PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

Chapter 19.4 Force on a Current Carrying Wire

For angle $\boldsymbol{\theta}$ between L and B

$$
F=B I L \sin \theta
$$

B parallel to direction of wire, $\theta=0, F=0$
B perpendicular to direction of wire $\theta=90^{\circ}, \mathrm{F}=\mathrm{BIL}$

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Forces on a loop of current in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop.
(a and b are the lengths)

Ch 19.5 Torque on Current

First, a review of Torque

Torque= Force \times perpendicular distance

$$
\tau=F d
$$

Mass $=1 \mathrm{~kg}$ length
 $=1 \mathrm{~m}$

Torque= Force x perpendicular distance $\boldsymbol{\tau}=F \boldsymbol{F}$

Last Quiz and Final Exam

- Last quiz is this Friday in class.
- The Final Exam for Physics 1B will be on the Monday of Finals week, Monday December 7, 2009 from 11:30am to 2:30pm in York 2622

The current loop in a B field generates a torque around the center proportional to the area of the loop

Side view

(b)

The current loop in a B field generates a torque around the center proportional to the area of the loop

The two forces generate

Side view

a torque around the center

$$
\begin{aligned}
& \hat{\sigma}=\mathrm{F}_{1}\left(\frac{\mathrm{a}}{2}\right)+\mathrm{F}_{2}\left(\frac{\mathrm{a}}{2}\right) \\
& \hat{o}=\mathrm{Blba}
\end{aligned}
$$

```
\tau=BIA
```

$A=a x b=$ area of loop counterclockwise

Same loop as before...current flowing counter clockwise as viewed from above.

Which picture below has largest torque?

B field

A.
B.
C.

Same loop as before...current flowing counter clockwise as viewed from above.

Which picture below has largest torque?

B field

A.
B.
C.

Same loop as before...current flowing counter clockwise as viewed from above.

Which picture below has largest torque?

B field

A.
B.
C.

Loop makes an angle with B

$$
\tau=B I A \sin \theta
$$

$\tau=B I A \sin \theta$

$$
\tau=
$$

$\tau=B I A \sin \theta$

$\tau=B I A$

$\tau=B I A \sin \theta$

$\tau=B I A \sin \theta$

$\tau=B I A \sin \theta$

$$
\tau=0
$$

The torque tilts the loop so the normal is parallel to B

Loop with N turns of wire

$\tau=N B I A \sin \theta$

Torque increases with $\mathrm{N}, \mathrm{B}, \mathrm{I}$ and A
Torque is maximum when $\theta=90^{\circ}$, when the loop is parallel to the field
Torque is zero when $\theta=0$ when loop is perpendicular to the field

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

a) $\tau=N B I A \sin \theta$
$=100(0.3)(3.0)(0.2) \sin 60=1.6 \times 10^{1} \mathrm{Nm}$

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

a) $\tau=N B I A \sin \theta$
$=100(0.3)(3.0)(0.2) \sin 60=1.6 \times 10^{1} \mathrm{Nm}$

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

a) $\tau=N B I A \sin \theta$

$$
=100(0.3)(3.0)(0.2) \sin 60=1.6 \times 10^{1} \mathrm{Nm}
$$

b) counter clockwise direction

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

a) $\tau=N B I A \sin \theta$

$$
=100(0.3)(3.0)(0.2) \sin 60=1.6 \times 10^{1} \mathrm{Nm}
$$

b) counter clockwise direction
c) the torque will have the same magnitude but in the opposite (clockwise) direction,

Electric motors (not same as 'engines')

A current loop in a magnetic field produces a torque

Problem

A dc current does not produce complete rotation

B field

Electric motors (not same as 'engines')

A current loop in a magnetic field produces a torque
Problem
A dc current does not produce complete rotation

B field

Electric motors (not same as 'engines')

A current loop in a magnetic field produces a torque
Problem
A dc current does not produce complete rotation

B field

$\tau=0$

Electric motors (not same as 'engines')

A current loop in a magnetic field produces a torque
Problem
A dc current does not produce complete rotation

B field

dc current only rotates coil until it is perpendicular to the field

Solution with direct current source is to use a commutator.

