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Preface

This text grew out of the need to teach real (but practical and useful) linear
algebra to students with a wide range of backgrounds, desires and goals. It
is meant to provide a solid foundation in modern linear algebra as used by
mathematicians, physicists and engineers. While anyone reading this book has
probably had at least a passing exposure to the concepts of vector spaces and
matrices, we do not assume any prior rigorous coursework on the subject. In
the sense that the present text is a beginning treatment of linear algebra, it is
admittedly not an extremely elementary treatment, and is probably best suited
for an upper division course at most American universities. In other words,
we assume the student has had at least three semesters of calculus, and hence
possesses a certain amount of that intangible quantity called “mathematical
maturity.”

This book is not is a text on “applied linear algebra” or numerical methods.
We feel that it is impossible to cover adequately in a single (or even two) semester
course all of the linear algebra theory that students should know nowadays, as
well as numerical methods. To try to cover both does a disservice to both. It is
somewhat like trying to teach linear algebra and differential equations in a single
course – in our experience the students end up not knowing either subject very
well. We realize that there are only so many courses that the student has the
time to take, but it is better to have a firm understanding of the basics rather
than a cursory overview of many topics. If the student learns the foundations
well, then specializing to systems of differential equations or other numerical
techniques should be an easy transition.

As we just stated, it is our belief that many of the newer books on linear
algebra try to cover too much material in the sense that they treat both theory
as well as numerous applications. Unfortunately, the applications themselves
aren’t covered in sufficient detail for the student to learn them, and they may
lie in a subject far removed from the interests of any one particular student. The
net result is that the various applications become somewhat of a waste of time,
and amount to blindly plugging into equations. Furthermore, covering these ap-
plications detracts from the amount of time necessary to cover the foundational
material, all the more important since linear algebra is rarely more than a one
semester course. As a result, most students finish the semester without having a
real understanding of the fundamentals, and don’t really understand how linear
algebra aids in numerical calculations. Our opinion is that it is far better to
thoroughly cover the fundamentals, because this then enables the student to
later pick up a book on a more specialized subject or application and already
understand the underlying theory.

For example, physics students learn about Clebsch-Gordon coefficients when
studying the addition of angular momentum in quantum mechanics courses.
This gives the impression that Clebsch-Gordon coefficients are somehow unique
to quantum mechanics, whereas in reality they are simply the entries in the
unitary transition matrix that represents a change of basis in a finite-dimensional
space. Understanding this makes it far easier to grasp the concepts of just
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what is going on. Another example is the diagonalization of the inertia tensor
in classical mechanics. The student should realize that finding the principal
moments and principal axes of a solid object is just a straightforward application
of finding the eigenvalues and eigenvectors of a real symmetric matrix.

The point we are trying to emphasize is that the student that understands
the general mathematical framework will see much more clearly what is really
going on in applications that are covered in many varied courses in engineering,
physics and mathematics. By understanding the underlying mathematics thor-
oughly, it will make it much easier for the student to see how many apparently
unrelated topics are in fact completely equivalent problems in different guises.

There are a number of ways in which this text differs from most, if not
all, other linear algebra books on the market. We begin in Chapter 1 with
a treatment of vector spaces rather than matrices, and there are at least two
reasons for this. First, the concept of a vector space is used in many courses
much more than the concept of a matrix is used, and the student will likely need
to understand vector spaces as used in these other courses early in the semester.
And second, various properties of matrices (such as the rank) developed in
Chapter 2 are based on vector spaces. It seems to us that it is better to treat
matrices after the student learns about vector spaces, and not have to jump
back and forth between the topics. It is in Chapter 1 that we treat both the
direct sum of vector spaces and define general inner product spaces. We have
found that students don’t have a problem with the elementary “dot product”
that they learned in high school, but the concept of an abstract inner product
causes a lot of confusion, as does even the more general bracket notation for the
dot product.

The first really major difference is in our treatment of determinants given in
Chapter 3. While definitely useful in certain situations, determinants in and of
themselves aren’t as important as they once were. However, by developing them
from the standpoint of permutations using the Levi-Civita symbol, the student
gains an extremely important calculational tool that appears in a wide variety
of circumstances. The ability to work with this notation greatly facilitates
an understanding of much of modern differential geometry, which now finds
applications in engineering as well as many topics in modern physics, such as
general relativity, quantum gravity and strings. Understanding this formalism
will be particularly beneficial to those students who go on to graduate school in
engineering or the physical sciences.

The second major difference is related to the first. In Chapter 8 we include
a reasonably complete treatment of the fundamentals of multilinear mappings,
tensors and exterior forms. While this is usually treated in books on differential
geometry, it is clear that the underlying fundamentals do not depend on the
concept of a manifold. As a result, after learning what is in this book, the
student should have no trouble specializing to the case of tangent spaces and
differential forms. And even without the more advanced applications of differen-
tial geometry, the basic concept of a tensor is used not only in classical physics
(for example, the inertia tensor and the electromagnetic field tensor), but also
in engineering (where second rank tensors are frequently called “dyadics.”).



iii

In Chapter 8 we also give a reasonably complete treatment of the volume of a
parallelepiped in Rn, and how this volume transforms under linear transforma-
tions. This also leads to the rather abstract concept of “orientation” which we
try to motivate and explain in great detail. The chapter ends with a discussion
of the metric tensor, and shows how the usual vector gradient is related to the
differential of a function, working out the case of spherical polar coordinates in
detail.

Otherwise, most of the subjects we treat are fairly standard, although our
treatment is somewhat more detailed than most. Chapter 4 contains a careful
but practical treatment of linear transformations and their matrix representa-
tions. We have tried to emphasize that the ith column of a matrix representa-
tion is just the image of the ith basis vector. And of course this then leads to
a discussion of how the matrix representations change under a change of basis.

In Chapter 5 we give an overview of polynomials and their roots, emphasiz-
ing the distinction between algebraic and geometric multiplicities. From there
we proceed to our treatment of eigenvalues and eigenvectors. Because they are
so important in many applications, we give a careful discussion of invariant sub-
spaces, and show how diagonalizing a linear transformation amounts to finding
a new basis in which the matrix representation of a linear operator is the di-
rect sum of the invariant eigenspaces. This material is directly applicable to
physical applications such as quantum mechanics as well as more mathematical
applications such as the representations of finite groups. Indeed, the famous
Schur’s lemmas are nothing more than very simple applications of the concept
of invariant subspaces. And also in this chapter, we prove the extremely useful
result (the Schur canonical form) that any complex matrix can be put into up-
per triangular form. This also easily leads to a proof that any normal matrix
can be diagonalized by a unitary transformation.

Linear operators are treated in Chapter 6 which begins with a careful de-
velopment of the operator adjoint. From this point, we give a more detailed
treatment of normal operators in general, and hermitian (or orthogonal) oper-
ators in particular. We also discuss projections, the spectral theorem, positive
operators, and the matrix exponential series.

Bilinear forms are covered in Chapter 7, and much of the chapter deals
with the diagonalization of bilinear forms. In fact, we treat the simultaneous
diagonalization of two real symmetric bilinear forms in quite a bit of detail.
This is an interesting subject because there is more than one way to treat the
problem, and this ultimately leads to a much better understanding of all of
the approaches as well as clarifying what was really done when we covered the
standard eigenvalue problem. As a specific example, we give a thorough and
detailed treatment of coupled small oscillations. We develop the theory from
the conventional standpoint of differential equations (Lagrange’s equations for
coupled oscillators), and then show how this is really an eigenvalue problem
where simultaneously diagonalizing the kinetic and potential energy terms in
the Lagrangian gives the general solution as a linear combination of eigenvectors
with coefficients that are just the normal coordinates of the system.

Finally, we include an appendix that provides an overview of mappings,
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the real and complex numbers, and the process of mathematical induction.
While most students should be familiar with this material, it is there as an easy
reference for those who may need it.
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Chapter 1

Vector Spaces

Linear algebra is essentially a study of various transformation properties de-
fined on a vector space, and hence it is only natural that we carefully define
vector spaces. This chapter therefore presents a fairly rigorous development of
(finite-dimensional) vector spaces, and a discussion of their most important fun-
damental properties. While many linear algebra texts begin with a treatment
of matrices, we choose to start with vectors and vector spaces. Our reason for
this is that any discussion of matrices quickly leads to defining row and col-
umn spaces, and hence an understanding of vector spaces is needed in order to
properly characterize matrices.

1.1 Motivation

Basically, the general definition of a vector space is simply an axiomatization of
the elementary properties of ordinary three-dimensional Euclidean space that
you should already be familiar with. In order to motivate this definition we
consider motion in the two-dimensional plane. Let us start at what we call the
‘origin,’ and let the positive x-axis be straight ahead and the y-axis to our left. If
we walk three feet straight ahead and then two feet to the left, we can represent
this motion graphically as follows. Let ~r1 represent our forward motion, let ~r2
represent our turn to the left, and let ~r represent our net movement from the
origin to the end of our walk. Graphically we may display this as shown below.

3

1

2

1 2

x

y

~r

~r1

~r2

θ

We describe each segment of our walk by a pair of numbers (x, y) that
describes how far we travel in each direction relative to the starting point of

1
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each segment. Using this notation we have the vectors ~r1 = (3, 0) and ~r2 =
(0, 2), and our net motion can be described by the vector ~r = (3, 2). The
number 3 is called the x-coordinate of ~r, and the number 2 is called the y-
coordinate. Since this is only motivation, we don’t have to be too careful to
define all of our manipulations precisely, and we note that we can obtain this net
motion by adding the displacements in the x and y directions independently:
~r1 + ~r2 = (3, 0) + (0, 2) = (3, 2) = ~r. In other words, ~r = ~r1 + ~r2.

The distance we end up from the origin is the length (or norm) of the vector
and is just

√
32 + 22 =

√
13 as given by the Pythagorean theorem. However,

in order to describe our exact location, knowing our distance from the origin
obviously isn’t enough — this would only specify that we are somewhere on a
circle of radius

√
13. In order to precisely locate our position, we also need to

give a direction relative to some reference direction which we take to be the
x-axis. Thus our direction is given by the angle θ defined by tan θ = 2/3. This
is why in elementary courses a vector is sometimes loosely described by saying
it is an object that has length and direction.

Now suppose we take another walk from our present position. We travel
first a distance in the x direction given by ~r3 = (1, 0) and then a distance in the
y direction given by ~r4 = (0, 3). Relative to the start of this trip we are now at

the location ~r′ = ~r3 + ~r4 = (1, 3), and we have the following total path taken:

1

2

1 2

3

4

4

5

3

x

y

~r

~r1

~r2

θ

~r3

~r4

~r′~R

Observe that our final position is given by the vector ~R = (4, 5) = (3+1, 2+3) =

(3, 2) + (1, 3) = ~r + ~r′, and hence we see that arbitrary vectors in the plane
can be added together to obtain another vector in the plane. It should also
be clear that if we repeat the entire trip again, then we will be at the point
~R + ~R = 2 ~R = (3, 0) + (0, 2) + (1, 0) + (0, 3) + (3, 0) + (0, 2) + (1, 0) + (0, 3) =

2[(3, 0)+(0, 2)]+2[(1, 0)+(0, 3)] = 2~r+2~r′ and hence 2~R = 2(~r+ ~r′) = 2~r+2~r′.
In summary, vectors can be added together to obtain another vector, and

multiplying the sum of two vectors by a number (called a scalar) is just the
sum of the individual vectors each multiplied by the scalar. In this text, almost
all of the scalars we shall deal with will be either elements of the real number
field R or the complex number field C. We will refer to these two fields by the
generic symbol F . Essentially, we think of a field as a set of ‘numbers’ that we
can add and multiply together to obtain another ‘number’ (closure) in a way
such that for all a, b, c ∈ F we have (a+ b) + c = a+ (b + c) and (ab)c = a(bc)
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(associativity), a+ b = b + a and ab = ba (commutativity), a(b + c) = ab + ac
(distributivity over addition), and where every number has an additive inverse
(i.e., for each a ∈ F there exists −a ∈ F such that a + (−a) = 0 where 0 is
defined by 0 + a = a + 0 = a for all a ∈ F), and every nonzero number has a
multiplicative inverse (i.e., for every nonzero a ∈ F there exists a−1 ∈ F such
that aa−1 = a−1a = 1, where 1 ∈ F is defined by 1a = a1 = a). In other words,
a field behaves the way we are used to the real numbers behaving. However,
fields are much more general than R and C, and the interested reader may
wish to read some of the books listed in the bibliography for a more thorough
treatment of fields in general.

With this simple picture as motivation, we now turn to a careful definition
of vector spaces.

1.2 Definitions

A nonempty set V is said to be a vector space over a field F if: (i) there
exists an operation called addition that associates to each pair x, y ∈ V a new
vector x + y ∈ V called the sum of x and y; (ii) there exists an operation
called scalar multiplication that associates to each a ∈ F and x ∈ V a new
vector ax ∈ V called the product of a and x; (iii) these operations satisfy the
following axioms:

(VS1) x+ y = y + x for all x, y ∈ V .
(VS2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ V .
(VS3) There exists an element 0 ∈ V such that 0 + x = x for all x ∈ V .
(VS4) For all x ∈ V there exists an element −x ∈ V such that x+(−x) = 0.
(VS5) a(x+ y) = ax+ ay for all x, y ∈ V and all a ∈ F .
(VS6) (a+ b)x = ax+ bx for all x ∈ V and all a, b ∈ F .
(VS7) a(bx) = (ab)x for all x ∈ V and all a, b ∈ F .
(VS8) 1x = x for all x ∈ V where 1 is the (multiplicative) identity in F .

The members of V are called vectors, and the members of F are called scalars.
The vector 0 ∈ V is called the zero vector, and the vector −x is called the
negative of the vector x.

Throughout this chapter, V will always denote a vector space, and the cor-
responding field F will be understood even if it is not explicitly mentioned. If
F is the real field R, then we obtain a real vector space while if F is the
complex field C, then we obtain a complex vector space.

Example 1.1. Probably the best known example of a vector space is the set
Fn = F × · · · × F of all n-tuples (a1, . . . , an) where each ai ∈ F . (See Section
A.1 of the appendix for a discussion of the Cartesian product of sets.) To make
Fn into a vector space, we define the sum of two elements (a1, . . . , an) ∈ Fn

and (b1, . . . , bn) ∈ Fn by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)
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and scalar multiplication for any k ∈ F by

k(a1, . . . , an) = (ka1, . . . , kan).

If A = (a1, . . . , an) and B = (b1, . . . , bn), then we say that A = B if and only if
ai = bi for each i = 1, . . . , n. Defining 0 = (0, . . . , 0) and −A = (−a1, . . . ,−an)
as the identity and inverse elements respectively of Fn, the reader should have
no trouble verifying properties (VS1)–(VS8).

The most common examples of the space Fn come from considering the
fields R and C. For instance, the space R3 is (with the Pythagorean notion
of distance defined on it) just the ordinary three-dimensional Euclidean space
(x, y, z) of elementary physics and geometry. Furthermore, it is standard to
consider vectors in Fn as columns. For example, the vector X = (x, y, z) ∈ R3

should really be written as

X =



x
y
z




but it is typographically easier to write them as rows, and we will continue with
this practice unless we need to explicitly show their column structure.

We shall soon see that any finite-dimensional vector space V over a field
F is essentially the same as the space Fn. In particular, we will prove that
V is isomorphic to Fn for some positive integer n. (The term “isomorphic”
will be defined carefully in the next section. But to put it briefly, two sets are
isomorphic if there is a one-to-one correspondence between them.)

Example 1.2. Another very useful vector space is the space F [x] of all poly-
nomials in the indeterminate x over the field F . In other words, every element
in F [x] is a polynomial of the form a0 + a1x + · · · + anx

n where each ai ∈ F
and n is any positive integer (called the degree of the polynomial). Addition
and scalar multiplication are defined in the obvious way by

n∑

i=0

aix
i +

n∑

i=0

bix
i =

n∑

i=0

(ai + bi)x
i

and

c

n∑

i=0

aix
i =

n∑

i=0

(cai)x
i

(If we wish to add together two polynomials
∑n

i=0 aix
i and

∑m
i=0 bix

i where
m > n, then we simply define ai = 0 for i = n+ 1, . . . ,m.)

Since we have not yet defined the multiplication of vectors, we ignore the
fact that polynomials can be multiplied together. It should be clear that F [x]
does indeed form a vector space.
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Example 1.3. We can also view the field C as a vector space over R. In fact,
we may generally consider the set of n-tuples (z1, . . . , zn), where each zi ∈ C, to
be a vector space over R by defining addition and scalar multiplication (by real
numbers) as in Example 1.1. We thus obtain a real vector space that is quite
distinct from the space Cn (in which we can multiply by complex numbers).

We now prove several useful properties of vector spaces.

Theorem 1.1. Let V be a vector space over F . Then for all x, y, z ∈ V and
every a ∈ F we have

(i) x+ y = z + y implies x = z.
(ii) ax = 0 if and only if a = 0 or x = 0.
(iii) −(ax) = (−a)x = a(−x).

Proof. We first remark that there is a certain amount of sloppiness in our no-
tation since the symbol 0 is used both as an element of V and as an element
of F . However, there should never be any confusion as to which of these sets 0
lies in, and we will continue with this common practice.

(i) If x+ y = z + y, then

(x + y) + (−y) = (z + y) + (−y)

implies

x+ (y + (−y)) = z + (y + (−y))
which implies x + 0 = z + 0 and hence x = z. This is frequently called the
(right) cancellation law. It is also clear that x+ y = x+ z implies y = z (left
cancellation).

(ii) If a = 0, then

0x = (0 + 0)x = 0x+ 0x.

But 0x = 0 + 0x so that 0 + 0x = 0x + 0x, and hence (i) implies 0 = 0x. If
x = 0, then

a0 = a(0 + 0) = a0 + a0.

