PHYSICS 1B - Fall 2009

Electricity

 \&
Magnetism

Wednesday Sept 30, 2009
Course Week 1

Professor Brian Keating
SERF Building. Room 333

Announcements

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Solis HALL Room 104

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Solis HALL Room 104

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Solis HALL Room 104

- First Problem Session: next Thursday October 8

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in Solis HALL Room 104
- First Problem Session: next Thursday October 8
- Quiz next Friday October 9

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in Solis HALL Room 104
- First Problem Session: next Thursday October 8
- Quiz next Friday October 9
- Get your clickers and make sure to bring to class, every class.

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Solis HALL Room 104

- First Problem Session: next Thursday October 8
- Quiz next Friday October 9
- Get your clickers and make sure to bring to class, every class.
- On Wednesday October 7, at the end of lecture, I will post 3 problems drawn from your HW from Ch 15. You will have 3 minutes to enter your answers to the three questions for Extra Credit.

Announcements

- Problem Session! The Problem Session for Physics 1B will be every Thursday at 8pm to 9:50p in

Solis HALL Room 104

- First Problem Session: next Thursday October 8
- Quiz next Friday October 9
- Get your clickers and make sure to bring to class, every class.
- On Wednesday October 7, at the end of lecture, I will post 3 problems drawn from your HW from Ch 15. You will have 3 minutes to enter your answers to the three questions for Extra Credit.
- You can register your clickers using your PID number, including the " A " in front.

Solis Hall?

Your questions via email

- I was wondering if I need to answer the questions correctly in order to -obtain extra credit points. Thank you.
- I was wondering if you were going to post the lecture slides for Monday'slecture? Physics helproom isn't open until next week and there is a slide from Monday's lecture that would help me with my pre-lab that's due tomorrow for the 1BL class..
- I am currently enrolled in your 1B physics class that meets on Mon, Wed and Friday at 1 pm . I am concerned about the way that the example problems are presented. I noticed that all the equations and work are presented in power point format which is very difficult to follow. I know that I would better understand the examples if they were worked out on the board and explained rather than quickly flashed on the screen while I scratch my head trying to figure out how we went from point A to point B. I don't think that I am alone in feeling this as a number of people around me today in class also expressed frustration. consider this request, to work out problems on the board rather than present them on the power point slides.
- I was reading over the syllabus and it states that homework will be not be collected. However, I feel like you stated in class last week that HW will be collected. Can you please clarify this for me?

Dear Prof. Keating,
I'm studying for your physics 1B class and noticed there are example problems within the reading chapters. I was wondering if you would recommend also doing these problems in addition to your assigned homework. The reason why I'm asking was my 1A physics prof said that those problems were not helpful and made the material more confusing. I just wanted to see your opinion. Thanks!

Similarity with the gravitational

 force ($1 / \mathrm{r}^{2}$ dependence)$$
F_{G}=G \frac{M_{1} M_{2}}{r^{2}}
$$

$$
G=7 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}
$$

$$
F_{e}=k_{e} \frac{q_{1} q_{2}}{r^{2}}
$$

$$
k_{e}=9 \times 10^{9} \frac{{N m^{2}}^{2}}{C^{2}}
$$

Similarity with the gravitational

 force ($1 / \mathrm{r}^{2}$ dependence)$$
F_{G}=G \frac{M_{1} M_{2}}{r^{2}}
$$

$$
G=7 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}
$$

$1 \mathrm{~kg} \longleftrightarrow 1 \mathrm{~kg}$
$r=1 \mathrm{~m}$
$F_{G}=7 \times 10^{-11} \mathrm{~N}$

