Inductance L is a measure of the self-induced emf

The self-induced emf is

Current
increasing

$$
\varepsilon=-N \frac{\Delta \Phi_{B}}{\Delta t}
$$

but $\quad \frac{\Delta \Phi_{B}}{\Delta t} \propto \frac{\Delta l}{\Delta t}$ proportionality constant is L

$$
\varepsilon=-L \frac{\Delta I}{\Delta t}
$$

L is a property of the coil, Units of L, Henry (H) $\frac{V s}{A}$

Inductance of a solenoid with N turns and length ℓ, wound around an air core (assume the length is much larger than the diameter).

$$
\begin{gathered}
\Phi_{B}=B A=\mu_{o} \frac{N}{\ell} I A \\
\frac{\Delta \Phi_{B}}{\Delta t}=\mu_{o} \frac{N}{\ell} \frac{\Delta I}{\Delta t} A \\
\varepsilon=-N \frac{\Delta \Phi_{B}}{\Delta t}=-\mu_{o} \frac{N^{2}}{\ell} A \frac{\Delta I}{\Delta t}=-L \frac{\Delta I}{\Delta t} \\
L=\mu_{o} \frac{N^{2}}{\ell} A
\end{gathered}
$$

inductance proportional to N squared x area/length

An air wound solenoid of 100 turns has a length of 10 cm and a diameter of 1 cm . Find the inductance of the coil.

$$
\begin{aligned}
& \frac{I=10 \mathrm{~cm}}{M M M d_{d=1 ~} \mathrm{~cm}} \\
L & =\mu_{o} \frac{N^{2}}{\ell} A=\mu_{o} \frac{N^{2}}{\ell} \pi \frac{d^{2}}{4} \\
L & =\frac{4 \pi 10^{-7}(100)^{2} \pi(0.01)^{2}}{0.1(4)}=1.0 \times 10^{-5} \mathrm{H}
\end{aligned}
$$

RL circuit

The inductor prevents the rapid buildup of current
$\varepsilon=-L \frac{\Delta I}{\Delta t}$
But at long time does not reduce the current, $\quad \frac{\Delta I}{\Delta t}=0$

$$
\begin{gathered}
\text { at } t=\infty \\
I=I_{0}\left(1-e^{-\frac{t}{\tau}}\right) \\
\tau=\frac{L}{R}
\end{gathered}
$$

Inductive reactance, X_{L}

$$
\Delta V_{L}=X_{L} I
$$

$$
I=\frac{\Delta V_{L}}{X_{L}}
$$

$$
X_{L}=2 \pi f L
$$

Dimensional analysis
$\tau=\frac{L}{R}$
$\frac{1}{\tau}=\omega=2 \pi f=\frac{R}{L}$
$R=2 \pi f L$
$X_{L}=2 \pi f L$
So X_{L} has units of ohms

Applications of Inductors
Reduce rapid changes of current in circuits
Produce high voltages in automobile ignition.

Energy is stored in a magnetic field of an inductor.

Work is done against ε to produce the B field.
This produces a change in the PE of the inductor

$$
P E_{L}=\frac{1}{2} L I^{2}
$$

This stored PE can be used to do work

21.1 RLC circuit

AC circuits
RLC circuit
Resonance

AC Circuits

- Current changes with time
- Current is both positive and negative
- Voltage (V) and Current (I) are not always "in phase" - when the voltage is a max the current may not be a max
- Only for a resistor are V \& I always "in phase" (voltage max occurs when current is max).

AC circuit with capacitors, inductors and resistor.

Resistors, capacitors and inductors react differently to time dependent voltages.