But a0 = 0+a0 so that 0+a0 = a0+a0, and again we have 0 = a0. Conversely,
assume that ax = 0. If a 6= 0 then a−1 exists, and hence

x = 1x = (a−1a)x = a−1(ax) = a−10 = 0

by the previous paragraph.
(iii) By (VS4) we have ax+(−(ax)) = 0, whereas by (ii) and (VS6), we have

0 = 0x = (a+ (−a))x = ax+ (−a)x.
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Hence ax + (−(ax)) = ax + (−a)x implies −(ax) = (−a)x by (i). Similarly,
0 = x+ (−x) so that

0 = a0 = a(x+ (−x)) = ax+ a(−x).

Then 0 = ax+ (−(ax)) = ax+ a(−x) implies −(ax) = a(−x).

In view of this theorem, it makes sense to define subtraction in V by

x− y = x+ (−y).

It should then be clear that a vector space will also have the properties we
expect, such as a(x− y) = ax− ay, and −(x− y) = −x+ y.

If we take an arbitrary subset of vectors in a vector space then, in general,
this subset will not be a vector space itself. The reason for this is that in general,
even the addition of two vectors in the subset will not result in a vector that is
again a member of the subset. Because of this, we make the following definition.

Suppose V is a vector space over F and W ⊂ V . Then, if x, y ∈ W and
c ∈ F implies that x+ y ∈W and cx ∈W , we say that W is a subspace of V .
Indeed, if c = 0 then 0 = 0x ∈W so that 0 ∈W , and similarly −x = (−1)x ∈W
so that −x ∈ W also. It is now easy to see that W obeys (VS1)–(VS8) if V
does. It should also be clear that an equivalent way to define a subspace is to
require that cx+ y ∈W for all x, y ∈ W and all c ∈ F .

It is extremely important to realize that any subspace always contains the
zero vector. As a simple example, consider a line W through the origin of the
usual xy-plane. Then the sum of any two points lying in W will still lie in W .
But if we consider a line W̃ that does not pass through the origin, then the sum
of two points on W̃ will not lie on W̃ . Thus the subset W is a subspace of V
but W̃ is not.

W

fW

If W is a subspace of V and W 6= V , then W is called a proper subspace
of V . In particular, W = {0} is a subspace of V , but it is not very interesting,
and hence from now on we assume that any proper subspace contains more than
simply the zero vector. (One sometimes refers to {0} and V as trivial subspaces
of V .)
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Example 1.4. Consider the elementary Euclidean space R3 consisting of all
triples (x, y, z) of real scalars. If we restrict our consideration to those vectors
of the form (x, y, 0), then we obtain a subspace of R3. In fact, this subspace
is essentially just the space R2 which we think of as the usual xy-plane. We
leave it as a simple exercise for the reader to show that this does indeed define
a subspace of R3. Note that any other plane parallel to the xy-plane is not a
subspace (why?).

Example 1.5. Let V be a vector space over F , and let S = {x1, . . . , xn} be
any n vectors in V . Given any set of scalars {a1, . . . , an}, the vector

n∑

i=1

aixi = a1x1 + · · ·+ anxn

is called a linear combination of the n vectors xi ∈ S, and the set S of all
such linear combinations of elements in S is called the subspace spanned (or
generated) by S. Indeed, if A =

∑n
i=1 aixi and B =

∑n
i=1 bixi are vectors in

S and c ∈ F , then both

A+B =
n∑

i=1

(ai + bi)xi

and

cA =

n∑

i=1

(cai)xi

are vectors in S . Hence S is a subspace of V . S is sometimes called the
linear span of S, and we say that S spans S .

In view of this example, we might ask whether or not every vector space is
in fact the linear span of some set of vectors in the space. In the next section we
shall show that this leads naturally to the concept of the dimension of a vector
space.

Exercises

1. Verify axioms (VS1)–(VS8) for the space Fn.

2. Let S be any set, and consider the collection V of all mappings f of S into
a field F . For any f, g ∈ V and α ∈ F , we define (f + g)(x) = f(x)+ g(x)
and (αf)(x) = αf(x) for every x ∈ S. Show that V together with these
operations defines a vector space over F .
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3. Consider the two element set {x, y} with addition and scalar multiplication
by c ∈ F defined by

x+ x = x x+ y = y + x = y y + y = x cx = x cy = x.

Does this define a vector space over F ?

4. Let V be a vector space over F . Show that if x ∈ V and a, b ∈ F with
a 6= b, then ax = bx implies x = 0.

5. Let (V,+, ⋆) be a real vector space with the addition operation denoted
by + and the scalar multiplication operation denoted by ⋆. Let v0 ∈ V be
fixed. We define a new addition operation ⊕ on V by x⊕ y = x+ y + v0,
and a new scalar multiplication operation ⊛ by α⊛x = α⋆x+(α−1)⋆v0.
Show that (V,⊕,⊛) defines a real vector space.

6. Let F [R] denote the space of all real-valued functions defined on R with
addition and scalar multiplication defined as in Exercise 2. In other words,
f ∈ F [R] means f : R→ R.

(a) Let C[R] denote the set of all continuous real-valued functions defined
on R. Show that C[R] is a subspace of F [R].

(b) Repeat part (a) with the set D[R] of all such differentiable functions.

7. Referring to the previous exercise, let Dn[R] denote the set of all n-times
differentiable functions from R to R. Consider the subset V of Dn[R] given
by the set of all functions that satisfy the differential equation

f (n)(x) + an−1f
(n−1)(x) + an−2f

(n−2)(x) + · · ·+ a1f
(1)(x) + a0f(x) = 0

where f (i)(x) denotes the ith derivative of f(x) and ai is a fixed real
constant. Show that V is a vector space.

8. Let V = R3. In each of the following cases, determine whether or not the
subset W is a subspace of V :

(a) W = {(x, y, 0) : x, y ∈ R} (see Example 1.4) .
(b) W = {(x, y, z) ∈ R3 : z ≥ 0} .
(c) W = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} .
(d) W = {(x, y, z) ∈ R3 : x+ y + z = 0} .
(e) W = {(x, y, z) ∈ R3 : x, y, z ∈ Q} .
(f) W = {(x, y, z) ∈ R3 − {0, 0, 0}} .

9. Let S be a nonempty subset of a vector space V . In Example 1.5 we
showed that the linear span S of S is a subspace of V . Show that if W
is any other subspace of V containing S, then S ⊂W .

10. (a) Determine whether or not the intersection
⋂n

i=1Wi of a finite number
of subspaces Wi of a vector space V is a subspace of V .

(b) Determine whether or not the union
⋃n

i=1Wi of a finite number of
subspaces Wi of a space V is a subspace of V .
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11. Let W1 and W2 be subspaces of a space V such that W1 ∪W2 is also a
subspace of V . Show that one of the Wi is subset of the other.

12. Let W1 and W2 be subspaces of a vector space V . If, for every v ∈ V we
have v = w1+w2 where wi ∈Wi, then we write V = W1+W2 and say that
V is the sum of the subspaces Wi. If V = W1 +W2 and W1 ∩W2 = {0},
show that every v ∈ V has a unique representation v = w1 + w2 with
wi ∈ Wi.

13. Let V be the set of all (infinite) real sequences. In other words, any v ∈ V
is of the form (x1, x2, x3, . . . ) where each xi ∈ R. If we define the addition
and scalar multiplication of distinct sequences componentwise exactly as
in Example 1.1, then it should be clear that V is a vector space over R.
Determine whether or not each of the following subsets of V in fact forms
a subspace of V :

(a) All sequences containing only a finite number of nonzero terms.
(b) All sequences of the form {x1, x2, . . . , xN , 0, 0, . . .} where N is fixed.
(c) All decreasing sequences, i.e., sequences where xk+1 ≤ xk for each

k = 1, 2, . . . .
(d) All convergent sequences, i.e., sequences for which limk→∞ xk ex-

ists.

14. For which value of k will the vector v = (1,−2, k) ∈ R3 be a linear
combination of the vectors x1 = (3, 0,−2) and x2 = (2,−1,−5)?

15. Write the vector v = (1,−2, 5) as a linear combination of the vectors
x1 = (1, 1, 1), x2 = (1, 2, 3) and x3 = (2,−1, 1).

1.3 Linear Independence and Bases

Let x1, . . . , xn be vectors in a vector space V . We say that these vectors are
linearly dependent if there exist scalars a1, . . . , an ∈ F , not all equal to 0,
such that

a1x1 + a2x2 + · · ·+ anxn =

n∑

i=1

aixi = 0.

The vectors xi are said to be linearly independent if they are not linearly de-
pendent. In other words, if {x1, . . . , xn} is linearly independent, then

∑n
i=1 aixi =

0 implies that a1 = · · · = an = 0. From these definitions, it follows that any
set containing a linearly dependent subset must be linearly dependent, and any
subset of a linearly independent set is necessarily linearly independent.

It is important to realize that a set of vectors may be linearly dependent with
respect to one field, but independent with respect to another. For example, the
set C of all complex numbers is itself a vector space over either the field of real
numbers or over the field of complex numbers. However, the set {x1 = 1, x2 =
i} is linearly independent if F = R, but linearly dependent if F = C since
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ix1 + (−1)x2 = 0. We will always assume that a linear combination is taken
with respect to the same field that V is defined over.

As a means of simplifying our notation, we will frequently leave off the limits
of a sum when there is no possibility of ambiguity. Thus, if we are considering
the set {x1, . . . , xn}, then a linear combination of the xi will often be written
as
∑
aixi rather than

∑n
i=1 aixi. In addition, we will often denote a collection

{x1, . . . , xn} of vectors simply by {xi}.

Example 1.6. Consider the three vectors in R3 given by

e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

Using the definitions of addition and scalar multiplication given in Example
1.1, it is easy to see that these three vectors are linearly independent. This is
because the zero vector in R3 is given by (0, 0, 0), and hence

a1e1 + a2e2 + a3e3 = (a1, a2, a3) = (0, 0, 0)

implies that a1 = a2 = a3 = 0.
On the other hand, the vectors

x1 = (1, 0, 0)

x2 = (0, 1, 2)

x3 = (1, 3, 6)

are linearly dependent since x3 = x1 + 3x2.

From a practical point of view, to say that a set of vectors is linearly depen-
dent means that one of them is a linear combination of the rest. The formal
proof of this fact is given in the following elementary result.

Theorem 1.2. A finite set S of vectors in a space V is linearly dependent if
and only if one vector in the set is a linear combination of the others. In other
words, S is linearly dependent if one vector in S is in the subspace spanned by
the remaining vectors in S.

Proof. If S = {x1, . . . , xn} is a linearly dependent subset of V , then

a1x1 + a2x2 + · · ·+ anxn = 0

for some set of scalars a1, . . . , an ∈ F not all equal to 0. Suppose, to be specific,
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that a1 6= 0. Then we may write

x1 = −(a2/a1)x2 − · · · − (an/a1)xn

which shows that x1 is a linear combination of x2, . . . , xn.
Conversely, if x1 =

∑
i6=1 aixi then

x1 + (−a2)x2 + · · ·+ (−an)xn = 0

which shows that the collection {x1, . . . , xn} is linearly dependent.

It is important to realize that no linearly independent set of vectors can
contain the zero vector. To see this, note that if S = {x1, . . . , xn} and x1 = 0,
then ax1 + 0x2 + · · · + 0xn = 0 for all a ∈ F , and hence by definition, S is a
linearly dependent set.

Theorem 1.3. Let S = {x1, . . . , xn} ⊂ V be a linearly independent set, and let
S be the linear span of S. Then every v ∈ S has a unique representation

v =

n∑

i=1

aixi

where each ai ∈ F .

Proof. By definition of S , we can always write v =
∑
aixi. As to uniqueness,

it must be shown that if we also have v =
∑
bixi, then it follows that bi = ai for

every i = 1, . . . , n. But this is easy since
∑
aixi =

∑
bixi implies

∑
(ai−bi)xi =

0, and hence ai − bi = 0 (since {xi} is linearly independent). Therefore ai = bi
for each i = 1, . . . , n.

If S is a finite subset of a vector space V such that V = S (the linear span of
S), then we say that V is finite-dimensional. However, we must define what
is meant in general by the dimension of V . If S ⊂ V is a linearly independent
set of vectors with the property that V = S , then we say that S is a basis

for V . In other words, a basis for V is a linearly independent set that spans
V . We shall see that the number of elements in a basis is what is meant by the
dimension of V . But before we can state this precisely, we must be sure that
such a number is well-defined. In other words, we must show that any basis has
the same number of elements. We prove this (see the corollary to Theorem 1.6)
in several steps.

Theorem 1.4. Let S be the linear span of S = {x1, . . . , xn} ⊂ V . If k ≤ n
and {x1, . . . , xk} is linearly independent, then there exists a linearly independent
subset of S of the form {x1, . . . , xk, xi1 , . . . , xiα

} whose linear span also equals
S .
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Proof. If k = n there is nothing left to prove, so we assume that k < n. Since
x1, . . . , xk are linearly independent, we let xj (where j > k) be the first vector
in S that is a linear combination of the preceding x1, . . . , xj−1. If no such j
exists, then take (i1, . . . , iα) = (k + 1, . . . , n). Then the set of n − 1 vectors
x1, . . . , xj−1, xj+1, . . . , xn has a linear span that must be contained in S (since
this set is just a subset of S). However, if v is any vector in S , we can write
v =

∑n
i=1 aixi where xj is just a linear combination of the first j − 1 vectors.

In other words, v is a linear combination of x1, . . . , xj−1xj+1, . . . , xn and hence
these n− 1 vectors also span S .

We now continue this process by picking out the first vector in this set of
n− 1 vectors that is a linear combination of the preceding vectors. An identical
argument shows that the linear span of this set of n − 2 vectors must also be
S . It is clear that we will eventually obtain a set {x1, . . . , xk, xi1 , . . . , xiα

}
whose linear span is still S , but in which no vector is a linear combination
of the preceding ones. This means that the set must be linearly independent
(Theorem 1.2).

Corollary 1. If V is a finite-dimensional vector space such that the set S =
{x1, . . . , xm} ⊂ V spans V , then some subset of S is a basis for V .

Proof. By Theorem 1.4, S contains a linearly independent subset that also spans
V . But this is precisely the requirement that S contain a basis for V .

Corollary 2. Let V be a finite-dimensional vector space and let {x1, . . . , xn}
be a basis for V . Then any element v ∈ V has a unique representation of the
form

v =

n∑

i=1

aixi

where each ai ∈ F .

Proof. Since {xi} is linearly independent and spans V , Theorem 1.3 shows us
that any v ∈ V may be written in the form v =

∑n
i=1 aixi where each ai ∈ F is

unique (for this particular basis).

It is important to realize that Corollary 1 asserts the existence of a finite basis
in any finite-dimensional vector space, but says nothing about the uniqueness
of this basis. In fact, there are an infinite number of possible bases for any such
space. However, by Corollary 2, once a particular basis has been chosen, then
any vector has a unique expansion in terms of this basis.
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Example 1.7. Returning to the space Fn, we see that any (a1, . . . , an) ∈ Fn

can be written as the linear combination

a1(1, 0, . . . , 0) + a2(0, 1, 0, . . . , 0) + · · ·+ an(0, . . . , 0, 1).

This means that the n vectors

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, 0, 0, . . . , 1)

span Fn. They are also linearly independent since
∑
aiei = (a1, . . . , an) = 0 if

and only if ai = 0 for all i = 1, . . . , n. The set {ei} is extremely useful, and will
be referred to as the standard basis for Fn.

This example leads us to make the following generalization. By an ordered

basis for a finite-dimensional space V , we mean a finite sequence of vectors that
is linearly independent and spans V . If the sequence x1, . . . , xn is an ordered
basis for V , then the set {x1, . . . , xn} is a basis for V . In other words, the
set {x1, . . . , xn} gives rise to n! different ordered bases. Since there is usually
nothing lost in assuming that a basis is ordered, we shall continue to assume
that {x1, . . . , xn} denotes an ordered basis unless otherwise noted.

Given any (ordered) basis {x1, . . . , xn} for V , we know that any v ∈ V
has a unique representation v =

∑n
i=1 aixi. We call the scalars a1, . . . , an the

coordinates of v relative to the (ordered) basis {x1, . . . , xn}. In particular, we
call ai the ith coordinate of v. Moreover, we now proceed to show that these
coordinates define a direct correspondence between V and Fn (or, as we shall
define it below, an isomorphism).

Let V and W be vector spaces over F . We say that a mapping φ : V → W
is a vector space homomorphism (or, as we shall call it later, a linear

transformation) if

φ(x+ y) = φ(x) + φ(y)

and

φ(ax) = aφ(x)

for all x, y ∈ V and a ∈ F . If φ is injective (i.e., one-to-one), then we say that φ
is an isomorphism, and if φ is bijective (i.e., injective and surjective, or one-
to-one and onto), that V and W are isomorphic. (If necessary, the reader may
wish to review mappings in Section A.2 of the appendix to understand some of
these terms.)

As we now show, the set of vectors x ∈ V that map into 0 ∈ W under φ
gives us some very important information about φ. To show this, we define the
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kernel of φ to be the set

Kerφ = {x ∈ V : φ(x) = 0 ∈ W}.

If x, y ∈ Kerφ and c ∈ F we have

φ(x + y) = φ(x) + φ(y) = 0

and
φ(cx) = cφ(x) = c0 = 0.

This shows that both x+ y and cx are in Kerφ, and hence Kerφ is a subspace
of V . Note also that if a = 0 and x ∈ V then

φ(0) = φ(ax) = aφ(x) = 0.

Alternatively, we could also note that

φ(x) = φ(x + 0) = φ(x) + φ(0)

and hence φ(0) = 0. Finally, we see that

0 = φ(0) = φ(x+ (−x)) = φ(x) + φ(−x)

and therefore
φ(−x) = −φ(x).

The importance of the kernel arises from the following result.

