## PHYSICS 1B - Fall 2009



## Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333
Wednesday October 14, 2009

## $*$ UCSD

# 16.1 PART 2 \& 16.2 ELECTRIC POTENTIAL (CONTINUED) 

## Quiz grades: on the web by last 5 digits of your PID number

Average was an 7 with a standard deviation of 2.

Hydrogen Bond
$\mathrm{N}-\mathrm{H} \quad \mathrm{O}-\mathrm{C} \longrightarrow \mathrm{N}-\mathrm{H}-\mathrm{C}$
The hydrogen bond energy can be estimated by partial charges



DNA

Hydrogen Bond
$\mathrm{N}-\mathrm{H}$

$$
\mathrm{O}-\mathrm{C}
$$

$\qquad$

The hydrogen bond energy can be estimated by partial charges
$-0.3 e \quad+0.3 e \quad-0.4 e+0.4 e$

bond energy $=$ sum $\frac{\mathrm{kq}_{\mathrm{q}}}{\mathrm{r}_{\mathrm{ij}}}$ (scalar sum)


DNA

Hydrogen Bond
$\mathrm{N}-\mathrm{H}$
$\mathrm{O}-\mathrm{C}$ $\qquad$ $\mathrm{N}-\mathrm{H} \quad \mathrm{O}-\mathrm{C}$

The hydrogen bond energy can be estimated by partial charges

$$
\begin{array}{cc}
-0.3 e^{+0.3 e} & -0.4 \mathrm{e}+0.4 \mathrm{e} \\
\mathrm{~N}-\mathrm{H} & \mathrm{O}-\mathrm{C} \\
0.1 & 0.2 \\
0.25
\end{array} \mathrm{~nm}
$$

bond energy $=\operatorname{sum} \frac{\mathrm{kq} \mathrm{q}_{\mathrm{j}}}{\mathrm{r}_{\mathrm{ij}}}$ (scalar sum)


DNA
$\Delta \mathrm{PE}=\frac{\mathrm{ke}^{2}}{10^{-9}}\left(\frac{(-.3)(-.4)}{.1+.2}+\frac{-.3(.4)}{.1+.2+.25}+\frac{+.3(-.4)}{.2}+\frac{.3(.4)}{.2+.25}\right)$

Hydrogen Bond
$\mathrm{N}-\mathrm{H}$
$\mathrm{O}-\mathrm{C}$ $\qquad$ $\mathrm{N}-\mathrm{H} \quad \mathrm{O}-\mathrm{C}$

The hydrogen bond energy can be estimated by partial charges

$$
\begin{array}{cc}
-0.3 e^{+0.3 e} \\
\mathrm{~N}-\mathrm{H} & \begin{array}{l}
-0.4 \mathrm{e}+0.4 \mathrm{e} \\
0.1 \\
0.2 \\
0.25
\end{array} \mathrm{Cm}
\end{array}
$$

bond energy $=$ sum $\frac{\mathrm{kq} q_{\mathrm{j}}}{\mathrm{r}_{\mathrm{ij}}}$ (scalar sum)


DNA
$\Delta \mathrm{PE}=\frac{\mathrm{ke}^{2}}{10^{-9}}\left(\frac{(-.3)(-.4)}{.1+.2}+\frac{-.3(.4)}{.1+.2+.25}+\frac{+.3(-.4)}{.2}+\frac{.3(.4)}{.2+.25}\right)=-3.49 \times 10^{-20} \mathrm{~J}$

Hydrogen Bond
$\mathrm{N}-\mathrm{H}$
$\mathrm{O}-\mathrm{C}$ $\longrightarrow \mathrm{N}-\mathrm{H}^{-} \mathrm{C}$

The hydrogen bond energy can be estimated by partial charges

$$
\begin{array}{cc}
-0.3 e^{+0.3 e} & -0.4 \mathrm{e}+0.4 \mathrm{e} \\
\mathrm{~N}-\mathrm{H} & \mathrm{O}-\mathrm{C} \\
0.1 & 0.2 \\
0.25 & \mathrm{~nm}
\end{array}
$$

bond energy $=\operatorname{sum} \frac{\mathrm{kq} q_{\mathrm{j}}}{\mathrm{r}_{\mathrm{ij}}}$ (scalar sum)


