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Resistance of a light bulb filament.

Thin tungsten coil.

R=150 Ω
ρ =73 x10-8 Ω−m (at 2000 C)
L=0.5 m

Find the diameter of the wire.
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Resistance of a light bulb filament.

Thin tungsten coil.

R=150 Ω
ρ =73 x10-8 Ω−m (at 2000 C)
L=0.5 m

Find the diameter of the wire.

55 µm
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Ch 17.6 
Temperature dependence of resistance 

metal conductors

At higher T the collisions with the lattice are 
more frequent. 

vD  becomes lower

R becomes larger
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Temperature coefficient of resistivity

For small changes in T

Material   α (Co)-1

Copper   3.9x10-3

Tungsten   4.5x10-3

Silicon    -7.5x10-3

T

ρ
slope =α

near 20o C
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Thermometry
A platinum resistance thermometer uses the change in
resistance  to measure temperature.  If a student with the
flu has a temperature rise of 4.5o C measured with a platinum
resistance thermometer and the initial R= 50.00 ohms.  What is
the final resistance? α=3.92x10-3 oC-1
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Thermometry
A platinum resistance thermometer uses the change in
resistance  to measure temperature.  If a student with the
flu has a temperature rise of 4.5o C measured with a platinum
resistance thermometer and the initial R= 50.00 ohms.  What is
the final resistance? α=3.92x10-3 oC-1
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17. 8
Electrical energy, power
The power dissipated in a resistor is due to 
collisions of charge carriers with the lattice.

 Electrical potential energy is converted to 
Kinetic energy is converted into heat.

ΔV
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Energy dissipated in a  resistor

ΔV

I

R ΔV
Voltage drop 

Change in PE =qΔV

Dissipated as heat
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Power dissipated in a resistor 

Three equivalent relations for the power
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Power dissipated in a resistor 

Three equivalent relations for the power
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ΔV

A lightbulb has an output 
of  100 W when connected 
to a 120V household 
outlet.  What is the 
resistance of the filament?
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A lightbulb has an output 
of  100 W when connected 
to a 120V household 
outlet.  What is the 
resistance of the filament?
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A heating element in an electric range is rated at 2000 W.  
Find the current required if the voltage is 240 V.  Find the 
resistance of the heating element.  
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Find the current required if the voltage is 240 V.  Find the 
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Cost of electrical power

Kilowatt hour = 1kW x1hr=1000J/s(3600s)=3.6x106J

1kW hr costs ~  $0.15

How much does it cost to keep a 100W light on for 
24 hrs?
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A 10 km copper power cable with a resistance of 0.24 
Ω leads from a power plant to a factory.  If the factory 
uses 100 kW of power at a voltage of 120 V how 
much power would be dissipated in the cable.

Pf=105 W
R=0.24Ω

120 V

Wednesday, November 4, 2009



A 10 km copper power cable with a resistance of 0.24 
Ω leads from a power plant to a factory.  If the factory 
uses 100 kW of power at a voltage of 120 V how 
much power would be dissipated in the cable.

Pf=105 W
R=0.24Ω

120 V

Wednesday, November 4, 2009



A 10 km copper power cable with a resistance of 0.24 
Ω leads from a power plant to a factory.  If the factory 
uses 100 kW of power at a voltage of 120 V how 
much power would be dissipated in the cable.

Pf=105 W
R=0.24Ω

120 V

A large current is
required to provide this
power at low voltage
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A 10 km copper power cable with a resistance of 0.24 
Ω leads from a power plant to a factory.  If the factory 
uses 100 kW of power at a voltage of 120 V how 
much power would be dissipated in the cable.

Pf=105 W
R=0.24Ω

120 V

Very lossy cable

A large current is
required to provide this
power at low voltage
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Power Transmission

High voltage
Power loss=I2Rwire
Power transferred=ΔVtrans I

ΔV=120 V

ΔVtrans=105V

transformer

High voltage transmission- power transmitted with 
lower current.  Therefore lower I2R loss in the line.

Low voltage
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Chapter 18

• Resistors in Series
• Resistors in Parallel
• Combinations of Parallel and Series
• Combinations of Capacitors and Resistors

14
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Ch 18. 2

Resistors in Series 

What is the equivalent resistance Req ?

R1

R2ΔV

I

I same, ΔV different
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Ch 18. 2

Resistors in Series 

What is the equivalent resistance Req ?

R1

R2ΔV

I
ΔV= ΔV1 + ΔV2

ΔV1

ΔV2

ΔV= IReq = IR1 + IR2

I same, ΔV different
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Ch 18. 2

Resistors in Series 

What is the equivalent resistance Req ?

R1

R2ΔV

I
ΔV= ΔV1 + ΔV2

ΔV1

ΔV2

ΔV= IReq = IR1 + IR2

For N resistors in series

Req = R1 + R2 +…….RN Req is larger 
than any R

I same, ΔV different

Req = R1 + R2
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Why is the series law easy to 
understand?