Split-ring commutator reverses the current direction when $\tau=0$.

19.7 Magnetic field due to a current carrying wire

Magnetic field due to current Ampere's Law
Force between current carrying wires

Magnetic fields are produced by an electric current

Hans Oersted 1820

(a)

(b)

Magnetic field lines around a current in straight wire - circle with radius R

$\mu_{0}=$ permeability of free space
$=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$

Direction of the field- Right hand rule

Direction of the field- Right hand rule

Thumb-along I
Fingers- around I point along B

Ampere's Law

Andre Marie Ampere (1775-1836)
General relation between current and magnetic field

$\sum \mathrm{B}_{\mathrm{n}}$
sum over all segments in the closed loop

The magnetic field around a straight wire calculated from Ampere's Law

The B field has a constant value at a constant radius R. B and ΔL are in the same direction

Therefore, from Ampere's Law
$\sum \mathrm{B}_{\mathrm{II}}$

$$
\sum_{\mathrm{B}=\frac{i_{\mathrm{o}} \mathrm{l}}{2}}
$$

from Ampere's Law

Application of Ampere's Law
A coaxial cable has an inner conductor carrying current in one direction and an outer conductor carrying an equal current in the opposite direction Find the B field due to the currents at a radius R outside the coaxial cable.

Application of Ampere's Law
A coaxial cable has an inner conductor carrying current in one direction and an outer conductor carrying an equal current in the opposite direction Find the B field due to the currents at a radius R outside the coaxial cable.

$B=0$ since the total current is equal to zero. The B fields due to the two currents cancel

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

view from above

PHYSICS 1B - Fall 2009

Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333

Today

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11^{\prime \prime}$) notes for this quiz, as well as calculators.

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11^{\prime \prime}$) notes for this quiz, as well as calculators.
- Ch 19 HW solutions are on the web as are all lectures in Ch 19 after class today.

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11^{\prime \prime}$) notes for this quiz, as well as calculators.
- Ch 19 HW solutions are on the web as are all lectures in Ch 19 after class today.
- No books, multiple pages, laptops etc.

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11^{\prime \prime}$) notes for this quiz, as well as calculators.
- Ch 19 HW solutions are on the web as are all lectures in Ch 19 after class today.
- No books, multiple pages, laptops etc.
- Magnetic field by wires review

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11^{\prime \prime}$) notes for this quiz, as well as calculators.
- Ch 19 HW solutions are on the web as are all lectures in Ch 19 after class today.
- No books, multiple pages, laptops etc.
- Magnetic field by wires review
- New: current loops

Don't forget the Problem session Thursday night

Today

- Last quiz of course on Friday- covers Ch 19.
- You CAN bring in 1 page (8.5 " $\times 11$ ") notes for this quiz, as well as calculators.
- Ch 19 HW solutions are on the web as are all lectures in Ch 19 after class today.
- No books, multiple pages, laptops etc.
- Magnetic field by wires review
- New: current loops
- New: permanent magnets

Don't forget the Problem session Thursday night

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

view from above

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

view from above

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.
How will the compass needles be deflected?

view from above

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

A 5A current passes through a wire downward in the vertical direction. a) At what distance R from the wire will the magnetic field equal the earth's field $B_{\text {earth }}=0.5 \times 10^{-4} \mathrm{~T}$.

How will the compass needles be deflected?

$$
B=\frac{\mu_{0} l}{2 \pi R}
$$

$$
R=\frac{\mu_{0} l}{2 \pi B}=\frac{4 \pi \times 10^{-7}(5)}{2 \pi\left(0.5 \times 10^{-4}\right)}=2 \times 10^{-2} \mathrm{~m}
$$

I into the page
view from above

A power line carries a current of 100 A from east to west. a) Find the magnitude of the B field due to the wire at a position 20 m below the line due to the current. b) Find the direction of B.