$$
F_{e}=k_{e} \frac{q_{1} q_{2}}{r^{2}}
$$

$$
k_{e}=9 \times 10^{9} \frac{N m^{2}}{C^{2}}
$$

Similarity with the gravitational

 force ($1 / \mathrm{r}^{2}$ dependence)$$
F_{G}=G \frac{M_{1} M_{2}}{r^{2}}
$$

$$
G=7 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}
$$

$1 \mathrm{~kg} \longleftrightarrow 1 \mathrm{~kg}$
$\mathrm{r}=1 \mathrm{~m}$

$$
F_{G}=7 \times 10^{-11} \mathrm{~N}
$$

$$
F_{e}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \quad k_{e}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
$$

$$
F_{e}=9 \times 10^{9} \mathrm{~N}
$$

10^{20} times more than F_{G}

Force between several point charges

Net force $=$ vector sum of forces

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\left|F_{13}\right|=\left|F_{23}\right|
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\left|F_{13}\right|=\left|F_{23}\right|
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\left|F_{13}\right|=\left|F_{23}\right|
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\left|F_{13}\right|=\left|F_{23}\right|
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{gathered}
\left|F_{13}\right|=\left|F_{23}\right| \\
\frac{k_{e}\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k_{e}\left|q_{2}\right|\left|q_{3}\right|}{\left(r_{o}+x\right)^{2}}
\end{gathered}
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{gathered}
\left|F_{13}\right|=\left|F_{23}\right| \\
\frac{k_{e}\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k_{e}\left|q_{2}\right|\left|q_{3}\right|}{\left(r_{o}+x\right)^{2}} \\
\left(r_{o}+x\right)^{2}\left|q_{1}\right|=x^{2}\left|q_{2}\right|
\end{gathered}
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{gathered}
\left|F_{13}\right|=\left|F_{23}\right| \\
\frac{k_{e}\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k_{e}\left|q_{2}\right|\left|q_{3}\right|}{\left(r_{o}+x\right)^{2}} \\
\left(r_{o}+x\right)^{2}\left|q_{1}\right|=x^{2}\left|q_{2}\right| \\
\left(r_{o}+x\right) \sqrt{\left|q_{1}\right|}=x \sqrt{\left|q_{2}\right|}
\end{gathered}
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{aligned}
& \quad\left|F_{13}\right|=\left|F_{23}\right| \\
& \frac{k_{e}\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k_{e}\left|q_{2}\right|\left|q_{3}\right|}{\left(r_{o}+x\right)^{2}} \\
& \left(r_{o}+x\right)^{2}\left|q_{1}\right|=x^{2}\left|q_{2}\right| \\
& \left(r_{0}+x\right) \sqrt{\left|q_{1}\right|}=x \sqrt{\left|q_{2}\right|}
\end{aligned} \quad x=\frac{\sqrt{\left|q_{1}\right|}}{\sqrt{\left|q_{2}\right|}-\sqrt{\left|q_{1}\right|}} r_{0}=\frac{\sqrt{1}}{\sqrt{2}-\sqrt{1}} r_{0}=2.41 r_{0}
$$

Two charges are in a line. $q_{1}=-1 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$ Is there a position along the line through the centers where the force on a + charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{array}{ll}
\left|F_{13}\right|=\left|F_{23}\right| & x=\frac{\sqrt{\left|q_{1}\right|}}{\sqrt{\left|q_{2}\right|}-\sqrt{\left|q_{1}\right|}} r_{0}=\frac{\sqrt{1}}{\sqrt{2}-\sqrt{1}} r_{0}=2.41 r_{0} \\
x^{2} & q_{3}\left|q_{3}\right| \\
\frac{k_{e}}{\left(r_{0}+x\right)^{2}}\left|\left|q_{3}\right|\right. & r_{0}+x=3.41 r_{0} \\
\left(r_{0}+x\right)^{2}\left|q_{1}\right|=x^{2}\left|q_{2}\right| & \\
\left(r_{0}+x\right) \sqrt{\left|q_{1}\right|}=x \sqrt{\left|q_{2}\right|} &
\end{array}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $\quad q 3=-2 \times 10^{-6} \mathrm{C} \quad \mathrm{q} 1=\mathrm{q} 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $\quad q 3=-2 \times 10^{-6} \mathrm{C} \quad \mathrm{q} 1=\mathrm{q} 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $\quad q 3=-2 \times 10^{-6} \mathrm{C} \quad \mathrm{q} 1=\mathrm{q} 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $\quad q 3=-2 \times 10^{-6} \mathrm{C} \quad \mathrm{q} 1=\mathrm{q} 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $\quad q 3=-2 \times 10^{-6} \mathrm{C} \quad \mathrm{q} 1=\mathrm{q} 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{array}{r}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{array}
$$