• Recall that the resistance of a resistor is 

A

L

A

R~L

Rtot ~ L1 + L2
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Why do we care?
Consider Simple Circuit:  Two resistors in Series

ε

r

R
A

B

C D

E

F

ΔV
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Why do we care?
Consider Simple Circuit:  Two resistors in Series

ε

r

R
A

B

C D

E

F

V

A B C D E F

ε

-Ir

-IR

0

ΔV

ΔV
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Why do we care?
Consider Simple Circuit:  Two resistors in Series

ε

r

R
A

B

C D

E

F

V

A B C D E F

ε

-Ir

-IR

0

ΔV

ΔV

Voltage can be 
‘tailored’ to 

produce any 
voltage we 

desire!
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Why is the parallel law easy to 
understand?

• Recall that the resistance of a resistor is 

R ~ 1/Area
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Why is the parallel law easy to 
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Why is the parallel law easy to 
understand?

• Recall that the resistance of a resistor is 

R ~ 1/Area

Atot=A1 + A2

Atot=1/R1 + 1/R2

Rtot~1/Atot ~ 1/(1/R1 + 1/R2)
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Resistors in parallel, ΔV same, I different

R1 R2ΔV

I

I1 I2

I = I1 + I2
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Resistors in parallel, ΔV same, I different

R1 R2ΔV

I

I1 I2

I = I1 + I2
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Resistors in parallel, ΔV same, I different

R1 R2ΔV

I

I1 I2

I = I1 + I2

For N resistors in parallel
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Resistors in parallel, ΔV same, I different

R1 R2ΔV

I

I1 I2

I = I1 + I2

For N resistors in parallel
Req is smaller than 
any R
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Comparisons: Resistors & Capacitors

• Resistors in series are like capacitors in 
parallel.

• Resistors in parallel are like capacitors in 
series.

• This is because R ~ L and C~1/L
• And because R~1/A and C~A
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Ch 18 Kirchoff’s 2 Rules

1. Junction rule
2. Loop rule
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Rule #1. “Junction rule”

ΔV

I1 I2

I3

The current flowing into a junction is equal to the 
current flowing out.
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Rule #1. “Junction rule”

ΔV

I1 I2

I3

The current flowing into a junction is equal to the 
current flowing out.

This comes from ‘conservation of charge’

Wednesday, November 4, 2009



#2. Loop rule

ΔV

I1 I2

I3
R1 R2

R3

“The sum of voltage differences in going around 
a closed current loop is equal to zero”
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#2. Loop rule

ΔV

I1 I2

I3
R1 R2

R3

The sum of voltage differences in going around a 
closed current loop is equal to zero
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ΔV1 I3

R1 R2
R3

ΔV2

I1 I2

ΔV1 – I1R1+ I3R3 – ΔV2 = 0

-IR, current in traversal direction
+IR current in opposite direction
+ΔV voltage increases along traversal direction
-ΔV voltage decreases along traversal direction

Voltage changes in traversing the loop
Choose a current direction 

If I is negative when you solve the equations, the current flows in 
the opposite direction than you chose. 
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ΔV

I1 I2

I3
R1 R2

R3

Not all loop equations are independent

only 2 of these equations are independent
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Not all loop equations are independent
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Using Kirchoff’s rules

(1) Write the equations for the junction rule. 

(2)  Write the equations for the loop rule. Choose a 
direction for currents. If the current is negative 
then it flows in the opposite direction. Use as 
many equations as necessary to solve for all 
unknown quantities.  (for n unknowns need n 
equations).

(3) Solve the set of equations for n unknown 
quantities.
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10V

I1 I2

I3
2Ω 4Ω

5V

Find I1, I2, I3
No. equations needed=

 no. Junction=

No. loop =

V=IR
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10V

I1 I2

I3
2Ω 4Ω

5V

Find I1, I2, I3
No. equations needed=

 no. Junction=

No. loop =

3

V=IR
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10V

I1 I2

I3
2Ω 4Ω

5V

Find I1, I2, I3
No. equations needed=

 no. Junction=

No. loop =

3

1

V=IR
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10V

I1 I2

I3
2Ω 4Ω

5V

Find I1, I2, I3
No. equations needed=

 no. Junction=

No. loop =

3

1

2
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Chapter 18.5 RC circuit

Time dependent currents and voltages.
Applications. clocks, timing circuits, 
computers.
Time to charge and discharge of a capacitor
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RC circuit

ΔV

R

C

q
I

switch
When the switch is closed how does the current 
and voltage change with time?
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RC circuit

ΔVo

R

C

switch

Switch off

ΔVc=0

Capacitor uncharged
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Charging

ΔVo

R

C

switch

Switch on

I +q

-qI

ΔVc=

When the switch is initially closed the voltage on the 
capacitor is zero. 
Charge is transferred to the capacitor at a rate I=dq/dt. 
As the capacitor is charging the charge and voltage on the 
capacitor increases with time and the current decreases.
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Time (t)
0

qo

Charging Capacitor

ΔVo

R

C

q
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Time (t)
0

qo

q =

Charging Capacitor

ΔVo

R

C

q
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Time (t)
0

qo

short times

q =

Charging Capacitor

ΔVo

R

C

q
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Time (t)
0

qo

short times intermediate
times

q =

Charging Capacitor

ΔVo

R

C

q
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Time (t)
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short times
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long times
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q =