A power line carries a current of 100 A from east to west. a) Find the magnitude of the B field due to the wire at a position 20 m below the line due to the current. b) Find the direction of B .

a)

$$
B=\frac{\mu_{o} l}{2 \pi R}=\frac{4 \pi \times 10^{-7}(100)}{2 \pi(20)}=10^{-6} \mathrm{~T}
$$

this is much smaller than the earth's magnetic field $0.5 \times 10^{-4} \mathrm{~T}$

A power line carries a current of 100 A from east to west. a) Find the magnitude of the B field due to the wire at a position 20 m below the line due to the current. b) Find the direction of B .

a)

$$
B=\frac{\mu_{0} I}{2 \pi R}=\frac{4 \pi x 10^{-7}(100)}{2 \pi(20)}=10^{-6} T
$$

this is much smaller than the earth's magnetic field $0.5 \times 10^{-4} \mathrm{~T}$
b) South- by the right-hand rule.

Force between two current carrying wires of length L, parallel at distance R.

Force between two current carrying wires of length L, parallel at distance R.

I_{1} produces a field B_{12} at the position of wire 2 .

$$
B_{12}=\frac{\mu_{0} I_{1}}{2 \pi R}
$$

Force between two current carrying wires of length L, parallel at distance R.

I_{1} produces a field B_{12} at the position of wire 2 .

$$
B_{12}=\frac{\mu_{0} I_{1}}{2 \pi R}
$$

I_{2} experiences a force due to B_{12}

$$
F=B_{12} I_{2} L
$$

Force between two current carrying wires of length L, parallel at distance R.

I_{1} produces a field B_{12} at the position of wire 2 .

$$
B_{12}=\frac{\mu_{0} I_{1}}{2 \pi R}
$$

I_{2} experiences a force due to B_{12}

$$
F=B_{12} I_{2} L
$$

The force between the two wires is

$$
F=B_{12} I_{2} L=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi R}
$$

Force between two current carrying wires of length L, parallel at distance R.

I_{1} produces a field B_{12} at the position of wire 2 .

$$
B_{12}=\frac{\mu_{0} I_{1}}{2 \pi R}
$$

I_{2} experiences a force due to B_{12}

$$
F=B_{12} I_{2} L
$$

The force between the two wires is

$$
F=B_{12} I_{2} L=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi R}
$$

Directions
B inward
F attractive

Current in same direction-

Current in opposite directions

Current in same direction- Force - Attractive

Current in opposite directions

Current in same direction- Force - Attractive

Current in opposite directions
Force - Repulsive

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

$\mathrm{I}=20 \mathrm{~A}$
$\mathrm{I}=20 \mathrm{~A}$
$\mathrm{~F}=\frac{\mu_{0}{ }^{2} \mathrm{~L}}{2 \pi R}$

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

Current in same direction-

Current in opposite directions

Current in same direction- Force - Attractive

Current in opposite directions

Current in same direction- Force - Attractive

Current in opposite directions
Force - Repulsive

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

$\mathrm{I}=20 \mathrm{~A}$
$\mathrm{I}=20 \mathrm{~A}$
$\mathrm{~F}=\frac{\mu_{0}{ }^{2} \mathrm{~L}}{2 \pi R}$

Two parallel wires 1.0 m in length separated by 4.0 cm each carry a current of 20 A in opposite directions. Find the force exerted between the two wires.

19.9 Magnetic field of a current loop

Current loop
Solenoid
Magnetic materials
Electromagnets
Motion of a charged particle in a magnetic field

Magnetic field in a current loop

Straight wire

Current loop
B field is the sum of fields

Side view

looks like a magnetic dipole

B field due to current loop

Side view

looks like a magnetic dipole

A current loop creates a magnetic dipole

Solenoids

Motivation. To construct electromagnets, i.e. a device to convert current to magnetic field.

Some elements of design of electromagnets. The magnetic field due to current through loops or coils of wire.

single coil

solenoid multiple turns of wire

- Built up of current loops

Solenoid

Current in a solenoid produces magnetic dipole

Air Core Solenoid vs. Bar Magnet

B field in solenoid

High field inside solenoid
Lower fields outside
Uniform relatively constant field in central region

B-field in center by Ampere's Law

$$
\sum_{\text {closed-loop }} B_{\| l} \Delta L=\mu_{o} \sum I=\mu_{o} N I
$$

$N=n o$. of turns in length L
Only segment 1 contributes because $B_{\|} \Delta L$ for other segments =zero

$$
\begin{aligned}
& B L=\mu_{0} N I \\
& B=\frac{\mu_{0} N I}{L} \\
& B=\mu_{0} n I \\
& n=\frac{N}{L} \quad \begin{array}{l}
\text { i.e. } 2 \text { in } \\
\text { the picture }
\end{array}
\end{aligned}
$$

