \Delta V_{i}=0$

Voltage changes in traversing the loop
Choose a current direction
-IR, current in traversal direction
+IR current in opposite direction
$+\Delta \mathrm{V}$ voltage increases along traversal direction
$-\Delta V$ voltage decreases along traversal direction

$$
\Delta V_{1}-I_{1} R_{1}+I_{3} R_{3}-\Delta V_{2}=0
$$

If I is negative when you solve the equations, the current flows in the opposite direction than you chose.

Not all loop equations are independent

only 2 of these equations are independent

Not all loop equations are independent

$\Delta V-I_{1} R_{1}-I_{3} R_{3}=0$
only 2 of these equations are independent

Not all loop equations are independent
$\Delta V-I_{1} R_{1}-I_{3} R_{3}=0$

$$
I_{3} R_{3}-I_{2} R_{2}=0
$$

only 2 of these equations are independent

Not all loop equations are independent

$$
\Delta V-I_{1} R_{1}-I_{2} R_{2}=0
$$

only 2 of these equations are independent

Using Kirchoff's rules

(1) Write the equations for the junction rule.
(2) Write the equations for the loop rule. Choose a direction for currents. If the current is negative then it flows in the opposite direction. Use as many equations as necessary to solve for all unknown quantities. (for n unknowns need n equations).
(3) Solve the set of equations for n unknown quantities.

Find I_{1}, I_{2}, I_{3}

no. Junction=

Find I_{1}, I_{2}, I_{3}

Find I_{1}, I_{2}, I_{3}

Find I_{1}, I_{2}, I_{3}

Find I_{1}, I_{2}, I_{3}

$$
I_{1}=I_{2}+I_{3}
$$

Find I_{1}, I_{2}, I_{3}
No. equations needed $=3$

Chapter 18.5 RC circuit

Time dependent currents and voltages.
Applications. clocks, timing circuits, computers.
Time to charge and discharge of a capacitor

RC circuit

switch
When the switch is closed how does the current and voltage change with time?

RC circuit

R

switch

Charging

Switch on

$$
\Delta V_{o}-\operatorname{IR}-\Delta V_{c}=0
$$

switch
When the switch is initially closed the voltage on the capacitor is zero.
Charge is transferred to the capacitor at a rate $\mathrm{I}=\mathrm{dq} / \mathrm{dt}$. As the capacitor is charging the charge and voltage on the capacitor increases with time and the current decreases.

Charging Capacitor

Charging Capacitor

Charging Capacitor

$$
q=
$$

$\Delta V_{C}=$
$\mid=$

Charging Capacitor

short times
$\mathrm{q}=$
$\Delta V_{C}=$
$\mid=$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
$\mathrm{q}=$
$\Delta V_{C}=$
I =

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
long times
$\mathrm{q}=$
$\Delta V_{C}=$
$I=$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
long times

$$
\mathrm{q}=\quad \sim 0
$$

$\Delta V_{C}=$
$I=$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
long times
$q=\quad \sim 0$
$\Delta V_{C}=\approx 0$
$I=$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
long times
$q=\quad \sim 0$
$\Delta V_{C}=\approx 0$
$I=\approx \frac{\Delta V_{o}}{R}$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

short times
intermediate times
long times
$\mathrm{q}=\quad \sim 0$
$\mathrm{q}=\mathrm{q}$ 。
$\Delta V_{C}=\approx 0$
$I=\approx \frac{\Delta V_{0}}{R}$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

intermediate times
long times

$$
q=\quad \sim 0
$$

$$
\mathrm{q}=\mathrm{q}_{0}
$$

$$
\Delta V_{C}=\approx 0
$$

$$
\Delta V_{c}=\Delta V_{o}
$$

$$
I=\approx \frac{\Delta V_{o}}{R}
$$

Charging Capacitor

Time (t)

$$
\Delta V_{0}=I R+\frac{q}{C}
$$

intermediate times
long times

$$
q=\quad \sim 0
$$

$$
\mathrm{q}=\mathrm{q}_{0}
$$

$$
\Delta V_{C}=\approx 0
$$

$$
\Delta V_{c}=\Delta V_{o}
$$

$$
I=\approx \frac{\Delta V_{o}}{R}
$$

$$
I=0
$$

Charging Capacitor

Time (t)