Charging Capacitor

ΔVo

R

C
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Time (t)τ
0

qo

short times

~ 0

long times

q=qo

intermediate
times

63% of maximum
value

q =

Charging Capacitor

ΔVo

R

C

q
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Dimensional analysis

Time required to charge the capacitor 

• increases with R – lower current flow

• Increases with C - more charge on capacitor 

RC has units of time

Time Constant
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How does the time to charge the capacitor depend on R 
and C

ΔVo

2R

C
q

ΔVo

R

C
q ΔVo C

q
I

ΔVo

R

2C
q

τοCharging time
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How does the time to charge the capacitor depend on R 
and C

ΔVo

2R

C
q

ΔVo

R

C
q ΔVo C

q
I

ΔVo

R

2C
q

τοCharging time shorter than τo because
the current is larger
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How does the time to charge the capacitor depend on R 
and C

ΔVo

2R

C
q

ΔVo

R

C
q ΔVo C

q
I

ΔVo

R

2C
q

το

longer than τo
the current is smaller

Charging time shorter than τo because
the current is larger
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How does the time to charge the capacitor depend on R 
and C

ΔVo

2R

C
q

ΔVo

R

C
q ΔVo C

q
I

ΔVo

R

2C
q

το

longer than τo
the current is smaller

longer than τo
more charge is transferred

Charging time shorter than τo because
the current is larger
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R

C

switch

Switch off

Discharging

Capacitor charged
+q

-q

When the switch is closed to discharge the capacitor the 
capacitor has a maximum charge of qo and maximum voltage 
Vo.
As the capacitor discharges the charge and voltage decrease 
with time.
The current will also decrease with time.
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R

C

switch

Switch on

I

Discharge

+q

-q

Current flows

The charge decays exponentially with time
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q

time

qo Exponential decay

I +q

-q

Wednesday, November 4, 2009



q

time

qo Exponential decay

I +q

-q
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q

time

qo Exponential decay

I +q

-q

short times long times
intermediate
times

q =
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short times
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long times
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times
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time

qo Exponential decay

I +q

-q

short times

qo

long times
intermediate
times

q =
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q

time

qo

τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times
intermediate
times

q =
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qo

τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times
intermediate
times

q =
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τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times
intermediate
times

q =
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q

time

qo

τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times

0

intermediate
times

q =
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q

time

qo

τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times

0

intermediate
times

q =

0
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q

time

qo

τ

Exponential decay

q=qoe-1 = 0.37qo

I +q

-q

short times

qo

long times

0

intermediate
times

q =

0

0
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Exponential decay
Found in many other systems- 
Chemical reaction, nuclear decay

When the rate of decay of a species is proportional 
to the amount of the species

τ is a constant

A   ®    B

The result is exponential decay
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A 12 µfarad capacitor is discharged through a 2 kΩ 
resistor.  How long does it take for the voltage to decay to 
5% of the initial voltage.
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A 12 µfarad capacitor is discharged through a 2 kΩ 
resistor.  How long does it take for the voltage to decay to 
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33. Consider a series RC circuit for which R=1.0 MΩ, 
C=5.0 µF and ε=30 V. The capacitor is initially 
uncharged when the switch is open.  (a) Find the 
charge on the capacitor 10 s after the switch is 
closed.  

ΔV

R

C
q
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You plan to make a flasher circuit that charges a 
capacitor through a resistor up to a voltage at which a 
neon bulb discharges (about 100V) about once every 5 
sec. If you have a 10 microfarad capacitor what  resistor 
do you need?

Voltage
source

Neon bulb

Capacitor

resistor

About 
0.5MΩ
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time

ΔVc

flash

Charging
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You plan to make a flasher circuit that charges a 
capacitor through a resistor up to a voltage at which a 
neon bulb discharges (about 100V) about once every 5 
sec. If you have a 10 microfarad capacitor what  resistor 
do you need?

Voltage
source

Neon bulb

Capacitor

resistor

A.   1.0MΩ

B. 10.0MΩ

C.   5.0MΩ

D.  0.5MΩ
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time

ΔVc

flash

Charging
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τ= RC   time 
             constant
τ1 < τ2 < τ3

Vc(t)

Vmax

Vmax

RC: charging
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τ= RC   time 
             constant
τ1 < τ2 < τ3

Vc(t)

Vmax

Vmax

RC: charging

+

---

+

---

+

---

+

---

+

---

+

---

+

---

+
--
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Vmax

Vmax

RC: charging
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RC: charging
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τ= RC   time 
             constantVc(t)

Vmax

Vmax

RC: charging
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HW – Clickers Out
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