PHYSICS 1B – Fall 2009

Electricity & Magnetism

Professor Brian Keating SERF Building. Room 333

Capacitor combinations

Capacitors connected in series and parallel

Electrical circuit elements

one capacitor

Two Capacitors in Parallel

equivalent capacitance

What single capacitor has the same properties as two capacitors in parallel?

PHYSICS 1B – Fall 2009

Electricity & Magnetism

Professor Brian Keating SERF Building. Room 333

Capacitors

Parallel Capacitors

For N capacitors in parallel

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

C_{eq} is the sum of capacitances Like a larger capacitor, larger area Find the equivalent capacitance

A. 15 uF $C_{eq} =$ B. 17 uF $C_{eq} =$ C. 18 uF D. 20 uF

Find the equivalent capacitance

$$C_{eq} = C_1 + C_2 + C_3$$

 $C_{eq} = 5 + 3 + 10 = 18 \mu F$

Two Capacitors in Series

Two Capacitors in Series

$$C_{eq} = \frac{q}{\Delta V}$$

$$q = q_1 = q_2$$

$$\Delta V = \Delta V_1 + \Delta V_2 = \frac{q}{C_1} + \frac{q}{C_2}$$

$$\frac{1}{C_{eq}} = \frac{\Delta V}{q} = \frac{1}{q} \left(\frac{q}{C_1} + \frac{q}{C_2}\right)$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

For N capacitors in series

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

Capacitors in series

 C_{eq} is smaller than the smallest capacitance. You store less charge on series capacitors than you would on either one of them alone with the same voltage! Physical Argument

Take a parallel plate capacitor and place a thin metal plate with the same area in the middle of the gap.

the component capacitances are larger than the total

 $C_1 = C_2 = 2C$ $C_{eq} = C$

The equivalent capacitance is less than the component capacitances

 $C_{eq} < C_1 \text{ or } C_2$

 C_{eq} = 4.00+2.00+6.00=12.00 µF

 C_3 C_1 C_2 24.0 µF $C_{series} = 6 \mu F$ C_4 2.00 $\mu F =$ 36.0 V $4.00 \ \mu F$ 8.00 µF FIGURE P16.34 $q = C\Delta V$ $q_1 = C_1 \Delta V = 4 \times 10^{-6} (36) = 1.44 \times 10^{-4} C$ $q_2 = C_1 \Delta V = 2 \times 10^{-6} (36) = 0.72 \times 10^{-4} C$ $q_3 = q_4 = C_{series} \Delta V = 6 \times 10^{-6} (36) = 2.16 \times 10^{-4} C$

34. Find the charge on each capacitor.

34. Find the voltage drop across each capacitor.

16.9 Dielectrics, Energy

Dielectric constant-effect on capacitance Energy stored in a capacitor Energy density (depends on E²) Biological Membranes *Dielectric material* – insulators such as paper, glass plastic, ceramic. Used in the gap in capacitors.

"Dielectric Strength" - is the electric field at which conduction occurs through the material

Electric Fields in Dielectric Filled Capacitors

Effects of a dielectric material inserted into a capacitor, with charge q

Dielectric Properties of Selected Materials

- Material	dielectric constant, κ	Dielectric Strength (Volt/m)
Vacuum	1.000000	
Air	1.00059	2x10 ⁶
Polystyrene	2.3	24x10 ⁶
Paper	3.4	16x10 ⁶
Pyrex	5.6	14x10 ⁶
Water	80	

How does the capacitance change?

Add dielectric

Capacitance increases

Electric field decreases (when not connected to a battery)

Compared to vacuum

Example: A parallel plate capacitor consists of metal sheets (A= $1.0m^2$) separated by a Teflon sheet (κ =2.1) with a thickness of 0.005 mm. (a) find the capacitance. (b) Find the maximum voltage. The maximum electric field across Teflon is $60x10^6$ V/m. – this is its *dielectric strength*.

