PHYSICS 140A

MIDTERM EXAM 2
Tuesday November 10, 2009
$T d S=C_{V} d T+T \frac{\beta}{\kappa} d V$
$T d S=C_{p} d T-V T \beta d p$
$T d S=C_{V} \frac{\kappa}{\beta} d p+\frac{C_{p}}{\beta V} d V$

1. In this problem, we consider 3 heat engines. The 3 cycles of the working substance are drawn in the $S-T$ plane below. Cycle 1 is $A B E H A$; cycle 2 is $A B C D E H A$; and cycle 3 is $A B E F G H A$. Assume all 3 cycles are reversible. Also, assume $T^{\prime \prime}<T^{\prime}<T$ and $S^{\prime \prime}<S^{\prime}<S$.
(a) What is the efficiency η_{1} of heat engine 1?
(b) What is the efficiency η_{2} of heat engine 2?
(c) What is the efficiency η_{3} of heat engine 3?
(d) Compare the 3 efficiencies η_{1}, η_{2} and η_{3}.
(e) Since the cycles are reversible, we can consider the combination consisting of cycle 3 and the reverse of cycle 1 . What is the efficiency η of this new cycle? What can one say about the efficiencies η_{1}, η_{3} and η relative to one another?
(a)

$$
\eta_{1}=1-\frac{T^{\prime}}{T}
$$

(b)

$$
\eta_{2}=1-\frac{T^{\prime}}{T}
$$

(c)

$$
\eta_{3}=1-\frac{T^{\prime \prime}}{T}
$$

(d)

$$
\eta_{3}>\eta_{1}=\eta_{2}
$$

(e)

$$
\begin{gathered}
\eta=1-\frac{T^{\prime \prime}}{T^{\prime}} \\
\eta_{3}>\eta_{1} \\
\eta_{3}>\eta
\end{gathered}
$$

One cannot determine whether η_{1} or η is larger without more information about relative sizes of ratios T^{\prime} / T and $T^{\prime \prime} / T^{\prime}$
2. Consider the reversible, closed cycle of an ideal gas, which consists of
(i) an adiabatic expansion from state A to state B
(ii) an isobaric compression from state B to state C
(iii) an isochoric transformation from state C to state A

The cycle is drawn in the $V-p$ plane below. The coordinates of states A, B and C are $\left(V_{A}, p_{A}\right),\left(V_{B}, p_{B}\right)$, and $\left(V_{A}, p_{B}\right)$, respectively. Assume that the heat capacity of the ideal gas at constant volume is $C_{V}=\alpha n R$, for α some constant.
(a) Compute the change in entropy S for each transformation of the cycle. (Compute $S_{B A}, S_{C B}$ and $S_{A C}$.) Check your result by verifying that the total change in entropy around the closed cycle is what you expect.
(b) Compute the heat Q for each transformation of the cycle. (Compute $Q_{B A}, Q_{C B}$ and $Q_{A C}$.) What is the total heat $Q_{\text {тот }}$ for the cycle?
(c) Compute the work W for each transformation of the cycle. (Compute $W_{B A}, W_{C B}$ and $W_{A C .}$.) What is the total work $W_{\text {Тот }}$ for the cycle?
(d) Compare $Q_{\text {TOT }}$ and $W_{\text {TOT }}$? What do you conclude about the change in internal energy U for the cycle?
(a)

$$
T d S=C_{V} \frac{\kappa}{\beta} d p+\frac{C_{p}}{\beta V} d V
$$

For ideal gas, $C_{V}=\alpha n R, C_{p}=(\alpha+1) n R, \beta=\frac{1}{T}, \kappa=\frac{1}{p}, p V=n R T$.

$$
\begin{gathered}
T d S=\alpha V d p+(\alpha+1) p d V \\
d S=\alpha n R \frac{d p}{p}+(\alpha+1) n R \frac{d V}{V} \\
S_{B A}=0 \\
S_{C B}=(\alpha+1) n R \ln \left(\frac{V_{A}}{V_{B}}\right) \\
S_{A C}=\alpha n R \ln \left(\frac{p_{A}}{p_{B}}\right)
\end{gathered}
$$

$$
S_{\mathrm{TOT}}=(\alpha+1) n R \ln \left(\frac{V_{A}}{V_{B}}\right)+\alpha n R \ln \left(\frac{p_{A}}{p_{B}}\right)
$$

$A \rightarrow B$ is an adiabatic expansion, so

$$
\begin{gathered}
p_{A} V_{A}^{\gamma}=p_{B} V_{B}^{\gamma} \\
\frac{p_{A}}{p_{B}}=\left(\frac{V_{B}}{V_{A}}\right)^{\frac{\alpha+1}{\alpha}}
\end{gathered}
$$

Thus,

$$
S_{\mathrm{TOT}}=(\alpha+1) n R \ln \left(\frac{V_{A}}{V_{B}}\right)+\alpha n R \ln \left(\frac{V_{B}}{V_{A}}\right)^{\frac{\alpha+1}{\alpha}}=0
$$

as expected.
(b)

$$
\begin{gathered}
d Q_{\mathrm{rev}}=T d S=\alpha V d p+(\alpha+1) p d V \\
Q_{B A}=0
\end{gathered}
$$

for adiabatic transformation.

$$
\begin{gathered}
Q_{C B}=(\alpha+1) p_{B} \int_{V_{B}}^{V_{A}} d V=(\alpha+1) p_{B}\left(V_{A}-V_{B}\right)<0 \\
Q_{A C}=\alpha V_{A} \int_{p_{B}}^{p_{A}} d p=\alpha V_{A}\left(p_{A}-p_{B}\right)>0 \\
Q_{\mathrm{TOT}}=(\alpha+1) p_{B}\left(V_{A}-V_{B}\right)+\alpha V_{A}\left(p_{A}-p_{B}\right)
\end{gathered}
$$