$$
\begin{array}{ll}
r_{23}^{2}=r_{13}^{2}+r_{12}^{2} & F_{13}=\frac{k_{e} q_{1} q_{3}}{r_{13}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{\left(2 \times 10^{-2}\right)^{2}}=45 \mathrm{~N} \\
r_{23}^{2}=2 r_{13}^{2} & F_{23}=\frac{k_{e} q_{2} q_{3}}{r_{23}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{2\left(2 \times 10^{-2}\right)^{2}}=22.5 \mathrm{~N} \\
r_{23}=\sqrt{2} r_{13} &
\end{array}
$$

$\mathrm{F}_{13}=45 \mathrm{~N}$ Solve
Find x and y components.
Consider only the relative magnitudes Ignore the minus sign

$$
\mathrm{F}_{3} \quad \mathrm{~F}_{23}=22.5 \mathrm{~N}
$$

$\mathrm{F}_{13}=45 \mathrm{~N}$ Solve
 Find x and y components. Consider only the relative magnitudes Ignore the minus sign
 $$
\mathrm{F}_{3} \quad \mathrm{~F}_{23}=22.5 \mathrm{~N}
$$

 $\mathrm{F}_{3} \quad \mathrm{~F}_{23}=22.5 \mathrm{~N}$

 $\mathrm{F}_{3} \quad \mathrm{~F}_{23}=22.5 \mathrm{~N}$}$\mathrm{F}_{13}=45 \mathrm{~N}$ Solve
Find x and y components.
Consider only the relative magnitudes Ignore the minus sign

$$
\begin{aligned}
& F_{3} \quad F_{23}=22.5 \mathrm{~N} \\
& F_{3}=\sqrt{F_{3 x}^{2}+F_{3 y}^{2}}
\end{aligned}
$$

$\mathrm{F}_{13}=45 \mathrm{~N}$ Solve
Find x and y components.
Consider only the relative magnitudes Ignore the minus sign

$$
\begin{gathered}
F_{3} \quad F_{23}=22.5 \mathrm{~N} \\
F_{3}=\sqrt{F_{3 x}^{2}+F_{3 y}^{2}} \\
F_{3 x}=45+22.5(\cos 45)=61 \mathrm{~N} \\
F_{3 y}=22.5(\sin 45)=16 \mathrm{~N} \\
F_{3}=\sqrt{61^{2}+16^{2}}=63 \mathrm{~N}
\end{gathered}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?

closer to q_{1} or q_{2} ?

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?

closer to q_{1} or q_{2} ?

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?
Magnitudes of forces are equal

$$
F_{13}=F_{23}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?

Magnitudes of forces are equal

$$
F_{13}=F_{23}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?
Magnitudes of forces are equal

$$
F_{13}=F_{23}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line $q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?
Magnitudes of forces are equal

$$
\begin{gathered}
F_{13}=F_{23} \\
\frac{k q_{1} q_{3}}{(2-x)^{2}}=\frac{k q_{2} q_{3}}{x^{2}}
\end{gathered}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line $\mathrm{q}_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ? $\mathrm{x} \quad 2.0-\mathrm{x} \quad \mathrm{q}_{1}$
Magnitudes of forces are equal