Theorem 1.5. Let φ : V → W be a vector space homomorphism. Then φ is
an isomorphism if and only if Kerφ = {0}.

Proof. If φ is injective, then the fact that φ(0) = 0 implies that we must have
Kerφ = {0}. Conversely, if Kerφ = {0} and φ(x) = φ(y), then

0 = φ(x) − φ(y) = φ(x − y)

implies that x− y = 0, or x = y.

Now let us return to the above notion of an ordered basis. For any finite-
dimensional vector space V over F and any (ordered) basis {x1, . . . , xn}, we
define a mapping φ : V → Fn by

φ(v) = φ

(
n∑

i=1

aixi

)
= (a1, . . . , an)

for each

v =

n∑

i=1

aixi ∈ V.
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Since

φ
(∑

aixi +
∑

bixi

)
= φ

(∑
(ai + bi)xi

)

= (a1 + b1, . . . , an + bn)

= (a1, . . . , an) + (b1, . . . , bn)

= φ
(∑

aixi

)
+ φ

(∑
bixi

)

and

φ(kv) = φ
(
k
∑

aixi

)
= φ

(∑
(kai)xi

)
= (ka1, . . . , kan)

= k(a1, . . . , an) = kφ(v)

we see that φ is a vector space homomorphism. Because the coordinates of any
vector are unique for a fixed basis, we see that this mapping is indeed well-
defined and one-to-one. (Alternatively, the identity element in the space Fn

is (0, . . . , 0), and the only vector that maps into this is the zero vector in V .
Hence Kerφ = {0} and φ is an isomorphism.) It is clear that φ is surjective
since, given any ordered set of scalars a1, . . . , an ∈ F , we can define the vector
v =

∑
aixi ∈ V . Therefore we have shown that V and Fn are isomorphic for

some n, where n is the number of vectors in an ordered basis for V .
If V has a basis consisting of n elements, is it possible to find another basis

consisting of m 6= n elements? Intuitively we guess not, for if this were true
then V would be isomorphic to Fm as well as to Fn, which implies that Fm

is isomorphic to Fn for m 6= n. That this is not possible should be obvious
by simply considering the projection of a point in R3 down onto the plane R2.
Any point in R2 is thus the image of an entire vertical line in R3, and hence
this projection can not possibly be an isomorphism. Nevertheless, we proceed
to prove this in detail beginning with our next theorem.

Theorem 1.6. Let {x1, . . . , xn} be a basis for V , and let {y1, . . . , ym} be linearly
independent vectors in V . Then m ≤ n.

Proof. Since {x1, . . . , xn} spans V , we may write each yi as a linear combination
of the xj . In particular, choosing ym, it follows that the set

{ym, x1, . . . , xn}

is linearly dependent (Theorem 1.2) and spans V (since the xk already do so).
Hence there must be a proper subset {ym, xi1 , . . . , xir

} with r ≤ n − 1 that
forms a basis for V (Theorem 1.4). Now this set spans V so that ym−1 is a
linear combination of this set, and hence

{ym−1, ym, xi1 , . . . , xir
}
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is linearly dependent and spans V . By Theorem 1.4 again, we can find a set
{ym−1, ym, xj1 , . . . , xjs

} with s ≤ n − 2 that is also a basis for V . Continuing
our process, we eventually obtain the set

{y2, . . . , ym, xα, xβ , . . . }

which spans V and must contain at least one of the xk (since y1 is not a linear
combination of the set {y2, . . . , ym} by hypothesis). This set was constructed
by adding m − 1 vectors yi to the original set of n vectors xk, and deleting at
least m− 1 of the xk along the way. However, we still have at least one of the
xk in our set, and hence it follows that m− 1 ≤ n− 1, or m ≤ n.

Corollary. Any two bases for a finite-dimensional vector space must consist of
the same number of elements.

Proof. Let {x1, . . . , xn} and {y1, . . . , ym} be bases for V . Since the yi are linearly
independent, Theorem 1.6 says that m ≤ n. On the other hand, the xj are
linearly independent so that n ≤ m. Therefore we must have n = m.

We now return to the proof that Fm is isomorphic to Fn if and only if
m = n. Let us first show that an isomorphism maps a basis to a basis.

Theorem 1.7. Let φ : V →W be an isomorphism of finite-dimensional vector
spaces. Then a set of vectors {φ(v1), . . . , φ(vn)} is linearly dependent in W if
and only if the set {v1, . . . , vn} is linearly dependent in V .

Proof. If the set {v1, . . . , vn} is linearly dependent, then for some set of scalars
{a1, . . . , an}, not all equal to 0, we have

∑n
i=1 aivi = 0. Applying φ to both

sides of this equation yields

0 = φ(0) = φ
(∑

aivi

)
=
∑

φ(aivi) =
∑

aiφ(vi).

But since not all of the ai are 0, this means that {φ(vi)} must be linearly
dependent.

Conversely, if φ(v1), . . . , φ(vn) are linearly dependent, then there exists a set
of scalars b1, . . . , bn not all 0 such that

∑
biφ(vi) = 0. But this means

0 =
∑

biφ(vi) =
∑

φ(bivi) = φ
(∑

bivi

)

which implies that
∑
bivi = 0 (since Kerφ = {0}). This shows that the set {vi}

is linearly dependent.
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Corollary. If φ : V → W is an isomorphism of finite-dimensional vector
spaces, then {φ(xi)} = {φ(x1), . . . , φ(xn)} is a basis for W if and only if
{xi} = {x1, . . . , xn} is a basis for V .

Proof. Since φ is an isomorphism, for any vector w ∈ W there exists a unique
v ∈ V such that φ(v) = w. If {xi} is a basis for V , then v =

∑n
i=1 aixi and

w = φ(v) = φ
(∑

aixi

)
=
∑

aiφ (xi) .

Hence the φ(xi) span W , and they are linearly independent by Theorem 1.7.
On the other hand, if {φ(xi)} is a basis for W , then there exist scalars {bi}

such that for any v ∈ V we have

φ(v) = w =
∑

biφ(xi) = φ
(∑

bixi

)
.

Since φ is an isomorphism, this implies that v =
∑
bixi, and hence {xi} spans

V . The fact that it is linearly independent follows from Theorem 1.7. This
shows that {xi} is a basis for V .

Theorem 1.8. Fn is isomorphic to Fm if and only if n = m.

Proof. If n = m the result is obvious. Now assume that Fn and Fm are iso-
morphic. We have seen in Example 1.7 that the standard basis of Fn consists
of n vectors. Since an isomorphism carries one basis onto another (corollary to
Theorem 1.7), any space isomorphic to Fn must have a basis consisting of n
vectors. Hence, by the corollary to Theorem 1.6 we must have m = n.

Corollary. If V is a finite-dimensional vector space over F , then V is isomor-
phic to Fn for a unique integer n.

Proof. It was shown following Theorem 1.5 that V is isomorphic to Fn for some
integer n, and Theorem 1.8 shows that n must be unique.

The corollary to Theorem 1.6 shows us that the number of elements in any
basis for a finite-dimensional vector space is fixed. We call this unique number
n the dimension of V over F , and we write dimV = n. Our next result agrees
with our intuition, and is quite useful in proving other theorems.

Theorem 1.9. Every subspace W of a finite-dimensional vector space V is
finite-dimensional, and dimW ≤ dimV .



18 CHAPTER 1. VECTOR SPACES

Proof. We must show that W has a basis, and that this basis contains at most
n = dimV elements. If W = {0}, then dimW = 0 ≤ n and we are done. If
W contains some x1 6= 0, then let W1 ⊂ W be the subspace spanned by x1. If
W = W1, then dimW = 1 and we are done. If W 6= W1, then there exists some
x2 ∈ W with x2 /∈ W1, and we let W2 be the subspace spanned by {x1, x2}.
Again, if W = W2, then dimW = 2. If W 6= W2, then choose some x3 ∈ W
with x3 /∈ W2 and continue this procedure. However, by Theorem 1.6, there can
be at most n linearly independent vectors in V , and hence dimW ≤ n.

Note that the zero subspace is spanned by the vector 0, but {0} is not linearly
independent so it can not form a basis. Therefore the zero subspace is defined
to have dimension zero.

Finally, let us show that any set of linearly independent vectors may be
extended to form a complete basis.

Theorem 1.10. Let V be finite-dimensional and S = {x1, . . . , xm} any set of
m linearly independent vectors in V . Then there exists a set {xm+1, . . . , xm+r}
of vectors in V such that {x1, . . . , xm+r} is a basis for V .

Proof. Since V is finite-dimensional, it has a basis {v1, . . . , vn}. Then the set
{x1, . . . , xm, v1, . . . , vn} spans V so, by Theorem 1.4, we can choose a subset
{x1, . . . , xm, vi1 , . . . , vir

} of linearly independent vectors that span V . Letting
vi1 = xm+1, . . . , vir

= xm+r proves the theorem.

Exercises

1. Determine whether or not the three vectors x1 = (2,−1, 0), x2 = (1,−1, 1)
and x3 = (0, 2, 3) form a basis for R3.

2. In each of the following, show that the given set of vectors is linearly
independent, and decide whether or not it forms a basis for the indicated
space:

(a) {(1, 1), (1,−1)} in R2.
(b) {(2, 0, 1), (1, 2, 0), (0, 1, 0)} in R3.
(c) {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)} in R4.

3. Extend each of the following sets to a basis for the given space:

(a) {(1, 1, 0), (2,−2, 0)} in R3.
(b) {(1, 0, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} in R4.
(c) {(1, 1, 0, 0), (1,−1, 0, 0), (1, 0, 1, 0)} in R4.

4. Show that the vectors u = (1 + i, 2i), v = (1, 1 + i) ∈ C2 are linearly
dependent over C, but linearly independent over R.
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5. Find the coordinates of the vector (3, 1,−4) ∈ R3 relative to the basis
x1 = (1, 1, 1), x2 = (0, 1, 1) and x3 = (0, 0, 1).

6. Let R3[x] be the space of all real polynomials of degree ≤ 3. Determine
whether or not each of the following sets of polynomials is linearly inde-
pendent:

(a) {x3 − 3x2 + 5x+ 1, x3 − x2 + 8x+ 2, 2x3 − 4x2 + 9x+ 5}.
(b) {x3 + 4x2 − 2x+ 3, x3 + 6x2 − x+ 4, 3x3 + 8x2 − 8x+ 7}.

7. Let V be a finite-dimensional space, and let W be any subspace of V .
Show that there exists a subspace W ′ of V such that W ∩W ′ = {0} and
V = W +W ′ (see Exercise 1.2.12 for the definition of W +W ′).

8. Let φ : V → W be a homomorphism of two vector spaces V and W .

(a) Show that φ maps any subspace of V onto a subspace of W .
(b) Let S′ be a subspace ofW , and define the set S = {x ∈ V : φ(x) ∈ S′}.

Show that S is a subspace of V .

9. Let V be finite-dimensional, and assume that φ : V → V is a surjective
homomorphism. Prove that φ is in fact an isomorphism of V onto V .

10. Let V have basis x1, x2, . . . , xn, and let v1, v2, . . . , vn be any n elements
in V . Define a mapping φ : V → V by

φ

(
n∑

i=1

aixi

)
=

n∑

i=1

aivi

where each ai ∈ F .

(a) Show that φ is a homomorphism.
(b) When is φ an isomorphism?

1.4 Direct Sums

We now present some useful ways of constructing a new vector space from several
given spaces. The reader is advised to think carefully about these concepts, as
they will become quite important later in this book. We also repeat our earlier
remark that all of the vector spaces that we are discussing are considered to be
defined over the same field F .

Let A and B be subspaces of a finite-dimensional vector space V . Then we
may define the sum of A and B to be the set A+B given by

A+B = {a+ b : a ∈ A and b ∈ B}.

It is important to note that A and B must both be subspaces of the same space
V , or else the addition of a ∈ A to b ∈ B is not defined. In fact, since A and B
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are subspaces of V , it is easy to show that A+B is also subspace of V . Indeed,
given any a1 + b1 and a2 + b2 in A+B and any k ∈ F we see that

(a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) ∈ A+B

and
k(a1 + b1) = ka1 + kb1 ∈ A+B

as required. This definition can clearly be extended by induction to any finite
collection {Ai} of subspaces.

In addition to the sum of the subspaces A and B, we may define their
intersection A ∩B by

A ∩B = {x ∈ V : x ∈ A and x ∈ B}.

Since A and B are subspaces, we see that for any x, y ∈ A ∩ B we have both
x+ y ∈ A and x+ y ∈ B so that x+ y ∈ A ∩B, and if x ∈ A ∩B then kx ∈ A
and kx ∈ B so that kx ∈ A ∩B. Since 0 ∈ A ∩ B, we then see that A ∩ B is a
nonempty subspace of V . This can also be extended to any finite collection of
subspaces of V .

Our next theorem shows that the dimension of the sum of A and B is just
the sum of the dimensions of A and B minus the dimension of their intersection.

Theorem 1.11. If A and B are subspaces of a finite-dimensional space V , then

dim(A+B) = dimA+ dimB − dim(A ∩B).

Proof. Since A+B and A∩B are subspaces of V , it follows that both A+B and
A∩B are finite-dimensional (Theorem 1.9). We thus let dimA = m, dimB = n
and dimA ∩B = r.

Let {u1, . . . , ur} be a basis for A ∩ B. By Theorem 1.10 there exists a set
{v1, . . . , vm−r} of linearly independent vectors in V such that

{u1, . . . , ur, v1, . . . , vm−r}

is a basis for A. Similarly, we have a basis

{u1, . . . , ur, w1, . . . , wn−r}

for B. It is clear that the set

{u1, . . . , ur, v1, . . . , vm−r, w1, . . . , wn−r}

spans A + B since any a + b ∈ A + B (with a ∈ A and b ∈ B) can be written
as a linear combination of these r + (m− r) + (n− r) = m+ n− r vectors. To
prove that they form a basis for A+B, we need only show that these m+n− r
vectors are linearly independent.



1.4. DIRECT SUMS 21

Suppose we have sets of scalars {ai}, {bj} and {ck} such that

r∑

i=1

aiui +

m−r∑

j=1

bjvj +

n−r∑

k=1

ckwk = 0.

Then
r∑

i=1

aiui +

m−r∑

j=1

bjvj = −
n−r∑

k=1

ckwk.

Since the left side of this equation is an element of A while the right side is an
element of B, their equality implies that they both belong to A ∩B, and hence

−
n−r∑

k=1

ckwk =
r∑

i=1

diui

for some set of scalars {di}. But {u1, . . . , ur, w1, . . . , wn−r} forms a basis for B
and hence they are linearly independent. Therefore, writing the above equation
as

r∑

i=1

diui +

n−r∑

k=1

ckwk = 0

implies that
d1 = · · · = dr = c1 = · · · = cn−r = 0.

We are now left with

r∑

i=1

aiui +

m−r∑

j=1

bjvj = 0.

But {u1, . . . , ur, v1, . . . , vm−r} is also linearly independent so that

a1 = · · · = ar = b1 = · · · = bm−r = 0.

This proves that {u1, . . . , ur, v1, . . . , vm−r, w1, . . . , wn−r} is linearly independent
as claimed. The proof is completed by simply noting that we have shown

dim(A+B) = m+ n− r = dimA+ dimB − dim(A ∩B).

We now consider a particularly important special case of the sum. If A and
B are subspaces of V such that A ∩B = {0} and V = A+B, then we say that
V is the internal direct sum of A and B. A completely equivalent way of
defining the internal direct sum is given in the following theorem.

Theorem 1.12. Let A and B be subspaces of a finite-dimensional vector space
V . Then V is the internal direct sum of A and B if and only if every v ∈ V
can be uniquely written in the form v = a+ b where a ∈ A and b ∈ B.
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Proof. Let us first assume that V is the internal direct sum of A and B. In
other words, V = A + B and A ∩ B = {0}. Then by definition, for any v ∈ V
we have v = a+ b for some a ∈ A and b ∈ B. Suppose we also have v = a′ + b′

where a′ ∈ A and b′ ∈ B. Then a+ b = a′ + b′ so that a− a′ = b′ − b. But note
that a − a′ ∈ A and b′ − b ∈ B, and hence the fact that A ∩ B = {0} implies
that a− a′ = b′ − b = 0. Therefore a = a′ and b = b′ so that the expression for
v is unique.

Conversely, suppose that every v ∈ V may be written uniquely in the form
v = a + b with a ∈ A and b ∈ B. This means that V = A + B, and we must
still show that A∩B = {0}. In particular, if v ∈ A∩B we may write v = v+ 0
with v ∈ A and 0 ∈ B, or alternatively, we may write v = 0 + v with 0 ∈ A and
v ∈ B. But we are assuming that the expression for v is unique, and hence we
must have v = 0 (since the contributions from A and B must be the same in
both cases). Thus A ∩B = {0} and the sum is direct.

We emphasize that the internal direct sum is defined for two subspaces A
and B of a given space V . As we stated above, this is because the addition of
two vectors from distinct spaces is not defined. In spite of this, we now proceed
to show that it is nevertheless possible to define the sum of two distinct vector
spaces.

Let A and B be distinct vector spaces (over the same field F , of course).
While the sum of a vector in A and a vector in B makes no sense, we may relate
these two spaces by considering the Cartesian product A × B defined as (see
Section A.1)

A×B = {(a, b) : a ∈ A and b ∈ B}.
Using the ordered pairs (a, b), it is now easy to turn A×B into a vector space
by making the following definitions (see Example 1.1).

First, we say that two elements (a, b) and (a′, b′) of A × B are equal if and
only if a = a′ and b = b′. Next, we define addition and scalar multiplication in
the obvious manner by

(a, b) + (a′, b′) = (a+ a′, b+ b′)

and
k(a, b) = (ka, kb).

We leave it as an exercise for the reader to show that with these definitions,
the set A × B defines a vector space V over F . This vector space is called the
external direct sum of the spaces A and B, and is denoted by A⊕B.

