PHYSICS 1B - Fall 2009

Electricity
\&
Magnetism

Professor Brian Keating
SERF Building. Room 333

Two Week Schedule

- Today: Current, resistance
- Circuits: Ch 18
- Friday 11/6: QUIZ 3 (Ch 17 and 18)

Quiz results - posted soon
17.1 Electric Current

Electric current
Drift speed
Current sources: Batteries

Charge flow slowly in a wire
Carry kinetic energy like water in a pipe
The energy can be released eg. Lightbulb

There is an electric field in the conductor.
Non-Equilibrium System. - Charges move

A flashlight bulb carries a current of 0.1 A . (a) Find the charge passed in 10 s. (b) How many electrons does this correspond to?
(a) $I=\frac{\Delta q}{\Delta t}$

$$
\Delta q=I \Delta t=0.1(10)=1 C
$$

(b) $\quad q=N e$

$$
N=\frac{q}{e}=\frac{1}{1.6 \times 10^{-19}}=6.2 \times 10^{18} \text { electrons }
$$

Drift Velocity

Collisions of electron with the lattice (a.k.a resistance) slows down the velocity.
Drift velocity- Average velocity in the direction of the flow.

The electron moves at the
Fermi speed, and has only
a tiny drift velocity superimposed
by the applied electric field.

Avogadro's number Density $n=\frac{\left(N_{A} \text { atoms } / \mathrm{mole}\right)\left(\rho \mathrm{kg} / \mathrm{m}^{3}\right)}{A(\mathrm{~kg} / \mathrm{mole})}$

Atomic mass
Current - like a fluid through a pipe.

Rate of flow is
$\frac{\text { charge }}{\text { time }}=\left(\frac{\text { charge }}{\text { volume }}\right)\left(\frac{\text { volume }}{\text { time }}\right)=(q n)\left(\frac{A \Delta x}{\Delta t}\right)=q n A v_{d}$

$I=\frac{\Delta q}{\Delta t}=q n A v_{d} \quad$| $V_{d}-$ Drift velocity |
| :--- |
| $\mathrm{n}-$ no. of charge carriers/volume |
| q - charge per charge carrier |

17.2 Find the drift velocity of electrons in Cu . For $\mathrm{I}=10 \mathrm{~A}$, $A=3 \times 10^{-6} \mathrm{~m}^{2}$. Use density of $\mathrm{Cu}, \rho=8.95 \mathrm{~g} / \mathrm{cm}^{3}$ (each atom of Cu contributes 1 carrier electron) $M_{A}=63.5 \mathrm{~g} / \mathrm{mole}$

The drift velocity is very low.
The current is large because of the large number of charge carriers.

The electrical signal travels fast, because electrons interact and "push" other electrons in the conductor

PHYSICS 1B - Fall 2007

Electricity \&
Magnetism

Professor Brian Keating
SERF Building. Room 333

A battery with a 2 amp hr rating is used to power a flashlight that draws 5 A of current. How long will the battery last

$$
\begin{aligned}
& Q=I \Delta t \\
& \Delta t=\frac{Q}{I}=\frac{2 a m p \cdot h r}{5 a m p}=0.4 h r
\end{aligned}
$$

Resistance Chapter 17.4

Resistance
R units Volts/Ampere, Ohms (Ω)

Resistance, units Volts/Ampere $=$ Ohm (Ω)

Resistance causes conversion of potential energy to heat.

Resistors

carbon resistors
wire wound resistors thin metal film resistors

Ohm's Law

For many conductors I is linear with $\Delta \mathrm{V}$,

$$
\begin{aligned}
& I \propto \Delta V \\
& I=\frac{1}{R} \Delta V \\
& \Delta V=I R
\end{aligned}
$$

R is a constant

Water flow is fast where the slope is steep (large potential drop).

$\mathrm{H}_{2} \mathrm{O}$ resistor

$\begin{aligned} & \text { Volume } \\ & \text { Flowrate }\end{aligned}=\mathcal{F}=\frac{P_{1}-P_{2}}{\mathcal{R}}=\frac{\pi\left(\text { Pressure difference) } \text { (radius }^{4}\right.}{8(\text { viscosity })(\text { length })}$
$\begin{aligned} & \text { Resistance } \\ & \text { to Flow } \\ & \mathcal{R}\end{aligned}=\frac{8 \eta L}{\pi r^{4}}$

Some materials show non-ohmic resistance
Semiconductor diode

Does the resistance of the diode increase or decrease as $\Delta \mathrm{V}$ increases?

Resistors

carbon resistors
wire wound resistors thin metal film resistors

Resistance of a resistor is determined by the geometry of the resistor and the resistivity.

Resistivity, ρ
Property of conducting material

(Resistivity, ohms meter $(\Omega \cdot m)$

Voltage - Pressure Analogy

A light bulb connected to a 3.0 V battery draws a current of 0.2 A . Find the resistance of the light bulb.

$$
\begin{aligned}
& V=I R \\
& R=\frac{V}{l}=\frac{3.0}{0.2}=13 \Omega
\end{aligned}
$$

We assume that the resistance of the wires is negligible compared to the resistance of the light bulb.

Voltages in Parallel

$\begin{aligned} & \text { charge } \\ & \text { flowrate }\end{aligned}=$ current $=\frac{\text { coulombs }}{\text { second }}=$ amperes

Circuits with Resistors

Resistance of a resistor is determined by the geometry of the resistor and the resistivity.