$$
\Theta \mathrm{q}_{3}
$$

$$
\begin{array}{c|c|c}
F_{13}=F_{23} & \frac{x^{2}}{(2-x)^{2}}=\frac{q_{2}}{q_{1}} & x=\frac{2 \alpha}{1+\alpha}=\frac{2(0.63)}{1+0.63}=0.77 \\
\frac{k q_{1} q_{3}}{(2-x)^{2}}=\frac{k q_{2} q_{3}}{x^{2}} & x \\
\frac{q_{1}}{(2-x)^{2}}=\frac{q_{2}}{x^{2}} & \frac{x}{2-x}=\sqrt{\frac{q_{2}}{q_{1}}}=\sqrt{\frac{6}{15}}=0.63=\alpha & 2-x=2-0.77=1.23 m
\end{array}
$$

Chapter 15.4 \& 15.5 Electric Fields / Electric Field Lines

Chapter 15.4 \& 15.5
 Electric Fields / Electric Field Lines

-Definition of electric field

- Interaction of electric fields with charges
-Electric field lines
- Electric field from a point charge
-Electric field from several point charges.

PHYSICS 1B - Fall 2009

Electricity

 \&
Magnetism

October 2, 2009
Course Week 1

Professor Brian Keating
SERF Building. Room 333

The Electric Field exists in space surrounding a charge

Gravitational field analogy

Lines are a way of visualizing how strong, and in what direction, an Electric Force will act on a test charge.

Electric field due to a point charge q at distance r, Coulomb's Law

$$
\begin{aligned}
& E=\frac{F}{q_{o}}=\frac{k_{e} q}{r^{2}} \\
& E \uparrow \\
& E \downarrow \\
& +q \\
& E! \\
& \text {-q }
\end{aligned}
$$

Electric field due to a point charge q at distance r, Coulomb's Law

$$
\begin{align*}
& E=\frac{F}{q_{o}}=\frac{k_{e} q}{r^{2}} \\
& E \uparrow \\
& E \downarrow \\
& +q \\
& E \xlongequal{\square}
\end{align*}
$$

Electric field due to a point charge q at distance r, Coulomb's Law

$$
\begin{aligned}
& E=\frac{F}{q_{o}}=\frac{k_{e} q}{r^{2}} \\
& E \uparrow \\
& E \\
& E \mid \\
& \text {-q }
\end{aligned}
$$

15.5 Electric field lines

The electric field from an isolated positive charge

The electric field vector \mathbf{E} is along the electric field line.

The number of electric field lines per unit area through a surface perpendicular to the lines is proportional to the strength of the electric field in a given region.

Electric field due to $2+$ charges

E_{A}
E_{B}

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

E_{A}
E_{B}

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

E_{A}
E_{B}

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \\
& \mathrm{E}_{\mathrm{A}}=0
\end{aligned}
$$

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \mathrm{E}_{\mathrm{B}} \\
& \mathrm{E}_{\mathrm{A}}=0
\end{aligned}
$$

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\begin{array}{rc}
\mathrm{E}_{\mathrm{A}} & \mathrm{E}_{\mathrm{B}} \\
\mathrm{E}_{\mathrm{A}}=0 & \mathrm{E}_{\mathrm{B}}=2 \mathrm{E}_{0} \cos \theta
\end{array}
$$

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\begin{array}{rc}
\mathrm{E}_{\mathrm{A}} & \mathrm{E}_{\mathrm{B}} \\
\mathrm{E}_{\mathrm{A}}=0 & \mathrm{E}_{\mathrm{B}}=2 \mathrm{E}_{0} \cos \theta
\end{array}
$$

This charge distribution is not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\mathrm{E}_{\mathrm{A}} \quad \mathrm{E}_{\mathrm{B}}
$$

$E_{A}=0$

$$
\mathrm{E}_{\mathrm{B}}=2 \mathrm{E}_{\mathrm{o}} \cos \theta
$$

This charge distribution is

$$
\begin{gathered}
E_{C}=2 E_{o} \cos \theta \Rightarrow 2 E_{\circ} \\
\text { as } \theta->0
\end{gathered}
$$ not neutral.