(c)

$$
d W_{\mathrm{rev}}=p d V
$$

$$
W_{B A}=\frac{1}{(1-\gamma)}\left(p_{B} V_{B}-p_{A} V_{A}\right)=\alpha\left(p_{A} V_{A}-p_{B} V_{B}\right)>0
$$

since $\gamma=\frac{\alpha+1}{\alpha} \Rightarrow \frac{1}{1-\gamma}=-\alpha$

$$
\begin{gathered}
W_{C B}=p_{B}\left(V_{A}-V_{B}\right) \\
W_{A C}=0 \\
W_{\mathrm{TOT}}=\alpha p_{A} V_{A}-(\alpha+1) p_{B} V_{B}+p_{B} V_{A}
\end{gathered}
$$

(d)

$$
Q_{\mathrm{TOT}}=W_{\mathrm{TOT}}
$$

so $U_{\mathrm{TOT}}=0$ for the closed cycle as expected.
3. Short problems.
(a) Prove for a general thermodynamic system that

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}
$$

(b) If two thermodynamic systems A and B are in thermodynamic equilibrium, what do you know about them?
(c) A liquid consists of a mixture of 3 different liquids in thermodynamic equilibrium. How many independent variables are required to describe the system? List the independent variables.
(d) The solid and liquid phases of a given substance are in thermodynamic equilibrium. What do you know about the specific Gibbs free energies of the solid and the liquid?
(a)

$$
\begin{gathered}
S=-\left(\frac{\partial F}{\partial T}\right)_{V} \\
p=-\left(\frac{\partial F}{\partial V}\right)_{T} \\
\left(\frac{\partial S}{\partial V}\right)_{T}=-\frac{\partial^{2} F}{\partial V \partial T}=-\frac{\partial^{2} F}{\partial T \partial V}=\left(\frac{\partial p}{\partial T}\right)_{V}
\end{gathered}
$$

(b)

$$
\begin{aligned}
T_{A} & =T_{B} \\
p_{A} & =p_{B} \\
\mu_{A} & =\mu_{B}
\end{aligned}
$$

(c)

$$
k=3 \text { and } \pi=1
$$

$$
f=k-\pi+2=3-1+2=4
$$

Independent variables: T, p, and 2 different mole fractions $x_{1}=\frac{n_{1}}{n_{1}+n_{2}+n_{3}}, x_{2}=\frac{n_{2}}{n_{1}+n_{2}+n_{3}}$
Note that $x_{3}=1-x_{1}-x_{2}$, so one of the three mole fractions is not independent.
(d) The specific Gibbs free energies of the solid and liquid phases are equal.
4. A gas (NOT an ideal gas) has Helmholtz free energy

$$
F(T, V, n)=-n R T\left\{\ln T^{3 / 2}+\ln V-\ln n+1+c\right\}+n^{2} R T \frac{B(T)}{V}
$$

where c is a constant and $B(T)$ is an arbitrary function of temperature T.
(a) Find the entropy S of the gas.
(b) Find the pressure p of the gas.
(c) Find the chemical potential μ of the gas.
(d) Find C_{V}, the heat capacity at constant volume.
(e) Find the internal energy U of the gas.
(f) Find the Gibbs free energy G of the gas.
(a)

$$
\begin{gathered}
S=-\left(\frac{\partial F}{\partial T}\right)_{V, n} \\
S=n R\left\{\ln T^{3 / 2}+\ln V-\ln n+1+c\right\}+\frac{3}{2} n R-n^{2} R \frac{B(T)}{V}-n^{2} R T \frac{B^{\prime}(T)}{V}
\end{gathered}
$$

(b)

$$
\begin{gathered}
p=-\left(\frac{\partial F}{\partial V}\right)_{T, n} \\
p=\frac{n R T}{V}+\frac{n^{2} R T B(T)}{V^{2}} \\
p=\frac{n R T}{V}\left(1+\frac{n B(T)}{V}\right)
\end{gathered}
$$

(c)

$$
\begin{gathered}
\mu=\left(\frac{\partial F}{\partial n}\right)_{T, V} \\
\mu=-R T\left\{\ln T^{3 / 2}+\ln V-\ln n+1+c\right\}+R T+2 n R T \frac{B(T)}{V} \\
\mu=-R T\left\{\ln T^{3 / 2}+\ln V-\ln n+c\right\}+2 n R T \frac{B(T)}{V}
\end{gathered}
$$

(d)

$$
\begin{gathered}
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V, n} \\
\left(\frac{\partial S}{\partial T}\right)_{V, n}=\frac{3 n R}{2 T}-2 n^{2} R \frac{B^{\prime}(T)}{V}-n^{2} R T \frac{B^{\prime \prime}(T)}{V} \\
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V, n}=\frac{3}{2} n R-2 n^{2} R T \frac{B^{\prime}(T)}{V}-n^{2} R T^{2} \frac{B^{\prime \prime}(T)}{V} \\
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, n}
\end{gathered}
$$

(e)

$$
\begin{gathered}
U=F+T S \\
U=\frac{3}{2} n R T-n^{2} R T^{2} \frac{B^{\prime}(T)}{V}
\end{gathered}
$$

(f)

$$
\begin{gathered}
G=F+p V \\
G=-n R T\left\{\ln T^{3 / 2}+\ln V-\ln n+1+c\right\}+n^{2} R T \frac{B(T)}{V}+n R T+\frac{n^{2} R T B(T)}{V} \\
G=-n R T\left\{\ln T^{3 / 2}+\ln V-\ln n+c\right\}+2 n^{2} R T \frac{B(T)}{V} \\
G=\mu n
\end{gathered}
$$