Resistivity, ρ
Property of conducting material

(Resistivity, ohms meter $(\Omega \cdot m)$

Resistivities of different materials

Material	Resistivity, $\rho(\Omega \cdot m)$
Copper	1.7×10^{-8}
Iron	10×10^{-8}
Carbon	4×10^{-5}
Silicon	6×10^{2}
Glass	$10^{10-10^{14}}$
NaCl solution(sat.)	4×10^{-2}
Blood	1.5

A block of metal has a resistance R. If each of the dimensions of the block are doubled, what will the resistance be?

$$
\begin{aligned}
& \mathrm{L} \begin{array}{l}
\mathrm{L} \\
R_{o}=\rho \frac{L_{o}}{w_{o} h_{o}} \\
\mathrm{w}
\end{array} \\
& \mathrm{~h}=2 \mathrm{~L}_{\mathrm{o}} \\
& R=\rho \frac{2 \mathrm{w}_{\mathrm{o}}}{2 \mathrm{~h}_{\mathrm{o}} 2 h_{o}}=\frac{R_{o}}{2}
\end{aligned}
$$

A power cable made out of copper has a length of 10 m has an diameter of 2 mm . Find the resistance of the wire. $\rho_{C u}=1.7 \times 10^{-8} \Omega \cdot \mathrm{~m}$.

$$
R=\frac{\rho L}{A}=\frac{\rho L}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{1.7 \times 10^{-8}(10)}{\pi\left(\frac{0.002}{2}\right)^{2}}=5.4 \times 10^{-2} \Omega
$$

Resistance of a light bulb filament.

Thin tungsten coil.
$\mathrm{R}=150 \Omega$
$\rho=73 \times 10^{-8} \Omega-\mathrm{m}($ at 2000 C$)$ $\mathrm{L}=0.5 \mathrm{~m}$

Find the diameter of the wire.

$$
\begin{aligned}
& R=\frac{\rho L}{A}=\frac{4 \rho L}{\pi d^{2}} \\
& d=\sqrt{\frac{4 \rho \mathrm{~L}}{\pi R}}=\sqrt{\frac{4\left(73 \times 10^{-8}\right)(0.5)}{\pi(150)}}=5.5 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

Temperature dependence of resistance metal conductors

At higher T the collisions with the lattice are more frequent.
v_{D} becomes lower
R becomes larger

Temperature coefficient of resistivity

Material
Copper
Tungsten
Silicon
$\alpha\left(\mathrm{C}^{\circ}\right)^{-1}$ near $20^{\circ} \mathrm{C}$
3.9×10^{-3}
4.5×10^{-3}
-7.5×10^{-3}

Thermometry
A platinum resistance thermometer uses the change in resistance to measure temperature. If a student with the flu has a temperature rise of $4.5^{\circ} \mathrm{C}$ measured with a platinum resistance thermometer and the initial $R=50.00$ ohms. What is the final resistance? $\alpha=3.92 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$

$$
\begin{aligned}
& \mathrm{R} \propto \rho \\
& R=R_{o}\left[1+\alpha\left(T-T_{o}\right)\right] \\
& R=50.00\left[1+3.92 \times 10^{-3}(4.5)\right] \\
& R=50.00[1.018]=50.88 \Omega
\end{aligned}
$$

Electrical energy, power

The power dissipated in a resistor is due to collisions of charge carriers with the lattice. Electrical potential energy is converted to Kinetic energy is converted into heat.

Power dissipated in a resistor

$$
\begin{aligned}
& P=\frac{\text { work }}{\text { time }}=\frac{q \Delta V}{\Delta t} \\
& P=I \Delta V \\
& P=I(I R)=I^{2} R \\
& P=\left(\frac{\Delta V}{R}\right) \Delta V=\frac{\Delta V^{2}}{R}
\end{aligned}
$$

Three equivalent relations for the power

A heating element in an electric range is rated at 2000 W . Find the current required if the voltage is 240 V . Find the resistance of the heating element.

$$
\begin{aligned}
& P=I V \\
& I=\frac{P}{V}=\frac{2000}{240}=8.3 A \\
& P=I^{2} R \\
& R=\frac{P}{I^{2}}=\frac{2000}{8.3^{2}}=29 \Omega
\end{aligned}
$$

Cost of electrical power

Kilowatt hour $=1 \mathrm{~kW} \times 1 \mathrm{hr}=1000 \mathrm{~J} / \mathrm{s}(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~J}$
1 kW hr costs $\sim \$ 0.15$

How much does it cost to keep a 100W light on for 24 hrs?

Cost $=\frac{\$}{k w h r} k w h r=0.15(0.10)(24)=\$ 0.36$

A 10 km copper power cable with a resistance of 0.24 Ω leads from a power plant to a factory. If the factory uses 100 kW of power at a voltage of 120 V how much power would be dissipated in the cable.

$$
\begin{array}{cl}
P_{f}=I \Delta V_{f} & \begin{array}{l}
\text { A large current is } \\
\text { required to provide this } \\
\text { power at low voltage }
\end{array} \\
I=\frac{P_{f}}{\Delta V_{f}}=\frac{10^{5}}{120}=8.3 \times 10^{2} \mathrm{~A} & \begin{array}{l}
\text { Very lossy cable }
\end{array} \\
P_{c}=I^{2} R_{c}=\left(8.3 \times 10^{2}\right)^{2}(0.24)=1.6 \times 10^{5} \mathrm{~W} \\
\text { Ver }
\end{array}
$$

Power Transmission

High voltage

Low voltage
High voltage transmission- power transmitted with lower current. Therefore lower $I^{2} R$ loss in the line.