DNA
$\Delta \mathrm{PE}=\frac{\mathrm{ke}^{2}}{10^{-9}}\left(\frac{(-.3)(-.4)}{.1+.2}+\frac{-.3(.4)}{.1+.2+.25}+\frac{+.3(-.4)}{.2}+\frac{.3(.4)}{.2+.25}\right)=-3.49 \times 10^{-20} \mathrm{~J}$ $\Delta P E=-0.22 \mathrm{eV}$

Hydrogen Bond
$\mathrm{N}-\mathrm{H}$
$\mathrm{O}-\mathrm{C}$ $\longrightarrow \mathrm{N}-\mathrm{H} \mathrm{O}^{-} \mathrm{C}$

The hydrogen bond energy can be estimated by partial charges

$$
\begin{array}{cc}
-0.3 e^{+0.3 e} \quad-0.4 \mathrm{e}+0.4 \mathrm{e} \\
\mathrm{~N}-\mathrm{H} & \mathrm{O}-\mathrm{C} \\
0.1 & 0.2 \quad 0.25 \\
\mathrm{Nm}
\end{array}
$$

bond energy $=$ sum $\frac{k q_{i} q_{j}}{r_{j}}$ (scalar sum)


DNA
$\Delta \mathrm{PE}=\frac{\mathrm{ke}^{2}}{10^{-9}}\left(\frac{(-.3)(-.4)}{.1+.2}+\frac{-.3(.4)}{.1+.2+.25}+\frac{+.3(-.4)}{.2}+\frac{.3(.4)}{.2+.25}\right)=-3.49 \times 10^{-20} \mathrm{~J}$
$\Delta P E=-0.22 \mathrm{eV} \quad$ Weaker than a ionic bond but still significant.

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A


Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A

V at A due to each charge


$$
\begin{aligned}
& E=\frac{k_{e} q}{r^{2}} \\
& V=\frac{k_{e} q}{r}
\end{aligned}
$$

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A

V at A due to each charge


$$
\begin{aligned}
& E=\frac{k_{e} q}{r^{2}} \\
& V=\frac{k_{e} q}{r} \\
& \frac{E}{V}=\frac{1}{r} \\
& V=E r=100(0.1)=10 V
\end{aligned}
$$

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A

V at A due to each charge


$$
\begin{aligned}
& E=\frac{k_{e} q}{r^{2}} \\
& V=\frac{k_{e} q}{r} \\
& \frac{E}{V}=\frac{1}{r} \\
& V=E r=100(0.1)=10 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\text {total }}=\mathrm{V}_{\mathrm{BA}}+\mathrm{V}_{\mathrm{CA}}=2 \mathrm{~V}=20 \mathrm{~V}$
Potential is a scalar

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . The Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at A.

What is the potential at A?

A. 10 V
B. 100 V
C. 1000 V

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . The Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at A.

What is the potential at A?

A. 10 V
B. 100 V C. 1000 V

$$
\begin{aligned}
& \frac{E}{V}=\frac{1}{r} \\
& V=E r=100(0.1)=10 V
\end{aligned}
$$

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . The Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at A.

What is the potential at A?

$$
\begin{array}{ll}
B & \text { C }
\end{array}
$$

A. 10 V
B. 100 V
C. 1000 V

$$
\begin{aligned}
& \frac{E}{V}=\frac{1}{r} \\
& V=E r=100(0.1)=10 V
\end{aligned}
$$

Potential is a scalar

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.


PE due to Coulomb interaction
How many interactions?
$P E=$

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.


PE due to Coulomb interaction
How many interactions?
$P E=$

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.


PE due to Coulomb interaction
How many interactions?
$\mathrm{PE}=\quad \mathrm{PE}_{12}+\mathrm{PE}_{13}+\mathrm{PE}_{23}$

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.