Total charge=+2q

Electric field due to $2+$ charges

$$
\begin{array}{rc}
\mathrm{E}_{\mathrm{A}} & \mathrm{E}_{\mathrm{B}} \\
\mathrm{E}_{\mathrm{A}}=0 & \mathrm{E}_{\mathrm{B}}=2 \mathrm{E}_{0} \cos \theta
\end{array}
$$

This charge distribution is not neutral.

Total charge=+2q
$\mathrm{E}_{\mathrm{C}}=2 \mathrm{E}_{\mathrm{o}} \cos \theta \Rightarrow 2 \mathrm{E}_{\mathrm{o}}$ as $\theta->0$
looks like a point charge of 2 q

Electric field due to a dipole dipole moment $q d=\mu$

$$
r \gg d
$$

What is the total charge of this dipole distribution?
A. $+2 q$
B. 0
C. $-2 q$

Electric field due to a dipole

dipole moment $q d=\mu$
r>>d

Far field
as θ goes to 0

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole

dipole moment $q d=\mu$

Far field as θ goes to 0

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole
dipole moment $q d=\mu$

E_{A}
E_{B}

Far field
as θ goes to 0

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole
dipole moment $q d=\mu$

r>>d

Far field
as θ goes to 0

$$
\mathrm{E}_{\mathrm{A}}=2 \mathrm{E}_{0}
$$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole

dipole moment $q d=\mu$

$$
r \gg d
$$

Far field
as θ goes to 0

$$
\mathrm{E}_{\mathrm{A}}=2 \mathrm{E}_{0}
$$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole

dipole moment $q d=\mu$

$$
r \gg d
$$

Far field
as θ goes to 0

$$
\mathrm{E}_{\mathrm{A}}=2 \mathrm{E}_{0}
$$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole
dipole moment $q d=\mu$

Far field
as θ goes to 0

$$
E_{A}=2 E_{0} \quad E_{B}=2 E_{0} \sin \theta
$$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole
dipole moment $q d=\mu$

$$
r \gg d
$$

Far field
as θ goes to 0

$$
E_{A}=2 E_{0} \quad E_{B}=2 E_{o} \sin \theta
$$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole

dipole moment $q d=\mu$

$$
r \gg d
$$

$$
\begin{array}{cc}
E_{A} & E_{B} \\
E_{A}=2 E_{o} & E_{B}=2 E_{0} \sin \theta
\end{array}
$$

Far field as θ goes to 0
$\mathrm{E}_{\mathrm{C}}=2 \mathrm{E}_{\mathrm{o}} \sin \theta \Rightarrow 2 \mathrm{E}_{\mathrm{o}} \frac{\mathrm{d} / 2}{\mathrm{r}}$

This charge distribution is neutral, but field is not equal to zero!

Electric field due to a dipole

dipole moment $q d=\mu$

Far field

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{A}} \\
& \mathrm{E}_{\mathrm{A}}=2 \mathrm{E}_{\mathrm{o}} \quad \mathrm{E}_{\mathrm{B}}=2 \\
& \text { This charge distribution is } \\
& \text { neutral, but field is not } \\
& \text { equal to zero! }
\end{aligned}
$$

$$
E_{B}=2 E_{0} \sin \theta
$$

Electric field due to a dipole

dipole moment $q d=\mu$

$$
r \gg d
$$

$$
\begin{array}{cc}
E_{A} & E_{B} \\
E_{A}=2 E_{0} & E_{B}=2 E_{0} \sin \theta
\end{array}
$$

