## PHYSICS 160: Stellar Structure

Instructor: Dr. A. M. Wolfe (phone: 47435)
Office Hours: Fri. 10-12
Texts: Carrol \& Ostlie "An Introduction to Modern Astrophysics",
Homework no. 1
Due: Thurs. Oct. 8
1
The brightest star Sirius has a parallex angle of 0.377 arcsec and a visual apparent magnitude of $m_{V}=-1.46$
(a) Find the distance to Sirius in units of (i)pc, (ii)light-years, (iii) Au, and (iv) m.
(b) What is the absolute visual magnitude of Sirius?
(c) Compare the luminosity of Sirius in the visual band to the solar luminosity (hint: absolute visual magnitude of the sun $\left.\left(M_{V}\right)_{\odot}=4.72\right)$
2
Equation 3.32 in Carrol and Ostlie defines the quantity $C_{b o l}$ :

$$
m_{b o l}=-2.5 \log _{10}\left(\int_{0}^{\infty} F_{\lambda} d \lambda\right)+C_{b o l}
$$

Evaluate $C_{b o l}$ by using the bolometric magntiude assigned to the sun $m_{b o l}=-26.83$

## 3

Consider a star to be a spherical blackbody with an effecive temperature $T_{e}=28,000 \mathrm{~K}$ and radius $R_{s}=5.2 \times 19^{9} \mathrm{~m}$. Let the distance to the star $d=180 \mathrm{pc}$. Find the following:
(a) Bolometric luminosity of the star
(b) Absolute bolomteric magnitude of the star (hint: use results in problem 2)
(c) Apparent bolometric magntiude of the star
(d) Flux at earth's surface
(e) Peak wavelength of radition.

Problems 3-8,3-12,3-14 in Carrol and Ostlie