$$
\Delta V_{o}=I R+\frac{q}{C}
$$

intermediate
short times

times

$$
q=\sim 0 \quad q=q_{0}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right)
$$

$$
q=q_{o}
$$

$$
\Delta V_{C}=\approx 0
$$

$$
\Delta V_{C}=\Delta V_{o}
$$

$$
I=\approx \frac{\Delta V_{0}}{R}
$$

$$
I=0
$$

Charging Capacitor

Time (t)

$$
\Delta V_{o}=I R+\frac{q}{C}
$$

intermediate times
long times
$q=\quad \sim 0$

$$
q=q_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right)
$$

$$
q=q_{0}
$$

$$
\Delta V_{C}=\approx 0
$$

$$
\Delta V_{c}=V_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right)
$$

$$
\Delta V_{C}=\Delta V_{o}
$$

$$
I=\approx \frac{\Delta V_{o}}{R}
$$

$$
I=0
$$

Charging Capacitor

Time (t)

$$
\Delta V_{o}=I R+\frac{q}{C}
$$

intermediate times
long times
$q=\quad \sim 0$

$$
q=q_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right)
$$

$$
\mathrm{q}=\mathrm{q}_{\mathrm{o}}
$$

$$
\begin{array}{ccr}
\Delta V_{C}=\approx 0 & \Delta V_{c}=V_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right) & \Delta V_{c}=\Delta V_{o} \\
I=\approx \frac{\Delta V_{o}}{R} & I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)} & I=0
\end{array}
$$

Charging Capacitor

$$
\Delta V_{o}=I R+\frac{q}{C}
$$

$$
\Delta V_{c}=\frac{q}{C}
$$

long times

$$
\mathrm{q}=\sim 0 \quad q=q_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right)
$$

intermediate times

$$
\Delta V_{C}=\approx 0
$$

$$
I=\approx \frac{\Delta V_{0}}{R}
$$

$$
\begin{array}{cc}
q=q_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right) & q=q_{o} \\
\Delta V_{c}=V_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right) & \Delta V_{C}=\Delta V_{o} \\
I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)} & \tau=R C
\end{array} I=0
$$

PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

Time Constant

$$
\tau=R C
$$

Dimensional analysis

$$
R C=\frac{V}{l} \frac{q}{V}=\frac{q}{l}=\frac{q}{q / t}=t
$$

$R C$ has units of time
Time required to charge the capacitor

- increases with R - lower current flow
- Increases with C - more charge on capacitor

How does the time to charge the capacitor depend on R and C

Charging time τ_{0}

How does the time to charge the capacitor depend on R and C

Charging time τ_{o}

shorter than τ_{0} because the current is larger

How does the time to charge the capacitor depend on R and C

Charging time τ_{0}

longer than τ_{0}
the current is smaller

shorter than τ_{0} because the current is larger

How does the time to charge the capacitor depend on R and C

Charging time τ_{0}

longer than τ_{0}
the current is smaller

shorter than τ_{0} because the current is larger

longer than τ_{0}
more charge is transferred

Discharging

R

Switch off

Capacitor charged
$\Delta V_{c}=\frac{q}{C}$
switch
When the switch is closed to discharge the capacitor the capacitor has a maximum charge of q_{o} and maximum voltage
V_{0}.
As the capacitor discharges the charge and voltage decrease with time.
The current will also decrease with time.

Discharge

Switch on

R

switch

Current flows
$\Delta V_{R}=I R=\Delta V_{c}=\frac{q}{C}$

$$
\mathrm{I}=-\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}=\frac{\mathrm{q}}{\mathrm{RC}}
$$

$$
q=q_{o} e^{-\left(\frac{t}{\tau}\right)}
$$

The charge decays exponentially with time

time

$$
\Delta V_{c}-\Delta V_{R}=0
$$

time intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$q=$
$\Delta V_{C}=$
I =

time intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$\mathrm{q}=\mathrm{q}_{\mathrm{o}}$
$\Delta V_{C}=$
I =

time intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times

$$
\mathrm{q}=\mathrm{q}_{\mathrm{o}}
$$

$$
\Delta V_{C}=\Delta V_{o}
$$

$$
I=
$$

time intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$\mathrm{q}=\mathrm{q}_{\mathrm{o}}$
$\Delta V_{C}=\Delta V$ 。
$I=\frac{\Delta V_{o}}{R}$

time intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$q=q_{0} \quad q=q_{o} e^{-\left(\frac{t}{\tau}\right)}$
$\Delta V_{C}=\Delta V$ 。
$I=\frac{\Delta V_{o}}{R}$
q_{0}
short times
$q=q_{0} \quad q=q_{0} e^{-\left(\frac{t}{\tau}\right)}$
intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times

$$
\begin{array}{ll}
\Delta V_{C}=\Delta V_{0} \\
I=\frac{\Delta V_{o}}{R} & \tau=R C
\end{array}
$$

q_{0}
short times
τ time
intermediate times

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$q=q_{0} \quad q=q_{0} e^{-\left(\frac{t}{\tau}\right)}$
$\Delta V_{c}=\Delta V_{\text {o }}$
$\Delta V_{c}=V_{o} e^{-\left(\frac{t}{\tau}\right)}$
$I=\frac{\Delta V_{o}}{R}$

$$
\tau=R C
$$

$\mathrm{q}_{0} \underbrace{\text { Exponential decay }}_{\text {time }}$
short times
τ time
intermediate times

$\Delta V_{c}-\Delta V_{R}=0$
long times
$q=q_{0} \quad q=q_{o} e^{-\left(\frac{t}{\tau}\right)}$
$\Delta V_{c}=\Delta V_{\text {o }}$
$\Delta V_{c}=V_{o} e^{-\left(\frac{t}{\tau}\right)}$
$I=\frac{\Delta V_{o}}{R}$
$I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)}$

$$
\tau=R C
$$

$\mathrm{q}_{\mathrm{o}}^{\mathrm{q}_{0}} \underbrace{\text { Exponential decay }}_{\text {time }}$
short times

$$
q=q_{0} \quad q=q_{o} e^{-\left(\frac{t}{\tau}\right)}
$$

$$
\Delta V_{C}=\Delta V_{o} \quad \Delta V_{c}=V_{o} e^{-\left(\frac{t}{\tau}\right)}
$$

$$
I=\frac{\Delta V_{o}}{R} \quad I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)}
$$

$$
\tau=R C
$$

$\mathrm{q}_{0}^{\mathrm{q}_{0}} \underbrace{\text { Exponential decay }}_{\tau \text { time }}$
short times

$$
\begin{array}{cc}
\mathrm{q}=\mathrm{q}_{\mathrm{o}} & q=q_{o} e^{-\left(\frac{t}{\tau}\right)} \\
\Delta V_{C}=\Delta V_{o} & \Delta V_{c}=V_{o} e^{-\left(\frac{t}{\tau}\right)} \\
I=\frac{\Delta V_{o}}{R} & I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)} \\
\tau=R C
\end{array}
$$

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times
$\mathrm{q}_{0}^{\mathrm{q}_{0}} \underbrace{\text { Exponential decay }}_{\tau \text { time }}$
short times

$$
\mathrm{q}=\mathrm{q}_{\mathrm{o}} \quad q=q_{0} e^{-\left(\frac{t}{\tau}\right)}
$$

$$
\Delta V_{C}=\Delta V_{o}
$$

$$
\Delta V_{c}=V_{0} e^{-\left(\frac{t}{x}\right)}
$$

$$
I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)}
$$

$$
\tau=R C
$$

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times

0

Exponential decay

Found in many other systemsChemical reaction, nuclear decay

$$
A ® B
$$

When the rate of decay of a species is proportional to the amount of the species

$$
\frac{\Delta \mathrm{A}}{\Delta \mathrm{t}}=-\frac{\mathrm{A}}{\tau}
$$

The result is exponential decay

$$
A=A_{0} e^{-\left(\frac{t}{\tau}\right)} \quad \tau \text { is a constant }
$$

A 12μ farad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

A 12 ffarad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} s=24 \mathrm{~ms}
$$

A 12 ffarad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\begin{aligned}
& \tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} s=24 \mathrm{~ms} \\
& V=V_{o} e^{-\left(\frac{t}{\tau}\right)}
\end{aligned}
$$