This charge distribution is
Far field
as θ goes to 0

$$
\begin{aligned}
& E_{C}=2 E_{o} \sin \theta \Rightarrow 2 E_{o} \frac{d / 2}{r} \\
& E_{o}=\frac{k_{e} q}{r^{2}}
\end{aligned}
$$

neutral, but field is not equal to zero! $\quad \mathrm{E}$ falls off as $1 / \mathrm{r}^{3}$

$$
E_{c}=\frac{k_{e} q d}{r^{3}}=\frac{k_{e} \mu}{r^{3}}
$$

Electric field lines from a dipole $+q,-q$

Electric field lines from $2+q$ charges

The Electric Field exerts a Force on a Charge

The Electric Field exerts a Force on a Charge

The Electric Field exerts a Force on a Charge

The Electric Field exerts a Force on a Charge

Cathode ray tube

Electric field Accelerates e-
electrons

Oscilloscope (ok, or a non Flat Panel TV)

J.J.Thomson

1. Shoot in an electron with battery, E field off

Oscilloscope (ok, or a non Flat Panel TV)

1. Shoot in an electron with battery, E field off N.P. physics 1906

Oscilloscope (ok, or a non Flat Panel TV)

1. Shoot in an electron with battery, E field off
2. Then turn on field and shoot another electron

Oscilloscope (ok, or a non Flat Panel TV)

1. Shoot in an electron with battery, E field off
2. Then turn on field and shoot another electron

Oscilloscope (ok, or a non Flat Panel TV)

1. Shoot in an electron with battery, E field off
2. Then turn on field and shoot another electron

An electron moving horizontally at constant velocity flies into a constant vertical electric field of $1000 \mathrm{~N} / \mathrm{C}$ for a distance of 3 cm . What happens to the electron in the field region?

- A. It continues to move with constant velocity
- B. It moves in quantum steps
- C. it moves with constant acceleration
- D. it stops moving

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $m_{e}=9 \times 10^{-31} \mathrm{~kg}$.

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $m_{e}=9 \times 10^{-31} \mathrm{~kg}$.
E
$+$

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}$.

$$
\mathrm{F}=\mathrm{ma}
$$

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}$.
E

$$
F=q E=1.6 \times 10^{-19}(1000)=1.6 \times 10^{-16} \mathrm{~N}
$$

$$
\mathrm{F}=\mathrm{ma}
$$

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $m_{e}=9 \times 10^{-31} \mathrm{~kg}$.
E

$$
F=q E=1.6 \times 10^{-19}(1000)=1.6 \times 10^{-16} \mathrm{~N}
$$

$\mathrm{F}=\mathrm{ma}$

$$
\begin{aligned}
& a=\frac{F}{m} \\
& v^{2}=v_{o}^{2}+2 a x
\end{aligned}
$$

An electron is accelerated from rest in a constant electric field of $1000 \mathrm{~N} / \mathrm{C}$ through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}$.
E

$$
F=q E=1.6 \times 10^{-19}(1000)=1.6 \times 10^{-16} \mathrm{~N}
$$

$\mathrm{F}=\mathrm{ma}$

$$
\begin{aligned}
& a=\frac{F}{m} \\
& v^{2}=v_{o}^{2}+2 a x
\end{aligned}
$$

$$
v=\sqrt{2 a x}=\sqrt{2 \frac{q E}{m} x}=\sqrt{2 \frac{1.6 \times 10^{-19}(1000)}{9 \times 10^{-31}}(0.03)}
$$

$$
v=3.3 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

Electrophoresis- Separation of DNA (Negatively charged
~-1000 e) In an Electric field ~1000 N/C,

15.6 Conductors in electrostatic equilibrium

initial state non-equilibrium

Like Charges Repel

Charges can move freely in a Conductor

At Equilibrium - the charges are not moving

15.6 Conductors in electrostatic equilibrium

At Equilibrium

Charge is on surface (no charge inside the conductor)

Electric field is zero inside the conductor

Electric field is perpendicular to surface

Charge accumulates at sharp points (small radius of curvature)

Excess charge is on the surface

Excess charge moves to the surface due to repulsion. They move as far apart as is possible.

E field is zero in the conductor

If $\mathrm{E} \neq 0$, then mobile charges would move and not be in equilibrium. When motion stops $\mathrm{E}=0$.