PE due to Coulomb interaction
How many interactions?

$$
P E=P E_{12}+P E_{13}+P E_{23}
$$

$$
P E=3 \frac{k_{e} q^{2}}{r}
$$

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.


PE due to Coulomb interaction
How many interactions?
$\mathrm{PE}=\quad \mathrm{PE}_{12}+\mathrm{PE}_{13}+\mathrm{PE}_{23}$
$P E=3 \frac{k_{e} q^{2}}{r}$
$P E=3 \frac{9 \times 10^{9}\left(1 \times 10^{-9}\right)^{2}}{(0.01)^{2}}=2.7 \times 10^{-4} \mathrm{~J}$

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)


The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
What is the total change in PE?

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
What is the total change in PE?

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
What is the total change in PE?

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
2
What is the total change in PE?

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
2
What is the total change in PE?

$$
P E=P E_{12}+P E_{13}+P E_{23}
$$

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?
How many positive?
How many negative?
2
What is the total change in PE?

$$
\begin{aligned}
& P E=P E_{12}+P E_{13}+P E_{23} \\
& P E=P E_{0}-2 P E_{0}=-P E_{0}=-\frac{k_{e} q^{2}}{a}
\end{aligned}
$$

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?


How many positive?
How many negative?
2
What is the total change in PE?

$$
P E=P E_{12}+P E_{13}+P E_{23}
$$

$$
P E=P E_{0}-2 P E_{0}=-P E_{0}=-\frac{k_{e} q^{2}}{a}
$$

STABLE

Which of the charge distributions is the most stable? (has the lowest PE)

A. This one

B. This one

Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)

$\mathrm{PE}_{0}$
$\mathrm{PE}_{0} / \sqrt{2}$

## Total PE

Which of the charge distributions is the most stable? (has the lowest PE)
$P E_{0}=\frac{k_{e} q^{2}}{a}$

A. This one

B. This one

$$
\mathrm{PE}_{0} \quad+2 \quad-2
$$

$$
\mathrm{PE}_{0} / \sqrt{2}
$$

## Total PE

Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)
$P E_{0}=\frac{k_{e} q^{2}}{a}$

A. This one

B. This one

$$
\begin{gathered}
+2 \\
\left(-4+\frac{2}{\sqrt{2}}\right) P E_{o}=-2.6 P E_{0}
\end{gathered}
$$

Which of the charge distributions is the most stable? (has the lowest PE)
$P E_{0}=\frac{k_{e} q^{2}}{a}$

A. This one

$$
\begin{aligned}
& \mathrm{PE}_{0} \\
& \mathrm{PE}_{0} / \sqrt{2}
\end{aligned}
$$

Total PE

B. This one
STABLE

$$
-4
$$

+2
$\left(-4+\frac{2}{\sqrt{2}}\right) P E_{o}=-2.6 P E_{0}$

Which of the charge distributions is the most stable? (has the lowest PE)


## Which of the charge distributions is the most stable?

 (has the lowest PE)

Which of the charge distributions is the most stable? (has the lowest PE)

$\frac{\mathrm{PE}_{0}}{\mathrm{PE}_{0} / \sqrt{2}}$

Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)


Which of the charge distributions is the most stable? (has the lowest PE)
$P E_{0}=\frac{k_{e} q^{2}}{a}$


|  | \#+V? | $\#-\mathrm{V} ?$ | $\#+\mathrm{V} ?$ | $\#-\mathrm{V} ?$ |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{PE}_{0}$ | +2 | -2 |  | -4 |
| $\mathrm{PE}_{0} / \sqrt{2}$ |  | -2 | +2 |  |
| Total PE | $-\frac{2}{\sqrt{2}} P E_{0}=-1.4 P E_{0}$ | $\left(-4+\frac{2}{\sqrt{2}}\right) P E_{o}=-2.6 P E_{0}$ |  |  |

Which of the charge distributions is the most stable? (has the lowest PE)


# 16.2 Equipotentials 

## Equipotential surfaces

## Equipotential Surface - positions in space at which the electrical potentials are equal

Example 1- A sphere centered around a point charge

Every point on the surface of the sphere of radius $r$ has the same potential

$$
V=\frac{k_{e} q}{r}
$$

The surface of the sphere is an equipotential surface

## Equipotential surface-

Example 2: a charged conductor
The surface of a conductor is an equipotential surface.

equipotential

E field is perpendicular to the surface.
Component of $E=0$ parallel to the surface

$$
\Delta V=E d=0
$$

Thus, No change in potential along the surface

The interior of the conductor is an equipotential and at the same potential as the surface.