A 12 ffarad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\begin{aligned}
& \tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} s=24 \mathrm{~ms} \\
& V=V_{o} e^{-\left(\frac{t}{\tau}\right)}
\end{aligned}
$$

$$
\frac{V}{V_{o}}=e^{-\left(\frac{t}{\tau}\right)}
$$

A 12 ffarad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\begin{aligned}
& \tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} s=24 \mathrm{~ms} \\
& V=V_{o} e^{-\left(\frac{t}{\tau}\right)}
\end{aligned}
$$

$$
\frac{V}{V_{0}}=e^{-\left(\frac{t}{\tau}\right)}
$$

$$
\ln \left(\frac{V}{V_{o}}\right)=-\frac{t}{\tau}
$$

A 12μ farad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\begin{aligned}
& \tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} s=24 m s \\
& V=V_{o} e^{-\left(\frac{t}{\tau}\right)} \\
& \frac{V}{V_{o}}=e^{-\left(\frac{t}{\tau}\right)} \\
& \ln \left(\frac{V}{V_{o}}\right)=-\frac{t}{\tau} \\
& t=-\tau \ln \frac{V}{V_{o}}=-24 \times 10^{-3}(\ln (0.05))=7.2 \times 10^{-2} s
\end{aligned}
$$

33. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

34. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$
\tau=R C=1 \times 10^{6}\left(5 \times 10^{-6}\right)=5.0 \mathrm{~s}
$$

33. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$
\begin{gathered}
\tau=R C=1 \times 10^{6}\left(5 \times 10^{-6}\right)=5.0 \mathrm{~s} \\
q=q_{0}\left(1-e^{-\frac{t}{R C}}\right)=q_{0}\left(1-e^{-\frac{t}{\tau}}\right)
\end{gathered}
$$

33. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$
\begin{aligned}
\tau & =R C=1 \times 10^{6}\left(5 \times 10^{-6}\right)=5.0 \mathrm{~s} \\
q & =q_{o}\left(1-e^{-\frac{t}{R C}}\right)=q_{o}\left(1-e^{-\frac{t}{\tau}}\right) \\
C & =\frac{q}{\Delta V} \\
q_{0} & =\Delta V C=30\left(5 \times 10^{-6}\right)=1.5 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

33. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$
\begin{aligned}
& \tau=R C=1 \times 10^{6}\left(5 \times 10^{-6}\right)=5.0 \mathrm{~s} \\
& q=q_{0}\left(1-e^{-\frac{t}{R C}}\right)=q_{0}\left(1-e^{-\frac{t}{\tau}}\right) \\
& C=\frac{q}{\Delta V} \\
& q_{o}=\Delta V C=30\left(5 \times 10^{-6}\right)=1.5 \times 10^{-4} C \\
& q=q_{o}\left(1-e^{-\frac{t}{R C}}\right)=1.5 \times 10^{-4}\left(1-e^{-\frac{10}{5}}\right) \\
& q=1.3 \times 10^{-4} C
\end{aligned}
$$

You plan to make a flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges (about 100V) about once every 5 sec. If you have a 10 microfarad capacitor what resistor do you need?

Voltage
Capacitor source

$$
\begin{array}{ll}
\tau=R C & \text { About } \\
R=\frac{\tau}{C}=\frac{5}{10 \times 10^{-6}}=0.5 \times 10^{6} \Omega & 0.5 \mathrm{M} \Omega
\end{array}
$$

Charging

time

You plan to make a flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges (about 100V) about once every 5 sec . If you have a 10 microfarad capacitor what resistor do you need?

Charging

time

RC: charging

E $\quad i(t)=\frac{V_{\text {max }}}{R} e^{-1 / R c}$
time
time

RC: charging

$\pm E \quad i(t)=\frac{V_{\max }}{R} e^{-t / R C}$
time

RC: charging

van

time

RC: charging

$\mathbf{V}_{\mathbf{c}}(\mathbf{t})^{-\quad}$

time
time

RC: charging

RC: charging

$\oplus(\oplus \oplus(\oplus(\oplus+\oplus(\oplus$ $\Theta \Theta \Theta \Theta \Theta \Theta \Theta 0$

HW - Clickers Out