While the external direct sum was defined for arbitrary spaces A and B,
there is no reason why this definition can not be applied to two subspaces of
a larger space V . We now show that in such a case, the internal and external
direct sums are isomorphic.

Theorem 1.13. If V is the internal direct sum of A and B, then V is isomor-
phic to the external direct sum A⊕B.
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Proof. If V is the internal direct sum of A and B, then any v ∈ V may be
written uniquely in the form v = a+ b. This uniqueness allows us to define the
mapping φ : V → A⊕B by

φ(v) = φ(a+ b) = (a, b).

Since for any v = a+ b and v′ = a′ + b′, and for any scalar k we have

φ(v + v′) = (a+ a′, b+ b′) = (a, b) + (a′, b′) = φ(v) + φ(v′)

and
φ(kv) = (ka, kb) = k(a, b) = kφ(v)

it follows that φ is a vector space homomorphism. It is clear that φ is surjective,
since for any (a, b) ∈ A⊕B we have φ(v) = (a, b) where v = a+ b ∈ V . Finally,
if φ(v) = (0, 0) then we must have a = b = 0 = v and hence Kerφ = {0}. This
shows that φ is also injective (Theorem 1.5). In other words, we have shown
that V is isomorphic to A⊕B.

Because of this theorem, we shall henceforth refer only to the direct sum

of A and B, and denote this sum by A ⊕ B. It follows trivially from Theorem
1.11 that

dim(A⊕B) = dimA+ dimB.

Example 1.8. Consider the ordinary Euclidean three-space V = R3. Note that
any v ∈ R3 may be written as

(v1, v2, v3) = (v1, v2, 0) + (0, 0, v3)

which is just the sum of a vector in the xy-plane and a vector on the z-axis.
It should also be clear that the only vector in the intersection of the xy-plane
with the z-axis is the zero vector. In other words, defining the space A to be
the xy-plane R2 and the space B to be the z-axis R1, we see that V = A ⊕ B
or R3 = R2 ⊕ R1.

On the other hand, if we try to write R3 as the direct sum of the xy-plane A
with say, the yz-plane B, then the intersection condition is violated since A∩B
is the entire y-axis. In this case, any vector lying on the y-axis can be specified
in terms of its components in either the xy-plane or in the yz-plane.

In many of our later applications we shall need to take the direct sum of
several vector spaces. While it should be obvious that this follows simply by
induction from the above case, we go through the details nevertheless. We say
that a vector space V is the direct sum of the subspaces W1, . . . ,Wr if the
following properties are true:

(DS1) Wi 6= {0} for each i = 1, . . . , r ;
(DS2) Wi ∩ (W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wr) = {0} for i = 1, . . . , r ;
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(DS3) V = W1 + · · ·+Wr .

If V is the direct sum of the Wi, then we write V = W1 ⊕ · · · ⊕ Wr. The
generalization of Theorem 1.12 is the following.

Theorem 1.14. If W1, . . . ,Wr are subspaces of V , then

V = W1 ⊕ · · · ⊕Wr

if and only if every v ∈ V has a unique representation of the form

v = v1 + · · ·+ vr

where vi ∈ Wi for each i = 1, . . . , r.

Proof. First assume that V is the direct sum of W1, . . . ,Wr. Given any v ∈ V ,
property (DS3) of the direct sum tells us that we have

v = v1 + · · ·+ vr

where vi ∈Wi for each i = 1, . . . , r. If we also have another representation

v = v′1 + · · ·+ v′r

with v′i ∈Wi, then
v1 + · · ·+ vr = v′1 + · · ·+ v′r

so that for any i = 1, . . . , r we have

v′i − vi = (v1 − v′1) + · · ·+ (vi−1 − v′i−1) + (vi+1 − v′i+1) + · · ·+ (vr − v′r).

Since v′i − vi ∈ Wi and the right hand side of this equation is an element of
W1 + · · ·+Wi−1 +Wi+1 + · · ·+Wr, we see that (DS2) requires v′i − vi = 0, and
hence v′i = vi. This proves the uniqueness of the representation.

Conversely, assume that each v ∈ V has a unique representation of the form
v = v1+· · ·+vr where vi ∈ Wi for each i = 1, . . . , r. Since (DS3) is automatically
satisfied, we must show that (DS2) is also satisfied. Suppose

v1 ∈W1 ∩ (W2 + · · ·+Wr).

Since
v1 ∈W2 + · · ·+Wr

we must also have
v1 = v2 + · · ·+ vr

for some v2 ∈W2, . . . , vr ∈ Wr. But then

0 = −v1 + v2 + · · ·+ vr
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and

0 = 0 + · · ·+ 0

are two representations of the vector 0, and hence the uniqueness of the repre-
sentations implies that vi = 0 for each i = 1, . . . , r. In particular, the case i = 1
means that

W1 ∩ (W2 + · · ·+Wr) = {0}.
A similar argument applies to Wi ∩ (W2 + · · · + Wi−1 + Wi+1 + · · · +Wr) for
any i = 1, . . . , r. This proves (DS2).

If V = W1 ⊕ · · · ⊕Wr , then it seems reasonable that we should be able to
form a basis for V by adding up the bases of the subspaces Wi. This is indeed
the case as we now show.

Theorem 1.15. Let W1, . . . ,Wr be subspaces of V , and for each i = 1, . . . , r
let Wi have basis Bi = {wi1, . . . , wini

}. Then V is the direct sum of the Wi if
and only if the union of bases

B =

r⋃

i=1

Bi = {w11, . . . , w1n1
, . . . , wr1, . . . , wrnr

}

is a basis for V .

Proof. Suppose that B is a basis for V . Then for any v ∈ V we may write

v = (a11w11 + · · ·+ a1n1
w1n1

) + · · ·+ (ar1wr1 + · · ·+ arnr
wrnr

)

= w1 + · · ·+ wr

where

wi = ai1wi1 + · · ·+ aini
wini

∈Wi

and aij ∈ F . Now let
v = w′

1 + · · ·+ w′
r

be any other expansion of v, where each w′
i ∈ Wi. Using the fact that Bi is a

basis for Wi we have

w′
i = bi1wi1 + · · ·+ bini

wini

for some set of scalars bij . This means that we may also write

v = (b11w11 + · · ·+ b1n1
w1n1

) + · · ·+ (br1wr1 + · · ·+ brnr
wrnr

) .

However, since B is a basis for V , we may equate the coefficients of wij in these
two expressions for v to obtain aij = bij for all i, j. We have thus proved that
the representation of v is unique, and hence Theorem 1.14 tells us that V is the
direct sum of the Wi.
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Now suppose that V is the direct sum of the Wi. This means that any
v ∈ V may be expressed in the unique form v = w1 + · · · + wr where wi ∈ Wi

for each i = 1, . . . , r. Given that Bi = {wi1, . . . , wini
} is a basis for Wi, we must

show that B =
⋃Bi is a basis for V . We first note that each wi ∈ Wi may be

expanded in terms of the members of Bi, and therefore
⋃Bi clearly spans V . It

remains to show that the elements of B are linearly independent.
We first write

(c11w11 + · · ·+ c1n1
w1n1

) + · · ·+ (cr1wr1 + · · ·+ crnr
wrnr

) = 0

and note that
ci1wi1 + · · ·+ cini

wini
∈Wi.

Using the fact that 0+· · ·+0 = 0 (where each 0 ∈ Wi) along with the uniqueness
of the representation in any direct sum, we see that for each i = 1, . . . , r we must
have

ci1wi1 + · · ·+ cini
wini

= 0.

However, since Bi is a basis for Wi, this means that cij = 0 for every i and j,
and hence the elements of B =

⋃
Bi are linearly independent.

Corollary. If V = W1 ⊕ · · · ⊕Wr, then

dimV =

r∑

i=1

dimWi.

Proof. Obvious from Theorem 1.15. This also follows by induction from Theo-
rem 1.11.

Exercises

1. Let W1 and W2 be subspaces of R3 defined by W1 = {(x, y, z) : x = y = z}
and W2 = {(x, y, z) : x = 0}. Show that R3 = W1 ⊕W2.

2. Let W1 be any subspace of a finite-dimensional space V . Prove there exists
a subspace W2 of V such that V = W1 ⊕W2.

3. Let W1, W2 and W3 be subspaces of a vector space V . Show that

(W1 ∩W2) + (W1 ∩W3) ⊂W1 ∩ (W2 +W3).

Give an example in V = R2 for which equality does not hold.

4. Let V = F [R] be as in Exercise 1.2.6. Let W+ and W− be the subsets of V
defined by W+ = {f ∈ V : f(−x) = f(x)} and W− = {f ∈ V : f(−x) =
−f(x)}. In other words, W+ is the subset of all even functions, and W−
is the subset of all odd functions.
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(a) Show that W+ and W− are subspaces of V .
(b) Show that V = W+ ⊕W− .

5. Let W1 and W2 be subspaces of a vector space V .

(a) Show that W1 ⊂W1 +W2 and W2 ⊂W1 +W2.
(b) Prove that W1 +W2 is the smallest subspace of V that contains both

W1 and W2. In other words, if S (W1,W2) denotes the linear span
of W1 and W2, show that W1 +W2 = S (W1,W2). [Hint : Show that
W1 +W2 ⊂ S (W1,W2) and S (W1,W2) ⊂W1 +W2.]

6. Let V be a finite-dimensional vector space. For any x ∈ V , we define
Fx = {ax : a ∈ F}. Prove that {x1, x2, . . . , xn} is a basis for V if and
only if V = Fx1 ⊕Fx2 ⊕ · · · ⊕ Fxn.

7. If A and B are vector spaces, show that A+B is the span of A ∪B.

1.5 Inner Product Spaces

Before proceeding with the general theory of inner products, let us briefly re-
view what the reader should already know from more elementary courses. It is
assumed that the reader is familiar with vectors in R3, and we show that for
any ~a,~b ∈ R3 the scalar product (also called the dot product) ~a ·~b may be
written as either

~a ·~b =

3∑

i=1

aibi

where {ai} and {bi} are the coordinates of ~a and ~b relative to the standard basis
for R3 (see Example 1.7), or as

~a ·~b = ‖~a‖ ‖~b‖ cos θ

where θ = ∠(~a,~b ) and

‖~a‖2 =

3∑

i=1

ai
2

with a similar equation for ‖~b‖. The symbol ‖ · ‖ is just the vector space gener-
alization of the absolute value of numbers, and will be defined carefully below
(see Example 1.9). For now, just think of ‖~a‖ as meaning the length of the
vector ~a in R3.

Just for fun, for the sake of completeness, and to show exactly what these
equations depend on, we prove this as a series of simple lemmas. Our first
lemma is known as the Pythagorean theorem.
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Lemma 1.1. Given a right triangle with sides a, b, and c as shown,

a

b

c

we have c2 = a2 + b2.

Proof. As shown in the figure below, we draw the line PQ perpendicular to
the hypotenuse c = AB. Note that we can now write c as the sum of the two
parts c1 = AQ and c2 = QB. First observe that △ABP is similar to △APQ
because they are both right triangles and they have the angle θ in common (so
they must have their third angle the same). Let us denote this similarity by
△ABP ∼ △APQ. If we let this third angle be α = ∠(ABP ), then we also have
α = ∠(APQ), and hence △ABP , △APQ and △PBQ are all similar.

θ

θ

a

b

c1

c2

A

B

P

Q

Using the fact that △APQ ∼ △ABP and △PBQ ∼ △ABP along with
c = c1 + c2 we have

c1
b

=
b

c
and

c2
a

=
a

c
and therefore

c = c1 + c2 =
a2 + b2

c

from which the lemma follows immediately.

Our next lemma is known as the law of cosines. This result, together with
Lemma 1.1, shows that for any triangle T with sides c ≤ a ≤ b, it is true that
a2 + b2 = c2 if and only if T is a right triangle.

Lemma 1.2. For any triangle as shown,

a

b

c

θ
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we have c2 = a2 + b2 − 2ab cos θ.

Proof. Draw a perpendicular to side b as shown:

a

b

c

θ

h

By the Pythagorean theorem we have

c2 = h2 + (b− a cos θ)2

= (a sin θ)2 + (b− a cos θ)2

= a2 sin2 θ + b2 − 2ab cosθ + a2 cos2 θ

= a2 + b2 − 2ab cosθ

where we used sin2 θ + cos2 θ = 1 which follows directly from Lemma 1.1 with
a = c(sin θ) and b = c(cos θ).

We now define the scalar product ~a ·~b for any ~a,~b ∈ R3 by

~a ·~b =
3∑

i=1

aibi = ~b · ~a

where ~a = (a1, a2, a3) and ~b = (b1, b2, b3). It is easy to see that

~a · (~b + ~c) =

3∑

i=1

ai(bi + ci) =

3∑

i=1

(aibi + aici) = ~a · b+ ~a · ~c

and similarly, it is easy to show that

(~a+~b) · ~c = ~a · ~c+~b · ~c

and

(k~a) ·~b = k(~a ·~b )

where k ∈ R.

From the figure below, we see the Pythagorean theorem also shows us that

‖~a‖2 =

3∑

i=1

aiai = ~a · ~a.
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a1

a2

a3

x1

x2

x2

~a

This is the justification for writing ‖~a‖ to mean the length of the vector ~a ∈ R3.
Noting that any two vectors (with a common origin) in R3 lie in a plane, we

have the following well-known formula for the dot product.

Lemma 1.3. For any ~a,~b ∈ R3 we have

~a ·~b = ab cos θ

where a = ‖~a‖, b = ‖~b‖ and θ = ∠(~a,~b ) .

Proof. Draw the vectors ~a and ~b along with their difference ~c = ~a−~b:

~a

~b

~c = ~a −~b

θ

By the law of cosines we have c2 = a2 + b2 − 2ab cosθ, while on the other hand

c2 = ‖~a−~b‖2 = (~a−~b ) · (~a−~b ) = a2 + b2 − 2~a ·~b.

Therefore we see that ~a ·~b = ab cos θ.

Another more intuitive way to see that ~a·~b = ab cos θ is the following. Orient
the coordinate system so that we have the vectors ~a and ~b in the xy-plane as
shown below.

~a

~b

x

y

h
θ
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From this figure we see that ~a = (a, 0, 0) and ~b = (b cos θ, b sin θ, 0). But then

~a ·~b = a1b1+a2b2+a3b3 = ab cos θ as before. Since neither the length of a vector
nor the angle between two vectors depends on the orientation of the coordinate
system, this result must be true in general.

The main reason that we went through all of this is to motivate the gen-
eralization to arbitrary vector spaces. For example, if u, v ∈ Rn, then to say
that

u · v =

n∑

i=1

uivi

makes sense, whereas to say that u · v = ‖u‖ ‖v‖ cos θ leaves one wondering just
what the “angle” θ means in higher dimensions. In fact, this will be used to
define the angle θ.

We now proceed to define a general scalar (or inner) product 〈u, v〉 of vectors
u, v ∈ V . Throughout this section, we let V be a vector space over either the
real field R or the complex field C. By way of motivation, we will want the inner
product 〈· , ·〉 applied to a single vector v ∈ V to yield the length (or norm) of

v, so that ‖v‖2 = 〈v, v〉. But ‖v‖ must be a real number even if the field we
are working with is C. Noting that for any complex number z ∈ C we have
|z|2 = zz∗, we are led to make the following definition.

Let V be a vector space over F (where F is either R or C). By an inner

product on V (sometimes called the Hermitian inner product), we mean a
mapping 〈· , ·〉 : V × V → F such that for all u, v, w ∈ V and a, b ∈ F we have

(IP1) 〈au+ bv, w〉 = a∗〈u,w〉+ b∗〈v, w〉;
(IP2) 〈u, v〉 = 〈v, u〉∗;
(IP3) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

Using these properties, we also see that

〈u, av + bw〉 = 〈av + bw, u〉∗

= (a∗〈v, u〉+ b∗〈w, u〉)∗

= a〈u, v〉+ b〈u,w〉

and hence, for the sake of reference, we call this

(IP1′) 〈u, av + bw〉 = a〈u, v〉+ b〈u,w〉.

(The reader should be aware that instead of 〈au, v〉 = a∗〈u, v〉, many authors
define 〈au, v〉 = a〈u, v〉 and 〈u, av〉 = a∗〈u, v〉. This is particularly true in
mathematics texts, whereas we have chosen the convention used by most physics
texts. Of course, this has no effect on any of our results.)

Another remark that is worth pointing out is this. Our condition (IP3), that
〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0 is sometimes called a positive

definite inner product. If condition (IP3) is dropped entirely, we obtain an
indefinite inner product, but this is rarely used (at least by physicists and
engineers). However, if we replace (IP3) by the weaker requirement
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(IP3′) 〈u, v〉 = 0 for all v ∈ V if and only if u = 0

then we obtain what is called a nondegenerate inner product. For example,
the Minkowski space of special relativity has the property that any lightlike
vector v 6= 0 still has the property that 〈v, v〉 = 0.

A space V together with an inner product is called an inner product space.
If V is an inner product space over the field C, then V is called a complex inner
product space, and if the field is R, then V is called a real inner product space.
A complex inner product space is frequently called a unitary space, and a real
inner product space is frequently called a Euclidean space. Note that in the
case of a real space, the complex conjugates in (IP1) and (IP2) are superfluous.

By (IP2) we have 〈u, u〉 ∈ R so that we may define the length (or norm)
of u to be the nonnegative real number

‖u‖ = 〈u, u〉1/2.

If ‖u‖ = 1, then u is said to be a unit vector. If ‖v‖ 6= 0, then we can normalize
v by setting u = v/‖v‖. One sometimes writes v̂ to mean the unit vector in the
direction of v, i.e., v = ‖v‖ v̂.