The interior of the conductor is an equipotential and at the same potential as the surface.


$\mathrm{E}=0$ in the conductor<br>Thus, the potential doesn't change from the surface potential

## PHYSICS 1B - Fall 2009



## Electricity \&

 Magnetism

Professor Brian Keating
SERF Building. Room 333
Friday October 16, 2009

## The equipotential surfaces are perpendicular to E field lines.



## Equipotential lines: point charge



## Equipotential lines: dipole



Which line type/style represents the electric field?
A. solid
B. dashed

## Draw a sketch of the equipotential surfaces for a electric dipole ( $+\mathrm{q},-\mathrm{q}$ ) in a plane through both charges

-q

Draw a sketch of the equipotential surfaces for a electric dipole ( $+\mathrm{q},-\mathrm{q}$ ) in a plane through both charges


Draw a sketch of the equipotential surfaces for a electric dipole ( $+\mathrm{q},-\mathrm{q}$ ) in a plane through both charges


Draw a sketch of the equipotential surfaces for a electric dipole ( $+\mathrm{q},-\mathrm{q}$ ) in a plane through both charges


Draw a sketch of the equipotential surfaces for a electric dipole $(+q,-q)$ in a plane through both charges


Draw a sketch of the equipotential surfaces for a electric dipole $(+q,-q)$ in a plane through both charges


Draw a sketch of the equipotential surfaces for a electric dipole $(+q,-q)$ in a plane through both charges


Suppose the two charges are 10 cm apart and the equipotential surfaces are as labeled estimate the $E$ field between the two charges.

$$
V=0
$$



Suppose the two charges are 10 cm apart and the equipotential surfaces are as labeled estimate the $E$ field between the two charges.

$$
V=0
$$



## Rutherford Scattering experiment

## Determination of the size of the nucleus

$$
\begin{aligned}
& \text { a particle He nucleus } \\
& \begin{array}{l}
\mathrm{q}=+2 \mathrm{e} \\
\mathrm{~m}=6.64 \times 10^{-27} \mathrm{~kg} \\
\mathrm{v}=2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

recoil

# gold foil 

gold nuclei
$Q=+79 e$

## Rutherford Scattering experiment

## Determination of the size of the nucleus

$$
\begin{gathered}
\begin{array}{c}
\text { a particle He nucleus } \\
\begin{array}{c}
\mathrm{q}=+2 \mathrm{e} \\
\mathrm{~m}=6.64 \times 10^{-27} \mathrm{~kg}
\end{array} \\
\mathrm{v}=2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{array} \\
\text { recoil } \\
\text { gold } \\
\text { foil } \\
\mathrm{Q}=+79 \mathrm{e}
\end{gathered}
$$

## Rutherford Scattering experiment

## Determination of the size of the nucleus

a particle He nucleus

$$
q=+2 e
$$

$$
\mathrm{m}=6.64 \times 10^{-27} \mathrm{~kg}
$$

$$
\mathrm{v}=2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

recoil
gold foil
gold nuclei
$Q=+79 e$


## Rutherford Scattering experiment

## Determination of the size of the nucleus



## Rutherford Scattering experiment

## Determination of the size of the nucleus



## Rutherford Scattering experiment

## Determination of the size of the nucleus



Rutherford Scattering experiment

## Determination of the size of the nucleus

$$
\begin{aligned}
& \text { a particle He nucleus } \\
& \begin{array}{c}
\mathrm{q}=+2 \mathrm{e} \\
\mathrm{~m}=6.64 \times 10^{-27} \mathrm{~kg} \\
\mathrm{v}=2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$



## Parallel plate capacitor



FIELD LINES IN BLACK (VECTORS) POTENTIAL CONTOURS IN RED
(NO ARROWS, BECAUSE NOT A VECTOR)

## Deflection of an electron beam in an electric field



Calculation - velocity, acceleration - Next Slide: calculate the angle the electron exits at...