Ampere's Law

$\sum B_{11} \Delta l=\mu_{0} I$

Magnetic field in a long solenoid

$\mathrm{B}=\mu_{\mathrm{o}} \mathrm{nl} \quad$ at center

Ampere's Law: for a closed loop path, the sum of the length elements times the magnetic field in the direction of the length element is equal to the permeability times the electric current enclosed in the loop.

An electromagnet with has 100 turns of wire wound around an air core with length of 3.0 cm . If a current of $20 A$ is passed through the wire, what is the B field at center of the magnet.

$$
\begin{aligned}
& B=\mu_{o} n I=\mu_{o}\left(\frac{N}{L}\right) I \\
& B=\left(4 \pi \times 10^{-7}\right)\left(\frac{100}{0.03}\right) 20 \\
& B=0.08 T
\end{aligned}
$$

19.10 Magnetic Domains and Materials

Magnetic materials owe their properties to magnetic dipole moments of electrons in atoms.

Applications

- permanent magnets,
- magnetic core electromagnets
- magnetic recording, magnetic tape, computer drives,
- credit cards

An electron acts as a magnetic dipole

Spinning charge

Classical model for magnetic dipole moment of electron

Magnetic properties of matter

diamagnetic

Carbon
paramagnetic Iron alum salt
ferromagnetic

Iron metal

1000-3000
much more than vacuum

Soft magnetic materials

e.g. iron

Easily magnetized but doesn't retain magnetization for long Used as core for electromagnets

Hard magnetic materials
e.g. metal alloys Alnico (Aluminum, Nickel, Cobalt) Hard to magnetize but retains the magnetization for a
long time
Used as permanent magnets.

Magnetic Domains

Magnetism due to magnetic domains.
Each domain has millions of atoms with magnetic moments coupled
Separated by domain boundaries
Soft magnetic materials-Boundary movement

B
domain boundary shifts in B field to give magnetization along B field direction

Hard magnetic materials

B
Magnetic dipoles reorient in the domains to give a net magnetic moment. Harder to do, i.e requires higher B field. but also harder to reverse.

Magnetization

Soft magnetic materials e.g. Fe nail can be magnetized by exposure to a strong B field.

non-magnetic

magnetic

Magnetic material

Iron core electromagnet

The B field in the electromagnet is much higher with an iron core than an air core.

Applications of Iron core electromagnets

Electric motors, loudspeakers, electrical machinery

Field

Applications of Iron core electromagnets

Electric motors, loudspeakers, electrical machinery

Iron-core
electromagnet

Field

Homework/CAPE

Ch 19 Review

Magnetic tape

 Information coded in the orientation of magnetic particles

Magnetization can be read on playback to generate a voltage signal

Similar recording for computer hard disks, credit cards.
Information can be erased by magnetic fields.

Magnetic recording

alternating current

Electromagnet

Iron core- magnetic fields confined in the core

Fringe B-fields

Magnetic recording

alternating current

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

(uniform magnetic field)

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

After Δt particle is in the same plane
(uniform magnetic field)

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

After Δt particle is in the same plane

Particle moves in a plane perpendicular to B
(uniform magnetic field)

Motion of particle in plane perpendicular to B

The particle moves in a circular path

A proton with $v=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

A proton with $\mathrm{v}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

$$
r=\frac{m v}{q B}
$$

A proton with $\mathrm{v}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory

$$
\begin{aligned}
& r=\frac{m v}{q B} \\
& r=\frac{1.67 \times 10^{-27}\left(1 \times 10^{6}\right)}{1.6 \times 10^{-19}(0.2)} \\
& r=5.2 \times 10^{-2} \mathrm{~m}=5.2 \mathrm{~cm}
\end{aligned}
$$

Application

Mass spectrometer

Molecular ions At velocity v

$$
r=\frac{m v}{q B}
$$

Ions separated by mass