Example 1.9. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be vectors in Cn.
We define

〈X,Y 〉 =
n∑

i=1

x∗i yi

and leave it to the reader to show that this satisfies (IP1)–(IP3). In the case of
the space Rn, we have 〈X,Y 〉 = X · Y =

∑
xiyi. This inner product is called

the standard inner product in Cn (or Rn).
We also see that if X,Y ∈ Rn then

‖X − Y ‖2 = 〈X − Y,X − Y 〉 =
n∑

i=1

(xi − yi)
2.

Thus ‖X − Y ‖ is indeed just the distance between the points X = (x1, . . . , xn)
and Y = (y1, . . . , yn) that we would expect by applying the Pythagorean the-
orem to points in Rn. In particular, ‖X‖ is simply the length of the vector
X .

It is now easy to see why we defined the inner product as we did. For
example, consider simply the space C3. Then with respect to the standard
inner product on C3, the vector X = (1, i, 0) will have norm ‖X‖2 = 〈X,X〉 =
1+1+0 = 2, while if we had used the expression corresponding to the standard
inner product on R3, we would have found ‖X‖2 = 1 − 1 + 0 = 0 even though
X 6= 0.
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Example 1.10. Let V be the vector space of continuous complex-valued func-
tions defined on the real interval [a, b]. We may define an inner product on V
by

〈f, g〉 =
∫ b

a

f∗(x)g(x) dx

for all f, g ∈ V . It should be obvious that this satisfies the three required
properties of an inner product.

In Appendix A (see Theorem A.7) we proved an elementary result that
essentially entailed taking the inner product of vectors in Cn. We now generalize
this to an important result known as the Cauchy-Schwartz inequality.

Theorem 1.16 (Cauchy-Schwartz). Let V be an inner product space. Then
for any u, v ∈ V we have ∣∣〈u, v〉

∣∣ ≤ ‖u‖ ‖v‖ .

Proof. If either u or v is zero the theorem is trivially true. We therefore assume
that u 6= 0 and v 6= 0. Then, for any real number c, we have (using (IP2) and

the fact that |z|2 = zz∗)

0 ≤ ‖v − c〈u, v〉u‖2

= 〈v − c〈u, v〉u, v − c〈u, v〉u〉
= 〈v, v〉 − c〈u, v〉〈v, u〉 − c〈u, v〉∗〈u, v〉+ c2〈u, v〉∗〈u, v〉〈u, u〉
= ‖v‖2 − 2c

∣∣〈u, v〉
∣∣2 + c2

∣∣〈u, v〉
∣∣2 ‖u‖2 .

Now let c = 1/ ‖u‖2 to obtain

0 ≤ ‖v‖2 −
∣∣〈u, v〉

∣∣2

‖u‖2

or ∣∣〈u, v〉
∣∣2 ≤ ‖u‖2 ‖v‖2 .

Taking the square root proves the theorem.

We have seen that an inner product may be used to define a norm on V .
In fact, the norm has several properties that may be used to define a normed
vector space axiomatically as we see from the next theorem.

Theorem 1.17. The norm in an inner product space V has the following prop-
erties for all u, v ∈ V and k ∈ F :
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(N1) ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0.
(N2) ‖ku‖ = |k| ‖u‖.
(N3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof. Since ‖u‖ = 〈u, u〉1/2, (N1) follows from (IP3). Next, we see that

‖ku‖2 = 〈ku, ku〉 = |k|2 ‖u‖2

and hence taking the square root yields (N2). Finally, using Theorem 1.16 and
the fact that z + z∗ = 2 Re z ≤ 2 |z| for any z ∈ C, we have

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 〈u, v〉+ 〈u, v〉∗ + ‖v‖2

≤ ‖u‖2 + 2 |〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2 ‖u‖ ‖v‖ + ‖v‖2

=
(
‖u‖+ ‖v‖

)2
.

Taking the square root yields (N3).

We note that property (N3) is frequently called the triangle inequality

because in two or three dimensions, it simply says that the sum of two sides of
a triangle is greater than the third. Furthermore, we note that properties (N1)–
(N3) may be used to define a normed vector space. In other words, a normed

vector space is defined to be a vector space V together with a mapping ‖ · ‖ :
V → R that obeys properties (N1)–(N3). While a normed space V does not in
general have an inner product defined on it, the existence of an inner product
leads in a natural way (i.e., by Theorem 1.17) to the existence of a norm on V .

Example 1.11. Let us prove a simple but useful result dealing with the norm
in any normed space V . From the properties of the norm, we see that for any
u, v ∈ V we have

‖u‖ = ‖u− v + v‖ ≤ ‖u− v‖+ ‖v‖
and

‖v‖ = ‖v − u+ u‖ ≤ ‖u− v‖+ ‖u‖ .
Rearranging each of these yields

‖u‖ − ‖v‖ ≤ ‖u− v‖

and
‖v‖ − ‖u‖ ≤ ‖u− v‖ .

This shows that ∣∣∣ ‖u‖ − ‖v‖
∣∣∣ ≤ ‖u− v‖ .
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Example 1.12. Consider the space V of Example 1.10 and the associated
inner product 〈f, g〉. Applying the Cauchy-Schwartz inequality (Theorem 1.16)
we have

∣∣∣∣∣

∫ b

a

f∗(x)g(x) dx

∣∣∣∣∣ ≤
[∫ b

a

∣∣f(x)
∣∣2dx

]1/2 [∫ b

a

∣∣g(x)
∣∣2dx

]1/2

.

From property (N3) in Theorem 1.17 we see that ‖f + g‖ ≤ ‖f‖ + ‖g‖ or
〈f + g, f + g〉1/2 ≤ 〈f, f〉1/2 + 〈g, g〉1/2 which becomes

[∫ b

a

∣∣f(x) + g(x)
∣∣2dx

]1/2

≤
[∫ b

a

∣∣f(x)
∣∣2dx

]1/2

+

[∫ b

a

∣∣g(x)
∣∣2dx

]1/2

.

The reader might try and prove either of these directly from the definition of the
integral if he or she wants to gain an appreciation of the power of the axiomatic
approach to inner products.

Finally, let us finish our generalization of Lemmas 1.1–1.3. If we repeat the
proof of Lemma 1.3 using the inner product and norm notations, we find that
for any u, v ∈ R3 we have 〈u, v〉 = ‖u‖ ‖v‖ cos θ. Now let V be any real vector
space. We define the angle θ between two nonzero vectors u, v ∈ V by

cos θ =
〈u, v〉
‖u‖ ‖v‖ .

Note that cos θ ≤ 1 by Theorem 1.16 so this definition makes sense. We say
that u is orthogonal (or perpendicular) to v if 〈u, v〉 = 0. If u and v are
orthogonal, we often write this as u⊥v. From the basic properties of the inner
product, it then follows that 〈v, u〉 = 〈u, v〉∗ = 0∗ = 0 so that v is orthogonal to
u also. Thus u⊥v if and only if cos θ = 0. While cos θ is only defined in a real
vector space, our definition of orthogonality is valid in any space V over F .

Exercises

1. Let x = (x1, x2) and y = (y1, y2) be vectors in R2, and define the mapping
〈· , ·〉 : R2 → R by 〈x, y〉 = x1y1 − x1y2 − x2y1 + 3x2y2. Show this defines
an inner product on R2.

2. Let x = (3, 4) ∈ R2, and evaluate ‖x‖ with respect to the norm induced
by:

(a) The standard inner product on R2.
(b) The inner product defined in the previous exercise.

3. Let V be an inner product space, and let x, y ∈ V .
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(a) Prove the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

(The geometric meaning of this equation is that the sum of the squares
of the diagonals of a parallelogram is equal to the sum of the squares
of the sides.)

(b) Prove the Pythagorean theorem:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 if x⊥y.

4. Find a unit vector orthogonal to the vectors x = (1, 1, 2) and y = (0, 1, 3)
in R3.

5. Let u = (z1, z2) and v = (w1, w2) be vectors in C2, and define the mapping
〈· , ·〉 : C2 → R by

〈u, v〉 = z1w
∗
1 + (1 + i)z1w

∗
2 + (1− i)z2w∗

1 + 3z2w
∗
2 .

Show this defines an inner product on C2.

6. Let u = (1 − 2i, 2 + 3i) ∈ C2 and evaluate ‖u‖ with respect to the norm
induced by:

(a) The standard norm on C2.
(b) The inner product defined in the previous exercise.

7. Let V be an inner product space. Verify the following polar form iden-

tities:

(a) If V is a real space and x, y ∈ V , then

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

(b) If V is a complex space and x, y ∈ V , then

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
+
i

4

(
‖ix+ y‖2 − ‖ix− y‖2

)

(If we were using instead the inner product defined by 〈αx, y〉 =
α〈x, y〉, then the last two terms in this equation would read ‖x± iy‖.)

8. Let V = C[0, 1] be the space of continuous real-valued functions defined
on the interval [0, 1]. Define an inner product on C[0, 1] by

〈f, g〉 =
∫ 1

0

f(t)g(t) dt.

(a) Verify that this does indeed define an inner product on V .
(b) Evaluate ‖f‖ where f = t2 − 2t+ 3 ∈ V .
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9. Given a vector space V , we define a mapping d : V × V → R by d(x, y) =
‖x− y‖ for all x, y ∈ V . Show that:

(a) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(b) d(x, y) = d(y, x).
(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The number d(x, y) is called the distance from x to y, and the mapping d
is called a metric on V . Any arbitrary set S on which we have defined a
function d : S×S → R satisfying these three properties is called a metric

space.

10. Let {e1, . . . , en} be an orthonormal basis for a complex space V , and let
x ∈ V be arbitrary. Show

(a) x =
∑n

i=1 ei〈ei, x〉 .

(b) ‖x‖2 =
∑n

i=1

∣∣〈ei, x〉
∣∣2 .

11. Show equality holds in the Cauchy-Schwartz inequality if and only if one
vector is proportional to the other.

1.6 Orthogonal Sets

If a vector space V is equipped with an inner product, then we may define a
subspace of V that will turn out to be extremely useful in a wide variety of
applications. Let W be any subset of such a vector space V . (Note that W
need not be a subspace of V .) We define the orthogonal complement of W
to be the set W⊥ given by

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ W}.

Theorem 1.18. Let W be any subset of a vector space V . Then W⊥ is a
subspace of V .

Proof. We first note that 0 ∈W⊥ since for any v ∈ V we have

〈0, v〉 = 〈0v, v〉 = 0〈v, v〉 = 0.

To finish the proof, we simply note that for any u, v ∈ W⊥, for any scalars
a, b ∈ F , and for every w ∈W we have

〈au+ bv, w〉 = a∗〈u,w〉+ b∗〈v, w〉 = a∗0 + b∗0 = 0

so that au+ bv ∈ W⊥.
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Consider the space R3 with the usual Cartesian coordinate system (x, y, z).
If we let W = R2 be the xy-plane, then W⊥ = R1 is just the z-axis since the
standard inner product on R3 shows that any v ∈ R3 of the form (0, 0, c) is
orthogonal to any w ∈ R3 of the form (a, b, 0). Thus, in this case anyway, we
see that W ⊕W⊥ = R3. We will shortly prove that W ⊕W⊥ = V for any inner
product space V and subspace W ⊂ V . Before we can do this however, we must
first discuss orthonormal sets of vectors.

A set {vi} of nonzero vectors in a space V is said to be an orthogonal set

(or to be mutually orthogonal) if 〈vi, vj〉 = 0 for i 6= j. If in addition, each
vi is a unit vector, then the set {vi} is said to be an orthonormal set and we
write

〈vi, vj〉 = δij

where the very useful symbol δij (called the Kronecker delta) is defined by

δij =

{
1 if i = j

0 if i 6= j.

Theorem 1.19. Any orthonormal set of vectors {vi} is linearly independent.

Proof. If
∑

i aivi = 0 for some set of scalars {ai}, then

0 = 〈vj , 0〉 =
〈
vj ,
∑

i

aivi

〉
=
∑

i

ai〈vj , vi〉 =
∑

i

aiδij = aj

so that aj = 0 for each j, and hence {vi} is linearly independent.

Note that in the proof of Theorem 1.19 it was not really necessary that each
vi be a unit vector. Any orthogonal set would work just as well.

Theorem 1.20. If {v1, v2, . . . , vn} is an orthonormal set in V and if w ∈ V is
arbitrary, then the vector

u = w −
∑

i

〈vi, w〉vi

is orthogonal to each of the vi.

Proof. We simply compute 〈vj , u〉:

〈vj , u〉 =
〈
vj , w −

∑

i

〈vi, w〉vi

〉

= 〈vj , w〉 −
∑

i

〈vi, w〉〈vj , vi〉
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= 〈vj , w〉 −
∑

i

〈vi, w〉δij

= 〈vjw〉 − 〈vj , w〉 = 0.

The numbers ci = 〈vi, w〉 are frequently called the Fourier coefficients of
w with respect to vi. In fact, we leave it as an exercise for the reader to show
that the expression ‖w −∑i aivi‖ achieves its minimum precisely when ai = ci
(see Exercise 1.6.4). Furthermore, we also leave it to the reader (see Exercise
1.6.5) to show that

n∑

i=1

|ci|2 ≤ ‖w‖2

which is called Bessel’s inequality.
As we remarked earlier, most mathematics texts write 〈u, av〉 = a∗〈u, v〉

rather than 〈u, av〉 = a〈u, v〉. In this case, Theorem 1.20 would be changed to
read that the vector

u = w −
∑

i

〈w, vi〉vi

is orthogonal to each vj .

Example 1.13. The simplest and best known example of an orthonormal set
is the set {ei} of standard basis vectors in Rn. Thus

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

...

en = (0, 0, 0, . . . , 1)

and clearly
〈ei, ej〉 = ei · ej = δij

since for any X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Rn, we have

〈X,Y 〉 = X · Y =

n∑

i=1

xiyi.

(It would perhaps be better to write the unit vectors as êi rather than ei, but
this will generally not cause any confusion.)

Example 1.14. Let V be the space of continuous complex-valued functions
defined on the real interval [−π, π]. As in Example 1.10, we define

〈f, g〉 =
∫ π

−π

f∗(x)g(x) dx
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for all f, g ∈ V . We show that the set of functions

fn =

(
1

2π

)1/2

einx

for n = 1, 2, . . . forms an orthonormal set.
If m = n, then

〈fm, fn〉 = 〈fn, fn〉 =
1

2π

∫ π

−π

e−inxeinx dx =
1

2π

∫ π

−π

dx = 1.

If m 6= n, then we have

〈fm, fn〉 =
1

2π

∫ π

−π

e−imxeinx dx =
1

2π

∫ π

−π

ei(n−m)x dx

=
1

2π

ei(n−m)x

i(n−m)

∣∣∣∣
π

−π

=
sin(n−m)π

π(n−m)
= 0

since sinnπ = 0 for any integer n. (Note that we also used the fact that

sin θ =
eiθ − e−iθ

2i

which follows from the Euler formula mentioned in Appendix A.) Therefore
〈fm, fn〉 = δmn. That the set {fn} is orthonormal is of great use in the theory
of Fourier series.

We now wish to show that every finite-dimensional vector space with an inner
product has an orthonormal basis. The proof is based on the famous Gram-
Schmidt orthogonalization process, the precise statement of which we present
as a corollary following the proof.

Theorem 1.21. Let V be a finite-dimensional inner product space. Then there
exists an orthonormal set of vectors that forms a basis for V .

Proof. Let dimV = n and let {u1, . . . , un} be a basis for V . We will construct
a new basis {w1, . . . , wn} such that 〈wi, wj〉 = δij . To begin, we choose

w1 =
u1

‖u1‖
so that

‖w1‖2 = 〈w1, w1〉 = 〈u1/ ‖u1‖ , u1/ ‖u1‖〉 = 〈u1, u1〉/ ‖u1‖2
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= ‖u1‖2 / ‖u1‖2 = 1

and hence w1 is a unit vector. We now take u2 and subtract off its “projection”
along w1. This will leave us with a new vector v2 that is orthogonal to w1.
Thus, we define

v2 = u2 − 〈w1, u2〉w1

so that
〈w1, v2〉 = 〈w1, u2〉 − 〈w1, u2〉〈w1, w1〉 = 0

(this also follows from Theorem 1.20). If we let

w2 =
v2
‖v2‖

then {w1, w2} is an orthonormal set . (That v2 6= 0 will be shown below.)
We now go to u3 and subtract off its projection along w1 and w2. In other

words, we define
v3 = u3 − 〈w2, u3〉w2 − 〈w1, u3〉w1

so that 〈w1, v3〉 = 〈w2, v3〉 = 0. Choosing

w3 =
v3
‖v3‖

we now have an orthonormal set {w1, w2, w3}.
It is now clear that given an orthonormal set {w1, . . . , wk}, we let

vk+1 = uk+1 −
k∑

i=1

〈wi, uk+1〉wi

so that vk+1 is orthogonal to w1, . . . , wk (Theorem 1.20), and hence we define

wk+1 =
vk+1

‖vk+1‖
.

It should now be obvious that we can construct an orthonormal set of n vectors
from our original basis of n vectors. To finish the proof, we need only show that
w1, . . . , wn are linearly independent.

To see this, note first that since u1 and u2 are linearly independent, w1 and
u2 must also be linearly independent, and hence v2 6= 0 by definition of linear
independence. Thus w2 exists and {w1, w2} is linearly independent by Theorem
1.19. Next, {w1, w2, u3} is linearly independent since w1 and w2 are in the linear
span of u1 and u2. Hence v3 6= 0 so that w3 exists, and Theorem 1.19 again
shows that {w1, w2, w3} is linearly independent.

In general then, if {w1, . . . , wk} is linearly independent, it follows that the
set {w1, . . . , wk, uk+1} is also independent since {w1, . . . , wk} is in the linear
span of {u1, . . . , uk}. Hence vk+1 6= 0 and wk+1 exists. Then {w1, . . . , wk+1} is
linearly independent by Theorem 1.19. Thus {w1, . . . , wn} forms a basis for V ,
and 〈wi, wj〉 = δij .
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Corollary (Gram-Schmidt process). Let {u1, . . . , un} be a linearly inde-
pendent set of vectors in an inner product space V . Then there exists a set of
orthonormal vectors w1, . . . , wn ∈ V such that the linear span of {u1, . . . , uk} is
equal to the linear span of {w1, . . . , wk} for each k = 1, . . . , n.

