PHYSICS 140A MIDTERM EXAM 2

Tuesday November 10, 2009

$$T \ dS = C_V \ dT + T \frac{\beta}{\kappa} \ dV$$
$$T \ dS = C_p \ dT - VT \ \beta \ dp$$
$$T \ dS = C_V \frac{\kappa}{\beta} \ dp + \frac{C_p}{\beta V} \ dV$$

1. In this problem, we consider 3 heat engines. The 3 cycles of the working substance are drawn in the S-T plane below. Cycle 1 is ABEHA; cycle 2 is ABCDEHA; and cycle 3 is ABEFGHA. Assume all 3 cycles are reversible. Also, assume T'' < T' < T and S'' < S' < S.

(a) What is the efficiency η_1 of heat engine 1?

(b) What is the efficiency η_2 of heat engine 2?

- (c) What is the efficiency η_3 of heat engine 3?
- (d) Compare the 3 efficiencies η_1 , η_2 and η_3 .

(e) Since the cycles are reversible, we can consider the combination consisting of cycle 3 and the reverse of cycle 1. What is the efficiency η of this new cycle? What can one say about the efficiencies η_1 , η_3 and η relative to one another?

(a)

$$\eta_1 = 1 - \frac{T}{T}$$

(b)
$$\eta_2 = 1 - \frac{T'}{T}$$

(c)
$$\eta_3 = 1 - \frac{T^{\prime\prime}}{T}$$

(d)
$$n_3 > n_1 =$$

(e) n = 1

$$\eta = 1 - \frac{T''}{T'}$$
$$\eta_3 > \eta_1$$
$$\eta_3 > \eta$$

 η_2

One cannot determine whether η_1 or η is larger without more information about relative sizes of ratios T'/Tand T''/T' 2. Consider the reversible, closed cycle of an ideal gas, which consists of

- (i) an adiabatic expansion from state A to state B
- (ii) an isobaric compression from state B to state C
- (iii) an isochoric transformation from state C to state A

The cycle is drawn in the V-p plane below. The coordinates of states A, B and C are (V_A, p_A) , (V_B, p_B) , and (V_A, p_B) , respectively. Assume that the heat capacity of the ideal gas at constant volume is $C_V = \alpha nR$, for α some constant.

(a) Compute the change in entropy S for each transformation of the cycle. (Compute S_{BA} , S_{CB} and S_{AC} .) Check your result by verifying that the total change in entropy around the closed cycle is what you expect.

(b) Compute the heat Q for each transformation of the cycle. (Compute Q_{BA} , Q_{CB} and Q_{AC} .) What is the total heat Q_{TOT} for the cycle?

(c) Compute the work W for each transformation of the cycle. (Compute W_{BA} , W_{CB} and W_{AC} .) What is the total work W_{TOT} for the cycle?

(d) Compare Q_{TOT} and W_{TOT} ? What do you conclude about the change in internal energy U for the cycle?

(a)

$$T \ dS = C_V \frac{\kappa}{\beta} \ dp + \frac{C_p}{\beta V} \ dV$$

For ideal gas, $C_V = \alpha n R$, $C_p = (\alpha + 1)nR$, $\beta = \frac{1}{T}$, $\kappa = \frac{1}{p}$, pV = nRT.

$$T \ dS = \alpha V \ dp + (\alpha + 1)p \ dV$$

$$dS = \alpha nR \frac{dp}{p} + (\alpha + 1)nR \frac{dV}{V}$$
$$S_{BA} = 0$$
$$S_{CB} = (\alpha + 1) nR \ln\left(\frac{V_A}{V_B}\right)$$
$$S_{AC} = \alpha nR \ln\left(\frac{p_A}{p_B}\right)$$

$$S_{\text{TOT}} = (\alpha + 1) \ nR \ \ln\left(\frac{V_A}{V_B}\right) + \alpha \ nR \ \ln\left(\frac{p_A}{p_B}\right)$$

 $A \to B$ is an adiabatic expansion, so

$$p_A V_A^{\gamma} = p_B V_B^{\gamma}$$
$$\frac{p_A}{p_B} = \left(\frac{V_B}{V_A}\right)^{\frac{\alpha+1}{\alpha}}$$

Thus,

$$S_{\text{TOT}} = (\alpha + 1) \ nR \ \ln\left(\frac{V_A}{V_B}\right) + \alpha \ nR \ \ln\left(\frac{V_B}{V_A}\right)^{\frac{\alpha+1}{\alpha}} = 0$$

as expected.