These components behave differently in an AC circuit.
We have seen this already for the capacitor, so we already know about $R \& C$, just need to examine L

If the average voltages, currents and power are used then the relations for the between current, voltage and power are the same as for DC

$$
\begin{aligned}
& V_{\mathrm{rms}}=I_{\mathrm{rms}} R \\
& P_{\mathrm{rms}}=I_{\mathrm{rms}} V_{\mathrm{rms}}=\frac{V_{\mathrm{ms}}{ }^{2}}{R}=I_{\mathrm{rss}}{ }^{2} R
\end{aligned}
$$

Response to a step voltage: Resistor, Capacitor, and Inductor

L
Capacitor blocks current at long times Inductor blocks current at short times

Response to a sinusoidal voltage

$V_{r m s}=I_{\text {rms }} R$

$$
V_{\mathrm{rms}}=I_{\mathrm{rms}}\left(\frac{1}{\omega \mathrm{C}}\right)=\mathrm{I}_{\mathrm{ms}} \mathrm{X}_{\mathrm{c}}
$$

$$
V_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}}(\omega \mathrm{~L})=\mathrm{I}_{\mathrm{rms}} \mathrm{X}_{\mathrm{L}}
$$

L

$$
\begin{array}{lr}
X_{C}=\frac{1}{\omega \mathrm{C}} & \text { Capacitive Reactance } \\
X_{L}=\omega \mathrm{L} & \text { Inductive Reactance }
\end{array}
$$

Capacitive Reactance, X_{c}
$\Delta \mathrm{V}_{\mathrm{C}}=\mathrm{X}_{\mathrm{C}} \mathrm{I}$
$X_{c}=\frac{1}{\omega C}$

f=high
I high
\qquad

X_{C} is higher at low frequency. The capacitor block current at long time. because more charge accumulates.
$X_{C}=$ infinity
$X_{C}=$ low

Capacitive Reactance

Dimensional analysis
$\tau=R C$
$\frac{1}{\tau}=\omega=2 \pi f=\frac{1}{R C}$
$R=\frac{1}{2 \pi f C}$
$X_{c}=\frac{1}{2 \pi f C}$

So X_{c} has units of Ohms

A 10 microfarad capacitor is in an ac circuit with a voltage source with RMS voltage of 10 V . a) Find the current for a frequency of 100 Hz . b) Find the current for a frequency of 1000 Hz.
a) $\Delta V_{C}=X_{C} I$
$I=\frac{\Delta V_{C}}{X_{C}}=\frac{\Delta V_{C}(2 \pi f C)}{1}$
$I=10(2 \pi)(100)\left(10^{-5}\right)=6.3 \times 10^{-2} A$
b) The frequency is $10 x$ higher, the current is 10 x higher $I=10 \times 6.3 \times 10^{-2}=6.3 \times 10^{-1} \mathrm{~A}$

Inductive reactance, X_{L}

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{L}} & =X_{\mathrm{L}} \mathrm{I} \\
X_{L} & =\omega L
\end{aligned} \quad I=\frac{\Delta V_{L}}{X_{L}}
$$

An inductor has higher back emf when $\Delta \mathrm{l} / \Delta \mathrm{t}$ is greater, i.e. at high frequency. Inductive reactance higher at high frequency.

A inductor with $\mathrm{L}=10^{-5} \mathrm{H}$ is driven by a 10 V ac source.
a) Find the current at $f=100 \mathrm{~Hz}$.
b) Find the current at $f=1000 \mathrm{~Hz}$
a) $\quad I_{R M S}=\frac{\Delta V_{L, R M S}}{X_{L}}=\frac{\Delta V_{L, R M S}}{2 \pi f L}$

$$
I=\frac{10}{2 \pi(100)\left(10^{-5}\right)}=1.6 \times 10^{3} \mathrm{~A}
$$

b) the frequency is $10 x$ greater the current is inversely proportional to f the current is $10 x$ less

I=1.6x103/10=1.6x102A

Impedance, Z

$$
\begin{aligned}
& \Delta V=\sqrt{\left(\Delta V_{L}-\Delta V_{C}\right)^{2}+\Delta V_{R}^{2}} \\
& \Delta V=\sqrt{\left(I X_{L}-I X_{C}\right)^{2}+I^{2} R^{2}} \\
& \Delta V=I \sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}}
\end{aligned}
$$

$$
\Delta V=I Z \quad \text { Like Ohm's Law }
$$

$Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}}$
L, C and R contribute to Z, Impedance.

34. A resonance circuit in a radio receiver is tuned to a certain station when the inductor has a value of 0.20 mH and the capacitor has a value of 30 pF . Find the frequency of the station.