An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$e^{-}$
$v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$


An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$e^{-}$
$v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$


$$
\mathrm{F}=\mathrm{qE}=\mathrm{ma}
$$

An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$e^{-}$

$$
v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$



$$
\begin{aligned}
& F=q E=m a \\
& v_{y}=a t=\frac{F}{m} t=\frac{q E}{m} t
\end{aligned}
$$

An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$e^{-}$

$$
v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$



$$
\begin{aligned}
F & =q E=m a \\
v_{y} & =a t=\frac{F}{m} t=\frac{q E}{m} t \\
t & =\frac{L}{v_{x}} \\
v_{y} & =\frac{q E}{m}\left(\frac{L}{v_{x}}\right)
\end{aligned}
$$

An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$e^{-}$

$$
v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$



$$
\begin{aligned}
F & =q E=m a \\
v_{y} & =a t=\frac{F}{m} t=\frac{q E}{m} t \\
t & =\frac{L}{v_{x}} \\
v_{y} & =\frac{q E}{m}\left(\frac{L}{v_{x}}\right)
\end{aligned}
$$

An electron beam passes through two parallel plates of a length 10 cm having an electric field of $E$.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

$\mathrm{e}^{-}$

$$
v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
$$



$$
\begin{aligned}
F & =q E=m a \\
v_{y} & =a t=\frac{F}{m} t=\frac{q E}{m} t \\
t & =\frac{L}{v_{x}} \\
v_{y} & =\frac{q E}{m}\left(\frac{L}{v_{x}}\right)
\end{aligned}
$$

## Capacitance

Capacitor- a device for storing charge and energy, can be discharged rapidly to release energy.

Applications
-Camera flash
-automobile starting system
-capacitors in electronic devices
-computer memories (store information)
-Laser flash lamp

laser fusion
Energy stored in a capacitor $2 \times 10^{6} \mathrm{~J}$ released in $1-2 \times 10^{-6} \mathrm{~s}$. High Power $\sim 10^{12} \mathrm{~W}$

## Parallel plate capacitor



FIELD LINES IN BLACK (VECTORS) POTENTIAL CONTOURS IN RED
(NO ARROWS, BECAUSE NOT A VECTOR)

## PHYSICS 1B - Fall 2009



## Electricity

 \& Magnetism

Professor Brian Keating
SERF Building. Room 333
October 19, 2009

potential source Eg. battery

Parallel Plate Capacitor

Work is done to separate charges
Capacitor Stores Electrical Energy

## Circuit Diagram

> Wire = conductor

conductor



Unit $=\frac{\text { coulomb }}{\text { volt }}=$ Farad

A battery will transport charge from one plate to the other until the voltage produced by the charge buildup is equal to the battery voltage.

## Measuring voltage



## Voltmeter <br> Ideal voltmeter Draws no charge Perfect insulator

## Parallel Plate Capacitor

Metal plates with area A, separated by a gap, d containing an insulating material. (eg. Air)


Capacitance - describes the ability to store separated charge

$$
C=\frac{q}{\Delta V}
$$

Units C/V, farad (F)

A 100 microfarad capacitor is charged to 100 V . How much charge does it store?

$$
\begin{aligned}
& C=\frac{q}{\Delta V} \\
& q=C(\Delta V)=100 \times 10^{-6}(100)=10^{-2} C
\end{aligned}
$$

This is a lot of charge. Recall that $10^{-2} \mathrm{C}$ on a sphere of 1 m radius generates a potential of

$$
V=\frac{k_{e} q}{r}=9 \times 10^{7} V
$$

How does the capacitor store this charge without high potentials? How do you get a large capacitance?