(b)

$$dQ_{\rm rev} = T \ dS = \alpha V \ dp + (\alpha + 1)p \ dV$$

$$Q_{BA} = 0$$

for adiabatic transformation.

$$Q_{CB} = (\alpha + 1) \ p_B \int_{V_B}^{V_A} dV = (\alpha + 1) \ p_B (V_A - V_B) < 0$$
$$Q_{AC} = \alpha V_A \int_{p_B}^{p_A} dp = \alpha V_A (p_A - p_B) > 0$$
$$Q_{\text{TOT}} = (\alpha + 1) \ p_B (V_A - V_B) + \alpha V_A (p_A - p_B)$$

()		
-----	--	--

$$dW_{\rm rev} = pdV$$

$$W_{BA} = \frac{1}{(1-\gamma)} \left(p_B V_B - p_A V_A \right) = \alpha \left(p_A V_A - p_B V_B \right) > 0$$
since $\gamma = \frac{\alpha+1}{\alpha} \Rightarrow \frac{1}{1-\gamma} = -\alpha$

$$W_{CB} = p_B \left(V_A - V_B \right)$$

$$W_{AC} = 0$$

$$W_{\rm TOT} = \alpha p_A V_A - (\alpha+1) p_B V_B + p_B V_A$$

(d)

$$Q_{\rm TOT} = W_{\rm TOT}$$

so $U_{\rm TOT}=0$ for the closed cycle as expected.

3. Short problems.

(a) Prove for a general thermodynamic system that

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V.$$

(b) If two thermodynamic systems A and B are in thermodynamic equilibrium, what do you know about them?

(c) A liquid consists of a mixture of 3 different liquids in thermodynamic equilibrium. How many independent variables are required to describe the system? List the independent variables.

(d) The solid and liquid phases of a given substance are in thermodynamic equilibrium. What do you know about the specific Gibbs free energies of the solid and the liquid?

(a)

$$\begin{split} S &= -\left(\frac{\partial F}{\partial T}\right)_V \\ p &= -\left(\frac{\partial F}{\partial V}\right)_T \\ \left(\frac{\partial S}{\partial V}\right)_T &= -\frac{\partial^2 F}{\partial V \partial T} = -\frac{\partial^2 F}{\partial T \partial V} = \left(\frac{\partial p}{\partial T}\right)_V \end{split}$$

(b)

(d)

$$T_A = T_B$$
$$p_A = p_B$$
$$\mu_A = \mu_B$$

(c) k = 3 and $\pi = 1$ $f = k - \pi + 2 = 3 - 1 + 2 = 4$

Independent variables: T, p, and 2 different mole fractions $x_1 = \frac{n_1}{n_1 + n_2 + n_3}$, $x_2 = \frac{n_2}{n_1 + n_2 + n_3}$ Note that $x_3 = 1 - x_1 - x_2$, so one of the three mole fractions is not independent.

The specific Gibbs free energies of the solid and liquid phases are equal.

4. A gas (NOT an ideal gas) has Helmholtz free energy

$$F(T, V, n) = -nRT \left\{ \ln T^{3/2} + \ln V - \ln n + 1 + c \right\} + n^2 RT \frac{B(T)}{V}$$

where c is a constant and B(T) is an arbitrary function of temperature T.

- (a) Find the entropy S of the gas.
- (b) Find the pressure p of the gas.
- (c) Find the chemical potential μ of the gas.
- (d) Find C_V , the heat capacity at constant volume.
- (e) Find the internal energy U of the gas.
- (f) Find the Gibbs free energy G of the gas.

 $S = -\left(\frac{\partial F}{\partial T}\right)_{V,n}$ $S = nR\left\{\ln T^{3/2} + \ln V - \ln n + 1 + c\right\} + \frac{3}{2}nR - n^2R\frac{B(T)}{V} - n^2RT\frac{B'(T)}{V}$

(b)

(a)

$$p = -\left(\frac{\partial F}{\partial V}\right)_{T,n}$$
$$p = \frac{nRT}{V} + \frac{n^2 RTB(T)}{V^2}$$
$$p = \frac{nRT}{V} \left(1 + \frac{nB(T)}{V}\right)$$

(c)

$$\mu = \left(\frac{\partial F}{\partial n}\right)_{T,V}$$
$$\mu = -RT\left\{\ln T^{3/2} + \ln V - \ln n + 1 + c\right\} + RT + 2nRT\frac{B(T)}{V}$$
$$\mu = -RT\left\{\ln T^{3/2} + \ln V - \ln n + c\right\} + 2nRT\frac{B(T)}{V}$$

(d)

$$C_{V} = T \left(\frac{\partial S}{\partial T}\right)_{V,n}$$
$$\left(\frac{\partial S}{\partial T}\right)_{V,n} = \frac{3nR}{2T} - 2n^{2}R\frac{B'(T)}{V} - n^{2}RT\frac{B''(T)}{V}$$
$$C_{V} = T \left(\frac{\partial S}{\partial T}\right)_{V,n} = \frac{3}{2}nR - 2n^{2}RT\frac{B'(T)}{V} - n^{2}RT^{2}\frac{B''(T)}{V}$$
$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V,n}$$

$$U = F + TS$$
$$U = \frac{3}{2}nRT - n^2RT^2\frac{B'(T)}{V}$$

(f)

$$\begin{split} G &= F + pV \\ G &= -nRT \left\{ \ln T^{3/2} + \ln V - \ln n + 1 + c \right\} + n^2 RT \frac{B(T)}{V} + nRT + \frac{n^2 RTB(T)}{V} \\ G &= -nRT \left\{ \ln T^{3/2} + \ln V - \ln n + c \right\} + 2n^2 RT \frac{B(T)}{V} \\ G &= \mu n \end{split}$$