Proof. This corollary follows by a careful inspection of the proof of Theorem
1.21.

We emphasize that the Gram-Schmidt algorithm (the “orthogonalization
process” of Theorem 1.21) as such applies to any inner product space, and is
not restricted to only finite-dimensional spaces.

Example 1.15. Consider the following basis vectors for R3:

u1 = (3, 0, 4) u2 = (−1, 0, 7) u3 = (2, 9, 11).

Let us apply the Gram-Schmidt process (with the standard inner product on
R3) to obtain a new orthonormal basis for R3.

Since ‖u1‖ =
√

9 + 16 = 5, we define

w1 = u1/5 = (3/5, 0, 4/5).

Next, using 〈w1, u2〉 = −3/5 + 28/5 = 5 we let

v2 = (−1, 0, 7)− (3, 0, 4) = (−4, 0, 3).

Since ‖v2‖ = 5, we have
w2 = (−4/5, 0, 3/5).

Finally, using 〈w1, u3〉 = 10 and 〈w2, u3〉 = 5 we let

v3 = (2, 9, 11)− (−4, 0, 3)− (6, 0, 8) = (0, 9, 0)

and hence, since ‖v3‖ = 9, our third basis vector becomes

w3 = (0, 1, 0).

We leave it to the reader to show that {w1, w2, w3} does indeed form an or-
thonormal basis for R3.

We are now ready to prove our earlier assertion. Note that here we require
W to be a subspace of V .
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Theorem 1.22. Let W be a subspace of a finite-dimensional inner product
space V . Then V = W ⊕W⊥.

Proof. By Theorem 1.9, W is finite-dimensional. Therefore, if we choose a basis
{v1, . . . , vk} for W , it may be extended to a basis {v1, . . . , vn} for V (Theorem
1.10). Applying Theorem 1.21 to this basis, we construct a new orthonormal
basis {u1, . . . , un} for V where

ur =

r∑

j=1

arjvj

for r = 1, . . . , n and some coefficients arj (determined by the Gram-Schmidt
process). In particular, we see that u1, . . . , uk are all in W , and hence they
form an orthonormal basis for W .

Since {u1, . . . , un} are orthonormal, it follows that uk+1, . . . , un are in W⊥

(since 〈ui, uj〉 = 0 for all i ≤ k and any j = k + 1, . . . , n). Therefore, given any
x ∈ V we have

x = a1u1 + · · ·+ anun

where
a1u1 + · · ·+ akuk ∈ W

and
ak+1uk+1 + · · ·+ anun ∈W⊥.

This means that V = W +W⊥, and we must still show that W ∩W⊥ = {0}.
But if y ∈ W ∩W⊥, then 〈y, y〉 = 0 since y ∈ W⊥ implies that y is orthogonal
to any vector in W , and in particular, y ∈ W . Hence y = 0 by (IP3), and it
therefore follows that W ∩W⊥ = {0}.

Corollary. If V is finite-dimensional and W is a subspace of V , then (W⊥)⊥ =
W .

Proof. Given any w ∈ W we have 〈w, v〉 = 0 for all v ∈ W⊥. This implies that
w ∈ (W⊥)⊥ and hence W ⊂ (W⊥)⊥. By Theorem 1.22, V = W ⊕W⊥ and
hence

dimV = dimW + dimW⊥

(Theorem 1.11). But W⊥ is also a subspace of V , and hence V = W⊥⊕ (W⊥)⊥

(Theorem 1.22) which implies

dimV = dimW⊥ + dim(W⊥)⊥.

Therefore, comparing these last two equations shows that dimW = dim(W⊥)⊥.
This result together with W ⊂ (W⊥)⊥ implies that W = (W⊥)⊥.
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Finally, note that if {ei} is an orthonormal basis for V , then any x ∈ V may
be written as x =

∑
i xiei where

〈ej , x〉 =
〈
ej,
∑

i

xiei

〉
=
∑

i

xi〈ej , ei〉 =
∑

i

xiδij = xj .

Therefore we may write

x =
∑

i

〈ei, x〉ei

which is a very useful expression.

We will have much more to say about inner product spaces after we have
treated linear transformations in detail. For the rest of this book, unless explic-
itly stated otherwise, all vector spaces will be assumed to be finite-dimensional.
In addition, the specific scalar field F will generally not be mentioned, but it is
to be understood that all scalars are elements of F .

Exercises

1. Let W be a subset of a vector space V . Prove the following:

(a) 0⊥ = V and V ⊥ = 0.
(b) W ∩W⊥ = {0}.
(c) W1 ⊂W2 implies W⊥

2 ⊂W⊥
1 .

2. Let U and W be subspaces of a finite-dimensional inner product space V .
Prove the following:

(a) (U +W )⊥ = U⊥ ∩W⊥.
(b) (U ∩W )⊥ = U⊥ +W⊥.

3. Let {e1, . . . , en} be an orthonormal basis for an arbitrary inner product
space V . If u =

∑
i uiei and v =

∑
i viei are any vectors in V , show that

〈u, v〉 =
n∑

i=1

u∗i vi

(this is just the generalization of Example 1.9).

4. Suppose {e1, . . . , en} is an orthonormal set in a vector space V , and x is
any element of V . Show that the expression

∥∥∥∥x−
n∑

k=1

akek

∥∥∥∥

achieves its minimum value when each of the scalars ak is equal to the
Fourier coefficient ck = 〈ek, x〉. [Hint : Using Theorem 1.20 and the
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Pythagorean theorem (see Exercise 1.5.3), add and subtract the term∑n
k=1 ckek in the above expression to conclude that

∥∥∥∥x−
n∑

k=1

ckek

∥∥∥∥
2

≤
∥∥∥∥x−

n∑

k=1

akek

∥∥∥∥
2

for any set of scalars ak.]

5. Let {e1, . . . , en} be an orthonormal set in an inner product space V , and
let ck = 〈ek, x〉 be the Fourier coefficient of x ∈ V with respect to ek.
Prove Bessel’s inequality:

n∑

k=1

|ck|2 ≤ ‖x‖2

[Hint : Use the definition of the norm along with the obvious fact that

0 ≤ ‖x−∑n
k=1 ckek‖2.]

6. Find an orthonormal basis (relative to the standard inner product) for the
following subspaces:

(a) The subspace W of C3 spanned by the vectors u1 = (1, i, 0) and
u2 = (1, 2, 1− i).

(b) The subspace W of R4 spanned by u1 = (1, 1, 0, 0), u2 = (0, 1, 1, 0)
and u3 = (0, 0, 1, 1).

7. Consider the space R3 with the standard inner product.

(a) Convert the vectors u1 = (1, 0, 1), u2 = (1, 0,−1) and u3 = (0, 3, 4) to
an orthonormal basis {e1, e2, e3} of R3.

(b) Write the components of an arbitrary vector x = (x1, x2, x3) ∈ R3 in
terms of the basis {ei}.

8. Let V be the space of all polynomials of degree ≤ 3 defined on the interval
[−1, 1]. Define an inner product on V by

〈f, g〉 =
∫ 1

−1

f(t)g(t) dt.

Find an orthonormal basis for V generated by the functions {1, x, x2, x3}.

9. Let V and W be isomorphic inner product spaces under the vector space
homomorphism φ : V → W , and assume that φ has the additional prop-
erty that

‖φ(x)− φ(y)‖ = ‖x− y‖ .
Such a φ is called an isometry, and V and W are said to be isometric

spaces. (We also note that the norm on the left side of this equation is in
W , while the norm on the right side is in V . We shall rarely distinguish
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between norms in different spaces unless there is some possible ambiguity.)
Let V have orthonormal basis {v1, . . . , vn} so that any x ∈ V may be
written as x =

∑
xivi. Prove that the mapping φ : V → Rn defined by

φ(x) = (x1, . . . , xn) is an isometry of V onto Rn (with the standard inner
product).

10. Let {e1, e2, e3} be an orthonormal basis for R3, and let {u1, u2, u3} be three
mutually orthonormal vectors in R3. Let uλ

i denote the ith component
of uλ with respect to the basis {ei}. Prove the completeness relation

3∑

λ=1

uλ
iuλ

j = δij .

11. Let W be a finite-dimensional subspace of a possibly infinite-dimensional
inner product space V . Prove that V = W⊕W⊥. [Hint : Let {w1, . . . , wk}
be an orthonormal basis for W , and for any x ∈ V define

x1 =

k∑

i=1

〈wi, x〉wi

and x2 = x−x1. Show that x1 +x2 ∈W +W⊥, and that W ∩W⊥ = {0}.]



Chapter 2

Linear Equations and

Matrices

In this chapter we introduce matrices via the theory of simultaneous linear
equations. This method has the advantage of leading in a natural way to the
concept of the reduced row echelon form of a matrix. In addition, we will
formulate some of the basic results dealing with the existence and uniqueness
of systems of linear equations. In Chapter 4 we will arrive at the same matrix
algebra from the viewpoint of linear transformations.

In order to introduce the idea of simultaneous linear equations, suppose we
have two lines in the plane R2, and we ask whether or not they happen to
intersect anywhere. To be specific, say the lines have the equations

x2 =−(1/2)x1 + 5/2
x2 = x1 − 1/2.

(2.1)

If these lines intersect, then there exists a point (x1, x2) ∈ R2 that satisfies both
of these equations, and hence we would like to solve the pair of equations

x1 + 2x2 = 5
x1 − x2 = 1/2.

(2.2)

In this particular case, the easiest way to solve these is to use equation (2.1)
directly and simply equate −(1/2)x1 + 5/2 = x1 − 1/2 to obtain x1 = 2 and
hence x2 = x1−1/2 = 3/2. But a more general approach is to use equation (2.2)
as follows. Multiply the first of equations (2.2) by −1 and add to the second to
obtain a new second equation −3x2 = −9/2. This again yields x2 = 3/2 and
hence also x1 = 5− 2x2 = 2.

We now turn our attention to generalizing this situation to more than two
variables. This leads to systems of m linear equations in n unknowns.

47
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2.1 Systems of Linear Equations

Let a1, . . . , an, y be elements of a field F , and let x1, . . . , xn be unknowns (also
called variables or indeterminates). Then an equation of the form

a1x1 + · · ·+ anxn = y

is called a linear equation in n unknowns (over F). The scalars ai are
called the coefficients of the unknowns, and y is called the constant term of
the equation. A vector (c1, . . . , cn) ∈ Fn is called a solution vector of this
equation if and only if

a1c1 + · · ·+ ancn = y

in which case we say that (c1, . . . , cn) satisfies the equation. The set of all such
solutions is called the solution set (or the general solution).

Now consider the following system of m linear equations in n un-

knowns:
a11x1 + · · · + a1nxn = y1
a21x1 + · · · + a2nxn = y2

...
am1x1 + · · · + amnxn = ym

We abbreviate this system by

n∑

j=1

aijxj = yi, i = 1, . . . ,m.

If we let Si denote the solution set of the equation
∑

j aijxj = yi for each i,
then the solution set S of the system is given by the intersection S =

⋂
Si. In

other words, if (c1, . . . , cn) ∈ Fn is a solution of the system of equations, then
it is a solution of each of the m equations in the system.

Example 2.1. Consider this system of two equations in three unknowns over
the real field R:

2x1 − 3x2 + x3 = 6
x1 + 5x2 − 2x3 = 12

The vector (3, 1, 3) ∈ R3 is not a solution of this system because

2(3)− 3(1) + 3 = 6

while
3 + 5(1)− 2(3) = 2 6= 12.

However, the vector (5, 1,−1) ∈ R3 is a solution since

2(5)− 3(1) + (−1) = 6

and
5 + 5(1)− 2(−1) = 12.



2.1. SYSTEMS OF LINEAR EQUATIONS 49

Associated with a system of linear equations are two rectangular arrays of
elements of F that turn out to be of great theoretical as well as practical sig-
nificance. For the system

∑
j aijxj = yi, we define the matrix of coefficients

A as the array

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




and the augmented matrix as the array augA given by

augA =




a11 a12 · · · a1n y1
a21 a22 · · · a2n y2
...

...
...

...
am1 am2 · · · amn yn




In general, we will use the term matrix to denote any array such as the
array A shown above. This matrix has m rows and n columns, and hence is
referred to as an m × n matrix, or a matrix of size m × n. By convention, an
element aij ∈ F of A is labeled with the first index referring to the row and the
second index referring to the column. The scalar aij is usually called the i, jth
entry (or element) of the matrix A. We will frequently denote the matrix A
by the symbol (aij).

Before proceeding with the general theory, let us give a specific example
demonstrating how to solve a system of linear equations.

Example 2.2. Let us attempt to solve the following system of linear equations:

2x1 + x2 − 2x3 =−3
x1 − 3x2 + x3 = 8

4x1 − x2 − 2x3 = 3

That our approach is valid in general will be proved in our first theorem below.
Multiply the first equation by 1/2 to get the coefficient of x1 equal to 1:

x1 + (1/2)x2 − x3 =−3/2
x1 − 3x2 + x3 = 8

4x1 − x2 − 2x3 = 3

Multiply this first equation by −1 and add it to the second to obtain a new
second equation, then multiply this first equation by −4 and add it to the third
to obtain a new third equation:

x1 + (1/2)x2 − x3 =−3/2
−(7/2)x2 + 2x3 = 19/2
−3x2 + 2x3 = 9
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Multiply this second by−2/7 to get the coefficient of x2 equal to 1, then multiply
this new second equation by 3 and add to the third:

x1 + (1/2)x2 − x3 = −3/2
x2 − (4/7)x3 =−19/7

(2/7)x3 = 6/7

Multiply the third by 7/2, then add 4/7 times this new equation to the second:

x1 + (1/2)x2 − x3 =−3/2
x2 = −1

x3 = 3

Add the third equation to the first, then add −1/2 times the second equation
to the new first to obtain

x1 = 2
x2 =−1
x3 = 3

This is now a solution of our system of equations. While this system could have
been solved in a more direct manner, we wanted to illustrate the systematic
approach that will be needed below.

Two systems of linear equations are said to be equivalent if they have equal
solution sets. That each successive system of equations in Example 2.2 is indeed
equivalent to the previous system is guaranteed by the following theorem. Note
that this theorem is nothing more than a formalization of the above example.

Theorem 2.1. The system of two equations in n unknowns over a field F

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

(2.3)

with a11 6= 0 is equivalent to the system

a11x1 + a12x2 + · · · + a1nxn = b1
a′22x2 + · · · + a′2nxn = b′2

(2.4)

in which
a′2i = a11a2i − a21a1i

for each i = 1, . . . , n and
b′2 = a11b2 − a21b1
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Proof. Let us define

Li =

n∑

j=1

aijxj

so that equations (2.3) may be written as the system

L1 = b1
L2 = b2

(2.5)

while equations (2.4) are just

L1 = b1
−a21L1 + a11L2 =−a21b1 + a11b2

(2.6)

If (x1, . . . , xn) ∈ Fn is a solution of equations (2.5), then the two equations

a21L1 = a21b1
a11L2 = a11b2

and hence also
−a21L1 + a11L2 = −a21b1 + a11b2

are all true equations. Therefore every solution of equations (2.5) also satisfies
equations (2.6).

Conversely, suppose that we have a solution (x1, . . . , xn) to the system (2.6).
Then clearly

a21L1 = a21b1

is a true equation. Hence, adding this to the second of equations (2.6) gives us

a21L1 + (−a21L1 + a11L2) = a21b1 + (−a21b1 + a11b2)

or
a11L2 = a11b2.

Thus L2 = b2 is also a true equation. This shows that any solution of equations
(2.6) is a solution of equations (2.5) also.

It should now be reasonably clear why we defined the matrix augA — we
want to perform the above operations on augA to end up (if possible) with a
matrix of the form 



x1 0 · · · 0 c1
0 x2 · · · 0 c2
...

...
...

...
0 0 · · · xn cn


 .

From here we see that the solution to our system is simply xi = ci.
We point out that in the proof of Theorem 2.1 (as well as in Example 2.2),

it was only the coefficients themselves that were of any direct use to us. The
unknowns xi were never actually used in any of the manipulations. This is the
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reason that we defined the matrix of coefficients (aij). What we now proceed
to do is to generalize the above method of solving systems of equations in a
manner that utilizes this matrix explicitly.

Exercises

1. For each of the following systems of equations, find a solution if it exists:

(a) x+ 2y − 3z =−1
3x− y + 2z = 7
5x+ 3y − 4z = 2

(b) 2x+ y − 2z = 10
3x+ 2y + 2z = 1
5x+ 4y + 3z = 4

(c) x+ 2y − 3z = 6
2x− y + 4z = 2
4x+ 3y − 2z = 14

2. Determine whether or not the each of the following two systems is equiv-
alent (over C):

(a) x− y = 0
2x+ y = 0

and 3x+ y = 0
x+ y = 0

(b) −x+ y + 4z = 0
x+ 3y + 8z = 0

(1/2)x+ y + (5/2)z = 0

and x − z = 0
y + 3z = 0

(c) 2x+ (−1 + i)y + t= 0
3y − 2iz + 5t= 0

and

(1 + i/2)x+ 8y − iz − t= 0
(2/3)x− (1/2)y + z + 7t= 0

2.2 Elementary Row Operations

The important point to realize in Example 2.2 is that we solved a system of
linear equations by performing some combination of the following operations:

(a) Change the order in which the equations are written.
(b) Multiply each term in an equation by a nonzero scalar.
(c) Multiply one equation by a nonzero scalar and then add this new equa-

tion to another equation in the system.