Gaussian surface- a cylinder with sides perpendicular to the plane. E is constant at ends. Flux through sides is zero.


Gaussian surface- a cylinder with sides perpendicular to the plane. E is constant at ends. Flux through sides is zero.


## Parallel plate capacitor

two "infinite" planes of charge area A separated by distance d where $\mathrm{d} \ll \mathrm{A}$, carry charge $+\mathrm{q},-\mathrm{q}$


The charges are at the inner surface of the capacitor

## Field inside the capacitor plates

By superposition of charges due to sheet of charge


## Field inside the capacitor plates

By superposition of charges due to sheet of charge


## Field inside the capacitor plates

By superposition of charges due to sheet of charge


## Field inside the capacitor plates

By superposition of charges due to sheet of charge

$$
\begin{gathered}
\left.\mathrm{E}_{\mathrm{in}}=\frac{\sigma}{\varepsilon_{0}} \mathrm{E}_{+} \frac{\downarrow}{++++++++++++} \right\rvert\, \mathrm{q}, ~ \mathrm{q} / \mathrm{A}=\sigma \\
\mathrm{E}_{-}=\mathrm{E}_{+}+\mathrm{E}_{-}=2 \frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}
\end{gathered}
$$

## Field inside the capacitor plates

By superposition of charges due to sheet of charge

$$
\begin{gathered}
\mathrm{E}_{\text {in }}=\frac{\sigma}{\varepsilon_{0}} \underset{\mathrm{E}_{+}}{\substack{+++++++++++}} \mathrm{q} / \mathrm{A}=\sigma \\
\mathrm{E}_{\text {out }}=\mathrm{E}_{+}+\mathrm{E}_{-}=2 \frac{\sigma}{2 \varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}}
\end{gathered}
$$

## What is the capacitance of a parallel plate capacitor with plates of area A separated by distance d? (in air)



What is the capacitance of a parallel plate capacitor with plates of area A separated by distance d ? (in air)

A


Recall from
Gauss' law

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{0}}=\frac{\Delta V}{d}
$$

E field
increases with
charge density

What is the capacitance of a parallel plate capacitor with plates of area A separated by distance d? (in air)

A


Recall from
Gauss' law
rearrange

$$
\begin{gathered}
E=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{0}}=\frac{\Delta V}{d} \\
\frac{q}{\Delta V}=\frac{A \varepsilon_{0}}{d}
\end{gathered}
$$

What is the capacitance of a parallel plate capacitor with plates of area A separated by distance d ? (in air)

A


Recall from
Gauss' law
rearrange
thus

$$
\begin{gathered}
E=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{o}}=\frac{\Delta V}{d} \\
\frac{q}{\Delta V}=\frac{A \varepsilon_{0}}{d} \\
C=\frac{A \varepsilon_{0}}{d}
\end{gathered}
$$

E field increases with charge density
to increase C Increase A
Decrease d

How do you stabilize the separated charge i.e. make $\Delta \mathrm{V}$ as small as possible for a given q (high capacitance)

area A
distance d

How do you stabilize the separated charge i.e. make $\Delta \mathrm{V}$ as small as possible for a given q (high capacitance)

area $\mathrm{A} \quad$ as Large as possible distance d

How do you stabilize the separated charge i.e. make $\Delta \mathrm{V}$ as small as possible for a given q (high capacitance)

area A as Large as possible
distance d as SMALL as possible

Thin film capacitors
Metal film separated by thin insulators


Making the area large and the insulating gap small increases C

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates

$\mathrm{C}=$
$E=$
$\Delta V=$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates

$C=\frac{A \varepsilon_{0}}{d}$
$E=$
$\Delta V=$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates

$C=\frac{A \varepsilon_{o}}{d} \quad=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} \mathrm{~F}=8.9 n F$
$E=$
$\Delta V=$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates


$$
\begin{aligned}
& \mathrm{C}=\frac{A \varepsilon_{o}}{d}=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} F=8.9 n F \\
& \mathrm{E}=\frac{q}{A \varepsilon_{0}}
\end{aligned}
$$