A=0.25m²

$$C = \frac{\kappa \varepsilon_o A}{d} = \frac{2.1(8.8 \times 10^{-12})(1.0)}{0.005 \times 10^{-3}}$$
$$C = 3.7 \times 10^{-6} F$$

A parallel plate capacitor consists of metal sheets(A= $0.25m^2$) separated by a Teflon sheet (κ =2.1) with a thickness of 0.005mm. (a) find the capacitance. (b) Find the maximum voltage. The maximum electric field across Teflon is $60x10^6$ V/m.(dielectric strength)

(b)
$$\Delta V_{\text{max}} = E_{ds}d = 60x10^{6}(0.005x10^{-3}) = 300V$$

Molecular basis for dielectric constant

+

Oriented molecules decrease the net charge near the plates

The E field in the Capacitor is reduced

Polarization of Dielectric

Dielectric Screening

High dielectric constant of water allows ions to dissociate

Find the potential energy in electron volts for the interaction of Na⁺ and Cl⁻ separated by 0.5 nm in water.

$$PE = \frac{q_{Na}q_{cl}}{4\pi\kappa\varepsilon_{o}r} = \frac{-(1.6x10^{-19})^{2}}{4\pi(80)(8.8x10^{-12})(0.5x10^{-9})}$$
$$PE = -5.8x10^{-21}Jx\left(\frac{1eV}{1.6x10^{-19}J}\right)$$

PE= -0.036 electron Volts

comparable to thermal energies (kinetic energy of the ion) about 0.025 eV at room temperature

Energy stored in a capacitor.

$$\mathsf{E}\mathsf{d} = \frac{\mathsf{F}\mathsf{d}}{\mathsf{q}} = \frac{\mathsf{W}}{\mathsf{q}} = \mathbf{\Delta}\mathsf{V} \qquad \begin{array}{l} \text{For constant electric} \\ \text{field.} \end{array}$$

 $E = \frac{F}{q}$ General definition $\Psi = q \Delta Y$ relationships

$$W = \frac{1}{2}\frac{q^2}{C} = \frac{1}{2}C\Delta V^2$$

So work depends on the square of q or ΔV

A parallel plate capacitor consists of metal sheets (A= $1m^2$) separated by a teflon sheet (κ =2.1) with a thickness of 0.005 mm. Find the maximum energy that can be stored.

C=3.7 x10⁻⁶F
$$\Delta V_{max}$$
=300V
C
Energy = $\frac{1}{2}C\Delta V^2 = \frac{1}{2}(3.7x10^{-6})(300)^2$
Energy = $1.7x10^{-1}J$

(quick quiz 16.6)

Insert the dielectric material with dielectric constant κ into the capacitor keeping the voltage source connected. Find C,q,E, PE

$$C = \kappa C_{o}$$

$$q = CV = \kappa C_{o}V_{o} = \kappa q$$

$$E = \frac{\Delta V}{d} = \frac{\Delta V_{o}}{d} = E_{o}$$

$$PE = \frac{1}{2}C\Delta V^{2} = \frac{1}{2}\kappa C\Delta V_{o}^{2} = \kappa PE_{o}$$

Energy Density in a Capacitor

Suppose you wanted to store a large amount of energy in a capacitor with a given volume of $1m^3$ using Teflon As the dielectric (dielectric strength of $60x10^6$ V/m). What is the maximum energy that could be stored?

$$Energy = \frac{1}{2}CV^{2}$$

$$C = \frac{A\kappa\varepsilon_{o}}{d}$$

$$Energy = \frac{1}{2}\frac{A\kappa\varepsilon_{o}}{d}V^{2} = \frac{1}{2}\frac{Ad\kappa\varepsilon_{o}}{d^{2}}V^{2} = \frac{1}{2}\kappa\varepsilon_{o}E^{2}(volume)$$

$$\frac{Energy}{volume} = \frac{1}{2}\kappa\varepsilon_{o}E^{2}$$
The energy density depends only on the E field squared.

For the maximum electric field = dielectric strength

$$Energy = \frac{1}{2} \kappa \varepsilon_o E^2 (volume)$$

$$Energy = \frac{1}{2} (2.1)(8.8 \times 10^{-12})(60 \times 10^6)^2 (1)$$

$$Energy = 3.4 \times 10^4 J$$
For a 1 m³ capacitor at the maximum voltage.

For comparison the energy content of burning

1 gallon of gasoline is 1.3x10⁸ J

Chemical energy has a higher energy density.

Capacitance of Biological Membranes

Axon - Nerve cells

Potential difference across the membrane

Nerve transmission – involves a discharge of membrane potential

Biological membranes –Capacitance The low dielectric portion of a biological membrane has a thickness of 2.0 nm. Assume that it has a dielectric constant of 2.5 (silicone oil) find the capacitance of 1m² of membrane.

Compare to 3.7×10^{-6} F for $1m^2$ the Teflon capacitor.

A nerve cell has a potential across it of 60 mV. Find the density of charges on the membrane that can give rise to this potential $\Delta V=60 \text{ mV}$

This corresponds to an ion density of 4.1x10⁻³ ions /nm² or a distance between ions of about 16 nm. A small number of excess charges.