Note that (a) was not used in Example 2.2, but it would have been necessary if
the coefficient of x1 in the first equation had been 0. The reason for this is that
we want the equations put into echelon form as defined below.

We now see how to use the matrix augA as a tool in solving a system of
linear equations. In particular, we define the following so-called elementary

row operations (or transformations) as applied to the augmented matrix:
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(α) Interchange two rows.
(β) Multiply one row by a nonzero scalar.
(γ) Add a scalar multiple of one row to another.

It should be clear that operations (α) and (β) have no effect on the solution set
of the system and, in view of Theorem 2.1, that operation (γ) also has no effect.

The next two examples show what happens both in the case where there is
no solution to a system of linear equations, and in the case of an infinite number
of solutions. In performing these operations on a matrix, we will let Ri denote
the ith row. We leave it to the reader to repeat Example 2.2 using this notation.

Example 2.3. Consider this system of linear equations over the field R:

x+ 3y + 2z = 7
2x+ y − z = 5
−x+ 2y + 3z = 4

The augmented matrix is 


1 3 2 7
2 1 −1 5
−1 2 3 4




and the reduction proceeds as follows.
We first perform the following elementary row operations:

R2 − 2R1→
R3 + R1→




1 3 2 7
0 −5 −5 −9
0 5 5 11




Now, using this matrix, we obtain

−R2→
R3 +R2→




1 3 2 7
0 5 5 9
0 0 0 2




It is clear that the equation 0z = 2 has no solution, and hence this system has
no solution.

Example 2.4. Let us solve the following system over the field R:

x1 − 2x2 + 2x3 − x4 =−14
3x1 + 2x2 − x3 + 2x4 = 17
2x1 + 3x2 − x3 − x4 = 18
−2x1 + 5x2 − 3x3 − 3x4 = 26
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We have the matrix augA given by




1 −2 2 −1 −14
3 2 −1 2 17
2 3 −1 −1 18
−2 5 −3 −3 26




and hence we obtain the sequence

R2 − 3R1→
R3 − 2R1→
R4 + 2R1→




1 −2 2 −1 −14
0 8 −7 5 59
0 7 −5 1 46
0 1 1 −5 −2




R4→
R2 − 8R4→
R3 − 7R4→




1 −2 2 −1 −14
0 1 1 −5 −2
0 0 −15 45 75
0 0 −12 36 60




(−1/15)R3→
(−1/12)R4→




1 −2 2 −1 −14
0 1 1 −5 −2
0 0 1 −3 −5
0 0 1 −3 −5




We see that the third and fourth equations are identical, and hence we have
three equations in four unknowns:

x1 − 2x2 + 2x3 − x4 =−14
x2 + x3 − 5x4 = −2

x3 − 3x4 = −5

It is now apparent that there are an infinite number of solutions because, if
we let c ∈ R be any real number, then our solution set is given by x4 = c,
x3 = 3c− 5, x2 = 2c+ 3 and x1 = −c+ 2.

Two m×nmatrices are said to be row equivalent if one can be transformed
into the other by a finite number of elementary row operations. As we stated
just prior to Example 2.3, these elementary row operations have no effect on
the solution set of a system of linear equations. The formal statement of this is
contained in our next theorem.

Theorem 2.2. Let A and B be the augmented matrices of two systems of m
linear equations in n unknowns. If A is row equivalent to B, then both systems
have the same solution set.
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Proof. If A is row equivalent to B, then we can go from the system represented
by A to the system represented by B by a succession of the operations (a), (b)
and (c) described above. It is clear that operations (a) and (b) have no effect
on the solutions, and the method of Theorem 2.1 shows that operation (c) also
has no effect.

In order to describe the desired form of the augmented matrix after perform-
ing the elementary row operations, we need some additional terminology.

A matrix is said to be in row echelon form if successive rows of the matrix
start out (from the left) with more and more zeros. In particular, a matrix is
said to be in reduced row echelon form if it has the following properties
(which are more difficult to state precisely than they are to understand):

(a) All zero rows (if any) occur below all nonzero rows.
(b) The first nonzero entry (reading from the left) in each row is equal to 1.
(c) If the first nonzero entry in the ith row is in the jith column, then every

other entry in the jith column is 0.
(d) If the first nonzero entry in the ith row is in the jith column, then

j1 < j2 < · · · .

Loosely put, the reduced row echelon form has more and more zeros as you
go down the rows, the first element of each nonzero row is a 1, and every other
element above and below that first 1 is a zero.

We will call the first (or leading) nonzero entries in each row of a row
echelon matrix the distinguished elements of the matrix. (The leading entry
of a row that is added to another row is also frequently referred to as a pivot.)
Thus, a matrix is in reduced row echelon form if the distinguished elements
are each equal to 1, and they are the only nonzero entries in their respective
columns.

Example 2.5. The matrix




1 2 −3 0 1
0 0 5 2 −4
0 0 0 7 3
0 0 0 0 0




is in row echelon form but not in reduced row echelon form. However, the matrix




1 0 5 0 2
0 1 2 0 4
0 0 0 1 7
0 0 0 0 0




is in reduced row echelon form. Note that the distinguished elements of the first
matrix are the numbers 1, 5 and 7, and the distinguished elements of the second
matrix are the numbers 1, 1 and 1.
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It should be clear from Example 2.4 that every matrix can be put into
reduced row echelon form. Our next theorem proves this in detail by outlining
an algorithm generally known as Gaussian elimination. (Sometimes this
refers to reducing to row echelon form, and Gauss-Jordan elimination refers
to reducing all the way to reduced row echelon form.)

Theorem 2.3. Every m×n matrix A is row equivalent to a reduced row echelon
matrix.

Proof. Suppose that we first put A into the form where the leading entry in each
nonzero row is equal to 1, and where every other entry in the column containing
this first nonzero entry is equal to 0. (This is called simply the row-reduced

form of A.) If this can be done, then all that remains is to perform a finite
number of row interchanges to achieve the final desired reduced row echelon
form.

To obtain the row-reduced form we proceed as follows. First consider row 1.
If every entry in row 1 is equal to 0, then we do nothing with this row. If row
1 is nonzero, then let j1 be the smallest positive integer for which a1j1 6= 0 and
multiply row 1 by (a1j1 )

−1. Next, for each i 6= 1 we add −aij1 times row 1 to
row i. This leaves us with the leading entry a1j1 of row 1 equal to 1, and every
other entry in the j1th column equal to 0.

Now consider row 2 of the matrix we are left with. Again, if row 2 is equal to
0 there is nothing to do. If row 2 is nonzero, assume that the first nonzero entry
occurs in column j2 (where j2 6= j1 by the results of the previous paragraph).
Multiply row 2 by (a2j2)

−1 so that the leading entry in row 2 is equal to 1, and
then add −aij2 times row 2 to row i for each i 6= 2. Note that these operations
have no effect on either column j1, or on columns 1, . . . , j1 of row 1.

It should now be clear that we can continue this process a finite number of
times to achieve the final row-reduced form. We leave it to the reader to take
an arbitrary matrix (aij) and apply successive elementary row transformations
to achieve the desired final form.

For example, I leave it to you to show that the reduced row echelon form of
the matrix in Example 2.4 is




1 0 0 1 2
0 1 0 −2 3
0 0 1 −3 −5
0 0 0 0 0


 .

While we have shown that every matrix is row equivalent to at least one
reduced row echelon matrix, it is not obvious that this equivalence is unique.
However, we shall show in the next section that this reduced row echelon matrix
is in fact unique. Because of this, the reduced row echelon form of a matrix is
often called the row canonical form.
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Exercises

1. Show that row equivalence defines an equivalence relation on the set of all
matrices.

2. For each of the following matrices, first reduce to row echelon form, and
then to row canonical form:

(a)




1 −2 3 −1
2 −1 2 2
3 1 2 3


 (b)




1 2 −1 2 1
2 4 1 −2 3
3 6 2 −6 5




(c)




1 3 −1 2
0 1 −5 3
2 −5 3 1
4 1 1 5




3. For each of the following systems, find a solution or show that no solution
exists:

(a) x+ y + z = 1
2x− 3y + 7z = 0
3x− 2y + 8z = 4

(b) x− y + 2z = 1
x+ y + z = 2

2x− y + z = 5

(c) x− y + 2z = 4
3x+ y + 4z = 6
x+ y + z = 1

(d) x+ 3y + z = 2
2x+ 7y + 4z = 6
x+ y − 4z = 1

(e) x+ 3y + z = 0
2x+ 7y + 4z = 0
x+ y − 4z = 0

(f) 2x− y + 5z = 19
x+ 5y − 3z = 4

3x+ 2y + 4z = 5

(g) 2x− y + 5z = 19
x+ 5y − 3z = 4

3x+ 2y + 4z = 25

4. Let f1, f2 and f3 be elements of F [R] (i.e., the space of all real-valued
functions defined on R).

(a) Given a set {x1, x2, x3} of real numbers, define the 3×3 matrix F (x) =
(fi(xj)) where the rows are labeled by i and the columns are labeled
by j. Prove that the set {fi} is linearly independent if the rows of the
matrix F (x) are linearly independent.

(b) Now assume that each fi has first and second derivatives defined on

some interval (a, b) ⊂ R, and let f
(j)
i denote the jth derivative of fi

(where f
(0)
i is just fi). Define the matrix W (x) = (f

(j−1)
i (x)) where

1 ≤ i, j ≤ 3. Prove that {fi} is linearly independent if the rows of
W (x) are independent for some x ∈ (a, b). (The determinant of W (x)
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is called the Wronskian of the set of functions {fi}.)

Show that each of the following sets of functions is linearly indepen-
dent:

(c) f1(x) = −x2 + x+ 1, f2(x) = x2 + 2x, f3(x) = x2 − 1.
(d) f1(x) = exp(−x), f2(x) = x, f3(x) = exp(2x).
(e) f1(x) = exp(x), f2(x) = sinx, f3(x) = cosx.

5. Let

A =




3 −1 2
2 1 1
1 −3 0


 .

Determine the values of Y = (y1, y2, y3) for which the system
∑

i aijxj =
yi has a solution.

6. Repeat the previous problem with the matrix

A =




3 −6 2 −1
−2 4 1 3

0 0 1 1
1 −2 1 0




2.3 Row and Column Spaces

We now forget about systems of equations, and instead focus our attention di-
rectly on the matrices themselves. This will be absolutely essential in discussing
the properties of linear transformations.

First of all, it will be extremely useful to consider the rows and columns of an
arbitrarym×n matrix as vectors in their own right. In particular, the rows of A
are to be viewed as vector n-tuples A1, . . . , Am where each Ai = (ai1, . . . , ain) ∈
Fn. Similarly, the columns of A are to be viewed as vector m-tuples A1, . . . , An

where each Aj = (a1j , . . . , amj) ∈ Fm. As we mentioned earlier, for notational
clarity we should write Aj as the column vector



a1j

...
amj




but it is typographically easier to write this horizontally whenever possible.
Note that we label the row vectors of A by subscripts, and the columns of A by
superscripts.

Since each row Ai is an element of Fn, the set of all rows of a matrix can be
used to generate a new vector space V over F . In other words, V is the space
spanned by the rows Ai, and hence any v ∈ V may be written as

v =

m∑

i=1

ciAi
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where each ci ∈ F . The space V (which is apparently a subspace of Fn) is called
the row space of A. The dimension of V is called the row rank of A, and will
be denoted by rr(A). Since V is a subspace of Fn and dimFn = n, it follows
that rr(A) = dim V ≤ n. On the other hand, V is spanned by the m vectors
Ai, so that we must have dim V ≤ m. It then follows that rr(A) ≤ min{m,n}.

In an exactly analogous manner, we define the column spaceW of a matrix
A as that subspace of Fm spanned by the n column vectorsAj . Thus any w ∈ W
is given by

w =

n∑

j=1

bjA
j

The column rank of A, denoted by cr(A), is given by cr(A) = dimW and, as
above, we must have cr(A) ≤ min{m,n}.

We will sometimes denote the row space of A by row(A) and the column
space by col(A).

An obvious question is whether a sequence of elementary row operations
changes either the row space or the column space of a matrix. What we will
show is that the row space itself remains unchanged, and the column space at
least maintains its dimension. In other words, both the row rank and column
rank remain unchanged by a sequence of elementary row operations. We will
then show that in fact the row and column ranks are the same, and therefore we
are justified in defining the rank of a matrix as either the row or column rank.
Let us now verify these statements.

Under elementary row operations, it should be clear that the row space won’t
change because all we are doing is taking different linear combinations of the
same vectors. In other words, the elementary row operations simply result in
a new basis for the row space. In somewhat more formal terms, suppose A is
row-equivalent to Ã. Then the rows of Ã are linear combinations of the rows of
A, and therefore the row space of Ã is a subspace of the row space of A. On
the other hand, we can reverse the order of row operations so that Ã is row
equivalent to A. Then the rows of A are linear combinations of the rows of Ã
so that the row space of A is a subspace of the row space of Ã. Therefore the
row spaces are the same for A and Ã so that rr(A) = rr(Ã).

However, what happens to the column space is not so obvious. The elemen-
tary row transformations interchange and mix up the components of the column
vectors, so the column spaces are clearly not the same in A and Ã. But the
interesting point, and what makes all of this so useful, is that the dimension of
the column space hasn’t changed. In other words, we still have cr(A) = cr(Ã).

Probably the easiest way to see this is to consider those columns of A that are
linearly dependent ; and with no loss of generality we can call them A1, . . . , Ar.
Then their linear dependence means there are nonzero scalars x1, . . . , xr such
that

∑r
i=1 A

ixi = 0. In full form this is


a11

...
am1


x1 + · · ·+



a1r

...
amr


xr = 0.
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But this is a system of m linear equations in r unknowns, and we have seen
that the solution set doesn’t change under row equivalence. In other words,∑r

i=1 Ã
ixi = 0 for the same coefficients xi. Then the same r columns of Ã are

linearly dependent, and hence both A and Ã have the same (n− r) independent
columns, i.e., cr(A) = cr(Ã). (There can’t be more dependent columns of Ã
than A because we can apply the row operations in reverse to go from Ã to A.
If Ã had more dependent columns, then when we got back to A we would have
more than we started with.)

Let us summarize what we have just said as a theorem for ease of reference.

Theorem 2.4. Let A and Ã be row equivalent m × n matrices. Then the row
space of A is equal to the row space of Ã, and hence rr(A) = rr(Ã). Furthermore,
we also have cr(A) = cr(Ã). (However, note that the column space of A is not
necessarily the same as the column space of Ã.)

Now look back at the reduced row echelon form of a matrix A (as in Example
2.5). The number of nonzero rows of A is just rr(A), and all of these rows begin
with a 1 (the distinguished elements). But all other entries in each column
containing these distinguished elements are 0, and the remaining columns are
linear combinations of these. In other words, the number of linearly independent
columns in the reduced row echelon form of A is the same as the row rank of A.

This discussion proves the following very important result.

Theorem 2.5. If A = (aij) is any m× n matrix over a field F , then rr(A) =
cr(A).

In view of this theorem, we define the rank of a matrix A as the number
rank(A) given by

rank(A) = rr(A) = cr(A).

The concept of rank is extremely important in many branches of mathemat-
ics (and hence physics and engineering). For example, the inverse and implicit
function theorems, surface theory in differential geometry, and the theory of
linear transformations (which we will cover in a later chapter) all depend on
rank in a fundamental manner.

Combining Theorem 2.5 with the discussion just prior to it, we have the
basis for a practical method of finding the rank of a matrix.

Theorem 2.6. If A is any matrix, then rank(A) is equal to the number of
nonzero rows in the (reduced) row echelon matrix row equivalent to A. (Alter-
natively, rank(A) is the number of nonzero columns in the (reduced) column-
echelon matrix column equivalent to A.)
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There is one special case that is worth pointing out. By way of terminology,
if A is an n × n matrix such that aij = 0 for i 6= j and aii = 1, then we say
that A is the identity matrix of size n, and write this matrix as In. Since the
size is usually understood, we will generally simply write I. If I = (Iij), then
another useful way of writing this is in terms of the Kronecker delta as Iij = δij .
Written out, I has the form

I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




If A is an n×n matrix and rank(A) = n, then the reduced row echelon form
of A is just the identity matrix In, and we have the next result.

Theorem 2.7. If A is an n×n matrix of rank n, then the reduced row echelon
matrix row equivalent to A is the identity matrix In.

An n× n matrix of rank n is said to be nonsingular, and if rank(A) < n,
then A is said to be singular. As we will see shortly, if a matrix is nonsingular,
we will be able to define an “inverse.” But to do so, we first have to define
matrix multiplication. We will return to this after the next section.

Example 2.6. Let us find the rank of the matrix A given by

A =




1 2 −3
2 1 0
−2 −1 3
−1 4 −2


 .

To do this, we will apply Theorem 2.6 to columns instead of rows (just for vari-
ety). Proceeding with the elementary transformations, we obtain the following
sequence of matrices:




1 0 0
2 −3 6
−2 3 −3
−1 6 −5




↑ ↑
A2 − 2A1 A3 + 3A1




1 0 0
2 −1 0
−2 1 1
−1 2 7/3




↑ ↑
(1/3)A2 (1/3)(A3 + 2A2)
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1 0 0
0 1 0
0 0 1
3 1/3 7/3




↑ ↑
A1 + 2A2 −(A2 −A3)

Thus the reduced column-echelon form of A has three nonzero columns, so
that rank(A) = cr(A) = 3. We leave it to the reader (see Exercise 2.3.1) to
show that the row canonical form of A is




1 0 0
0 1 0
0 0 1
0 0 0




and hence rank(A) = cr(A) = rr(A) as it should.