$\Delta V=$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates


$$
\begin{aligned}
& C=\frac{A \varepsilon_{0}}{d}=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} \mathrm{~F}=8.9 n \mathrm{~F} \\
& \mathrm{E}=\frac{q}{A \varepsilon_{o}}=\frac{1 \times 10^{-6}}{(1)\left(8.9 \times 10^{-12}\right)}=1.1 \times 10^{5} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

$\Delta V=$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates


$$
\begin{aligned}
& \mathrm{C}=\frac{A \varepsilon_{o}}{d}=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} \mathrm{~F}=8.9 \mathrm{nF} \\
& \mathrm{E}=\frac{q}{A \varepsilon_{o}} \quad=\frac{1 \times 10^{-6}}{(1)\left(8.9 \times 10^{-12}\right)}=1.1 \times 10^{5} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

$\Delta \mathrm{V}=\mathrm{Ed}$

A parallel plate capacitor with 2 plates each with area $1.0 \mathrm{~m}^{2}$ separated by a distance of 1.0 mm holds $+\mathrm{q},-\mathrm{q}, \mathrm{q}=10^{-6} \mathrm{C}$
(a) Find the capacitance. (b) Find the E field in the capacitor (c) Find $\Delta V$ across the plates


$$
\begin{aligned}
& \mathrm{C}=\frac{A \varepsilon_{o}}{d}=\frac{1\left(8.9 \times 10^{-12}\right)}{0.001}=8.9 \times 10^{-9} \mathrm{~F}=8.9 \mathrm{nF} \\
& \mathrm{E}=\frac{q}{A \varepsilon_{o}} \quad=\frac{1 \times 10^{-6}}{(1)\left(8.9 \times 10^{-12}\right)}=1.1 \times 10^{5} \mathrm{~V} / \mathrm{m} \\
& \Delta \mathrm{~V}=E d \quad=1.1 \times 10^{5}\left(1 \times 10^{-3}\right)=1.1 \times 10^{2} \mathrm{~V}
\end{aligned}
$$

A parallel plate capacitor (infinite) with a constant charge q has its separation increased by a factor of 2. How does this change E and $\Delta \mathrm{V}$ ?


A parallel plate capacitor (infinite) with a constant charge q has its separation increased by a factor of 2. How does this change E and $\Delta \mathrm{V}$ ?

$E=\frac{q}{A \varepsilon_{0}}$ is constant

A parallel plate capacitor (infinite) with a constant charge q has its separation increased by a factor of 2.
How does this change E and $\Delta \mathrm{V}$ ?

$E=\frac{q}{A \varepsilon_{0}}$ is constant
$\Delta \mathrm{V}=\mathrm{dE}=2 \Delta \mathrm{~V}$ 。

A parallel plate capacitor (infinite) with a constant voltage difference $\Delta V$ has its separation increased by a factor of 2 . How does this change E and q ?


A parallel plate capacitor (infinite) with a constant voltage difference $\Delta V$ has its separation increased by a factor of 2 . How does this change E and q ?

$\Delta V=d E$

A parallel plate capacitor (infinite) with a constant voltage difference $\Delta V$ has its separation increased by a factor of 2 . How does this change E and q ?

$\Delta V=d E$

A parallel plate capacitor (infinite) with a constant voltage difference $\Delta V$ has its separation increased by a factor of 2 . How does this change E and q ?

$\Delta V=d E$

$$
\mathrm{E}=\frac{\mathrm{q}}{\mathrm{~A} \varepsilon_{0}}
$$

A parallel plate capacitor (infinite) with a constant voltage difference $\Delta V$ has its separation increased by a factor of 2 . How does this change E and q ?

$\Delta V=d E$

$$
\mathrm{E}=\frac{\mathrm{q}}{\mathrm{~A} \varepsilon_{0}}
$$

# Capacitor combinations 

## Capacitors connected in series and parallel