This is true in an external E field or a net charge

PHYSICS 1B - Fall 2009

Electricity

 \&
Magnetism

October 7, 2009
Course Week 2

Professor Brian Keating
SERF Building. Room 333

- HW Solutions for CH 15 on Web after class on Wednesday

1 page, front and back Notes Allowed.
I will give you constants (e.g., Coulomb's constant), ();
...but not formulae...(:
Format: Multiple Choice, Bring your own Scantron Forms:
They are available at the Bookstore (no. X-101864-PAR) and the general store co-op.
Bring your own No. 2 pencils to fill in the Scantron.
Quizzes will be half conceptual and half quantitative.
Scientific calculators will be allowed, but no laptops, cellphones. Graphing calculators are allowed, but formulae cannot be programmed in nor can any notes be programmed into the calculator. Students violating this requirement will be in violation of the UCSD academic honesty policy, and will receive an ' F ' in Physics 1B.

Example - spherical metal shell

Example - spherical metal shell

+q placed at center

- charges accumulate inside
+ charges accumulate outside

Example - spherical metal shell

+q placed at center

- charges accumulate inside
+ charges accumulate outside
$E=0$ in the metal

Electric field outside is perpendicular to the surface

Component of $E \perp$ to the surface $=0$

If not, charges
would move

Charge accumulates at smaller radius of curvature

F_{\perp} to surface is less.
Therefore the charges can be closer together

Charge moves to the outer surface of the conductor
(b)

Charge moves to the outer surface of the conductor
(b)
$-+ \pm+\square$

Charge moves to the outer surface of the conductor
(b)

Charge moves to the outer surface of the conductor

(b)

Charging Van de Graaf

Spark- charge conduction due to ionization of atoms.

Figure 15.23 A diagram of a Van
de Cemaff manamtor Chawre is trme.

Milliken Oil drop experiment

Robert Milliken (1868-1953)

Milliken Oil drop experiment

Robert Milliken (1868-1953)

Results of Oil Drop Measurements

Chapter 15.9 Electric Flux Gauss' Law

- Gauss's Law gives relation between electric fields and charges.
- Equivalent to Coulomb's Law
- Useful for determining E for simple distributions of charge.

Basic Idea of Gauss' Law

Total number of E field lines is proportional to charge

Density of E field lines is proportional to the magnitude of E

surround the charge by a closed surface

The density of E-field lines (i.e. the E field) at the surface can be related to the charge q

Gauss's Law

The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity.

Electric Flux, Φ_{E}, through an area A

area A (perpendicular to electric field lines)

$$
\begin{array}{r}
\Phi_{E}=E A \propto N \\
N=\text { no. of electric field lines }
\end{array}
$$

E at angle of Θ to surface normal (red).

$$
\Phi_{E}=E A \cos \theta
$$

Finding E from the flux

Flux through an enclosed area is proportional to amount of charge enclosed

Flux through an enclosed area is proportional to amount of charge enclosed

Flux through an enclosed area is proportional to amount of charge enclosed

Proportionality Constant

$$
\begin{aligned}
& \varepsilon_{o}=\frac{1}{4 \pi k_{e}} \\
& =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}
\end{aligned}
$$

- HW Solutions for CH 15 on Web after class on Wednesday

1 page, front and back Notes Allowed.
I will give you constants (e.g., Coulomb's constant), ();
...but not formulae...(:
Format: Multiple Choice, Bring your own Scantron Forms:
They are available at the Bookstore (no. X-101864-PAR) and the general store co-op.
Bring your own No. 2 pencils to fill in the Scantron.
Quizzes will be half conceptual and half quantitative.
Scientific calculators will be allowed, but no laptops, cellphones. Graphing calculators are allowed, but formulae cannot be programmed in nor can any notes be programmed into the calculator. Students violating this requirement will be in violation of the UCSD academic honesty policy, and will receive an ' F ' in Physics 1B.