Exercises

1. Verify the row-canonical form of the matrix in Example 2.6.

2. Let A and B be arbitrary m × n matrices. Show that rank(A + B) ≤
rank(A) + rank(B).

3. Using elementary row operations, find the rank of each of the following
matrices:

(a)




1 3 1 −2 −3
1 4 3 −1 −4
2 3 −4 −7 −3
3 8 1 −7 −8


 (b)




1 2 −3
2 1 0
−2 −1 3
−1 4 −2




(c)




1 3
0 −2
5 −1
−2 3


 (d)




5 −1 1
2 1 −2
0 −7 12




4. Repeat the previous problem using elementary column operations.

2.4 Solutions to Systems of Linear Equations

We now apply the results of the previous section to the determination of some
general characteristics of the solution set to systems of linear equations. We
will have more to say on this subject after we have discussed determinants in
the next chapter.
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To begin with, a system of linear equations of the form

n∑

j=1

aijxj = 0, i = 1, . . . ,m

is called a homogeneous system of m linear equations in n unknowns. It is
obvious that choosing x1 = x2 = · · · = xn = 0 will satisfy this system, but this
is not a very interesting solution. It is called the trivial (or zero) solution.
Any other solution, if it exists, is referred to as a nontrivial solution.

A more general type of system of linear equations is of the form

n∑

j=1

aijxj = yi, i = 1, . . . ,m

where each yi is a given scalar. This is then called an inhomogeneous system

(or sometimes a nonhomogeneous system) of linear equations. Let us define
the column vector

Y = (y1, . . . , ym) ∈ Fm

and also note that aijxj is just xj times the ith component of the jth column
Aj ∈ Fm. Thus our system of inhomogeneous equations may be written in the
form

n∑

j=1

Ajxj =




a11

a21

...
am1


x1 +




a12

a22

...
am2


x2 + · · ·+




a1n

a2n

...
amn


xn = Y

where this vector equation is to be interpreted in terms of its components.
(In the next section, we shall see how to write this as a product of matrices.)
It should also be obvious that a homogeneous system may be written in this
notation as

n∑

j=1

Ajxj = 0.

Let us now look at some elementary properties of the solution set of a ho-
mogeneous system of equations.

Theorem 2.8. The solution set S of a homogeneous system of m equations in
n unknowns is a subspace of Fn.

Proof. Let us write our system as
∑

j aijxj = 0. We first note that S 6= ∅ since
(0, . . . , 0) ∈ Fn is the trivial solution of our system. If u = (u1, . . . , un) ∈ Fn

and v = (v1, . . . , vn) ∈ Fn are both solutions, then

∑

j

aij(uj + vj) =
∑

j

aijuj +
∑

j

aijvj = 0
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so that u+ v ∈ S. Finally, if c ∈ F then we also have
∑

j

aij(cuj) = c
∑

j

aijuj = 0

so that cu ∈ S.

If we look back at Example 2.4, we see that a system of m equations in
n > m unknowns will necessarily result in a nonunique, and hence nontrivial,
solution. The formal statement of this fact is contained in our next theorem.

Theorem 2.9. Let a homogeneous system of m equations in n unknowns have
the m×n matrix of coefficients A. Then the system has a nontrivial solution if
and only if rank(A) < n.

Proof. By writing the system in the form
∑

j xjA
j = 0, it is clear that a non-

trivial solution exists if and only if the n column vectors Aj ∈ Fm are linearly
dependent. Since the rank of A is equal to the dimension of its column space,
we must therefore have rank(A) < n.

It should now be clear that if an n× n (i.e., square) matrix of coefficients A
(of a homogeneous system) has rank equal to n, then the only solution will be
the trivial solution since reducing the augmented matrix (which then has the
last column equal to the zero vector) to reduced row echelon form will result in
each variable being set equal to zero (see Theorem 2.7).

Theorem 2.10. Let a homogeneous system of linear equations in n unknowns
have a matrix of coefficients A. Then the solution set S of this system is a
subspace of Fn with dimension

dimS = n− rank(A).

Proof. Assume that S is a nontrivial solution set, so that by Theorem 2.9 we
have rank(A) < n. Assume also that the unknowns x1, . . . , xn have been ordered
in such a way that the first k = rank(A) columns of A span the column space
(this is guaranteed by Theorem 2.4). Then the remaining columns Ak+1, . . . , An

may be written as

Ai =
k∑

j=1

bijA
j , i = k + 1, . . . , n

where each bij ∈ F . If we define bii = −1 and bij = 0 for j 6= i and j > k, then
we may write this as

n∑

j=1

bijA
j = 0, i = k + 1, . . . , n
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(note the upper limit on this sum differs from the previous equation). Next we
observe that the solution set S consists of all vectors x ∈ Fn such that

n∑

j=1

xjA
j = 0

and hence in particular, the n− k vectors

b(i) = (bi1, . . . , bin)

for each i = k + 1, . . . , n must belong to S. We show that they in fact form a
basis for S, which is then of dimension n− k.

To see this, we first write out each of the b(i):

b(k+1) = (bk+1,1, . . . , bk+1,k,−1, 0, 0, . . . , 0)

b(k+2) = (bk+2,1, . . . , bk+2,k, 0,−1, 0, . . . , 0)

...

b(n) = (bn1, . . . , bnk, 0, 0, . . . , 0,−1).

Hence for any set {ci} of n− k scalars we have

n∑

i=k+1

cib
(i) =

(
n∑

i=k+1

cibi1, . . . ,

n∑

i=k+1

cibik,−ck+1, . . . ,−cn
)

and therefore
n∑

i=k+1

cib
(i) = 0

if and only if ck+1 = · · · = cn = 0. This shows that the b(i) are linearly
independent. (This should have been obvious from their form shown above.)

Now suppose that d = (d1, . . . , dn) is any solution of

n∑

j=1

xjA
j = 0.

Since S is a vector space (Theorem 2.8), any linear combination of solutions is
a solution, and hence the vector

y = d+

n∑

i=k+1

dib
(i)

must also be a solution. In particular, writing out each component of this
expression shows that

yj = dj +

n∑

i=k+1

dibij
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and hence the definition of the bij shows that y = (y1, . . . , yk, 0, . . . , 0) for some
set of scalars yi. Therefore, we have

0 =

n∑

j=1

yjA
j =

k∑

j=1

yjA
j

and since {A1, . . . , Ak} is linearly independent, this implies that yj = 0 for each
j = 1, . . . , k. Hence y = 0 so that

d = −
n∑

i=k+1

dib
(i)

and we see that any solution may be expressed as a linear combination of the
b(i).

Since the b(i) are linearly independent and we just showed that they span S,
they must form a basis for S.

Suppose that we have a homogeneous system of m equations in n > m
unknowns, and suppose that the coefficient matrix A is in row echelon form and
has rank m. Then each of the m successive equations contains fewer and fewer
unknowns, and since there are more unknowns than equations, there will be
n−m = n− rank(A) unknowns that do not appear as the first entry in any of
the rows of A. These n−rank(A) unknowns are called free variables. We may
arbitrarily assign any value we please to the free variables to obtain a solution
of the system.

Let the free variables of our system be xi1 , . . . , xik
where k = n − m =

n− rank(A), and let vs be the solution vector obtained by setting xis
equal to

1 and each of the remaining free variables equal to 0. (This is essentially what
was done in the proof of Theorem 2.10.) We claim that v1, . . . , vk are linearly
independent and hence form a basis for the solution space of the (homogeneous)
system (which is of dimension n− rank(A) by Theorem 2.10).

To see this, we basically follow the proof of Theorem 2.10 and let B be the
k × n matrix whose rows consist of the solution vectors vs. For each s, our
construction is such that we have xis

= 1 and xir
= 0 for r 6= s (and the

remaining m = n − k unknowns are in general nonzero). In other words, the
solution vector vs has a 1 in the position of xis

, while for r 6= s the vector vr has
a 0 in this same position. This means that each of the k columns corresponding
to the free variables in the matrix B contains a single 1 and the rest zeros. We
now interchange column 1 and column i1, then column 2 and column i2, . . . ,
and finally column k and column ik. This yields the matrix

C =




1 0 0 · · · 0 0 b1,k+1 · · · b1n

0 1 0 · · · 0 0 b2,k+1 · · · b2n

...
...

...
...

...
...

...

0 0 0 · · · 0 1 bk,k+1 · · · bkn
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where the entries bi,k+1, . . . , bin are the values of the remaining m unknowns in
the solution vector vi. Since the matrix C is in row echelon form, its rows are
independent and hence rank(C) = k. However, C is column-equivalent to B,
and therefore rank(B) = k also (by Theorem 2.4 applied to columns). But the
rows of B consist precisely of the k solution vectors vs, and thus these solution
vectors must be independent as claimed.

Example 2.7. Consider the homogeneous system of linear equations

x+ 2y − 4z + 3w − t= 0
x+ 2y − 2z + 2w + t= 0

2x+ 4y − 2z + 3w + 4t= 0

If we reduce this system to row echelon form, we obtain

x+ 2y − 4z + 3w − t= 0
2z − w + 2t= 0

(2.7)

It is obvious that the rank of the matrix of coefficients is 2, and hence the
dimension of the solution space is 5− 2 = 3. The free variables are clearly y, w
and t. The solution vectors vs are obtained by choosing (y = 1, w = 0, t = 0),
(y = 0, w = 1, t = 0) and (y = 0, w = 0, t = 1). Using each of the these in
equation 2.7, we obtain the solutions

v1 = (−2, 1, 0, 0, 0)

v2 = (−1, 0, 1/2, 1, 0)

v3 = (−3, 0,−1, 0, 1)

Thus the vectors v1, v2 and v3 form a basis for the solution space of the homo-
geneous system.

We emphasize that the corollary to Theorem 2.4 shows us that the solu-
tion set of a homogeneous system of equations is unchanged by elementary row
operations. It is this fact that allows us to proceed as we did in Example 2.7.

We now turn our attention to the solutions of an inhomogeneous system of
equations

∑
j aijxj = yi.

Theorem 2.11. Let an inhomogeneous system of linear equations have matrix
of coefficients A. Then the system has a solution if and only if rank(A) =
rank(augA).

Proof. Let c = (c1, . . . , cn) be a solution of
∑

j aijxj = yi. Then writing this as
∑

j

cjA
j = Y
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shows us that Y is in the column space of A, and hence

rank(augA) = cr(augA) = cr(A) = rank(A).

Conversely, if cr(augA) = rank(augA) = rank(A) = cr(A), then Y is in the
column space of A, and hence Y =

∑
cjA

j for some set of scalars cj . But then
the vector c = (c1, . . . , cn) is a solution since it obviously satisfies

∑
j aijxj =

yi.

Using Theorem 2.10, it is easy to describe the general solution to an inho-
mogeneous system of equations.

Theorem 2.12. Let
n∑

j=1

aijxj = yi

be a system of inhomogeneous linear equations. If u = (u1, . . . , un) ∈ Fn is a
solution of this system, and if S is the solution space of the associated homoge-
neous system, then the set

u+ S = {u+ v : v ∈ S}

is the solution set of the inhomogeneous system.

Proof. If w = (w1, . . . , wn) ∈ Fn is any other solution of
∑

j aijxj = yi, then

∑

j

aij(wj − uj) =
∑

j

aijwj −
∑

j

aijuj = yi − yi = 0

so that w − u ∈ S, and hence w = u + v for some v ∈ S. Conversely, if v ∈ S
then ∑

j

aij(uj + vj) =
∑

j

aijuj +
∑

j

aijvj = yj + 0 = yj

so that u+ v is a solution of the inhomogeneous system.

Theorem 2.13. Let A be an n× n matrix of rank n. Then the system

n∑

j=1

Ajxj = Y

has a unique solution for arbitrary vectors Y ∈ Fn.
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Proof. Since Y =
∑
Ajxj , we see that Y ∈ Fn is just a linear combination

of the columns of A. Since rank(A) = n, it follows that the columns of A are
linearly independent and hence form a basis for Fn. But then any Y ∈ Fn has
a unique expansion in terms of this basis (Theorem 1.4, Corollary 2) so that the
vector X with components xj must be unique.

Example 2.8. Let us find the complete solution set over the real numbers of
the inhomogeneous system

3x1 + x2 + 2x3 + 4x4 = 1
x1 − x2 + 3x3 − x4 = 3
x1 + 7x2 − 11x3 + 13x4 =−13

11x1 + x2 + 12x3 + 10x4 = 9

We assume that we somehow found a particular solution u = (2, 5, 1,−3) ∈ R4,
and hence we seek the solution set S of the associated homogeneous system.
The matrix of coefficients A of the homogeneous system is given by

A =




3 1 2 4
1 −1 3 −1
1 7 −11 13

11 1 12 10




The first thing we must do is determine rank(A). Since the proof of Theorem
2.10 dealt with columns, we choose to construct a new matrix B by applying
elementary column operations to A. Thus we define

B =




1 0 0 0
−1 4 5 3

7 −20 −25 −15
1 8 10 6




where the columns of B are given in terms of those of A by B1 = A2, B2 =
A1 − 3A2, B3 = A3 − 2A2 and B4 = A4 − 4A2 . It is obvious that B1 and B2

are independent, and we also note that B3 = (5/4)B2 and B4 = (3/4)B2. Then
rank(A) = rank(B) = 2, and hence we have dimS = 4− 2 = 2.

(An alternative method of finding rank(A) is as follows. If we interchange
the first two rows of A and then add a suitable multiple the new first row to
eliminate the first entry in each of the remaining three rows, we obtain




1 −1 3 −1
0 4 −7 7
0 8 −14 14
0 12 −21 21




It is now clear that the first two rows of this matrix are independent, and that the
third and fourth rows are each multiples of the second. Therefore rank(A) = 2
as above.)
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We now follow the first part of the proof of Theorem 2.10. Observe that
since rank(A) = 2 and the first two columns of A are independent, we may
write

A3 = (5/4)A1 − (7/4)A2

and
A4 = (3/4)A1 + (7/4)A2.

We therefore define the vectors

b(3) = (5/4,−7/4,−1, 0)

and
b(4) = (3/4, 7/4, 0,−1)

which are independent solutions of the homogeneous system and span the solu-
tion space S. Therefore the general solution set to the inhomogeneous system
is given by

u+ S = {u+ αb(3) + βb(4)}
= {(2, 5, 1,−3) + α(5/4,−7/4,−1, 0) + β(3/4, 7/4, 0, 1)}

where α, β ∈ R are arbitrary.

Exercises

1. Find the dimension and a basis for the solution space of each of the fol-
lowing systems of linear equations over R:

(a) x+ 4y + 2z = 0
2x+ y + 5z = 0

(b) x+ 3y + 2z = 0
x+ 5y + z = 0

3x+ 5y + 8z = 0

(c) x+ 2y + 2z − w + 3t= 0
x+ 2y + 3z + w + t= 0

3x+ 6y + 8z + w + t= 0

(d) x+ 2y − 2z − 2w − t= 0
x+ 2y − z + 3w − 2t= 0

2x+ 4y − 7z + w + t= 0

2. Consider the subspaces U and V of R4 given by

U = {(a, b, c, d) ∈ R4 : b+ c+ d = 0}
V = {(a, b, c, d) ∈ R4 : a+ b = 0 and c = 2d}.

(a) Find the dimension and a basis for U .
(b) Find the dimension and a basis for V .
(c) Find the dimension and a basis for U ∩ V .
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3. Find the complete solution set of each of the following systems of linear
equations over R:

(a) 3x− y = 7
2x+ y = 1

(b) 2x− y + 3z = 5
3x+ 2y − 2z = 1
7x+ 4z = 11

(c) 5x+ 2y − z = 0
3x+ 5y + 3z = 0
x+ 8y + 7z = 0

(d) x− y + 2z + w = 3
2x+ y − z − w = 1
3x+ y + z − 3w = 2
3x− 2y + 6z = 7

2.5 Matrix Algebra

We now introduce the elementary algebraic operations on matrices. These oper-
ations will be of the utmost importance throughout the remainder of this text.
In Chapter 4 we will see how these definitions arise in a natural way from the
algebra of linear transformations.

Given two m × n matrices A = (aij) and B = (bij), we define their sum

A+B to be the matrix with entries

(A+B)ij = aij + bij

obtained by adding the corresponding entries of each matrix. Note that both A
and B must be of the same size. We also say that A equals B if aij = bij for
all i and j. It is obvious that

A+B = B +A

and that
A+ (B + C) = (A+B) + C

for any other m×n matrix C. We also define the zero matrix 0 as that matrix
for which A+0 = A. In other words, (0)ij = 0 for every i and j. Given a matrix
A = (aij), we define its negative (or additive inverse)

−A = (−aij)

such that A + (−A) = 0. Finally, for any scalar c we define the product of c
and A to be the matrix

cA = (caij).

Since in general the entries aij in a matrix A = (aij) are independent of each
other, it should now be clear that the set of all m× n matrices forms a vector
space of dimension mn over a field F of scalars. In other words, any m × n
matrix A with entries aij can be written in the form

A =
m∑

i=1

n∑

j=1

aijEij
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where the m×n matrix Eij is defined as having a 1 in the (i, j)th position and
0’s elsewhere, and there are clearly mn such matrices. Observe that another
way of describing the matrix Eij is to say that it has entries (Eij)rs = δirδjs.

We denote the space of all m × n matrices over the field F by Mm×n(F).
The particular case of m = n defines the space Mn(F) of all square matrices
of size n. We will often refer to a matrix in Mn(F) as an n-square matrix.

Now let A ∈ Mm×n(F) be an m × n matrix, B ∈ Mr×m(F) be an r ×m
matrix, and consider the two systems of linear equations

n∑

j=1

aijxj = yi, i = 1, . . . ,m

and
m∑

j=1

bijyj = zi, i = 1, . . . , r

where X = (x1, . . . , xn) ∈ Fn, Y = (y1, . . . , ym) ∈ Fm and Z = (z1, . . . , zr) ∈
Fr. Substituting the first of these equations into the second yields

zi =

m∑

j=1

bijyj =

m∑

j=1

bij

n∑

k=1

ajkxk =

n∑

k=1

cikxk

where we defined the product of the r×m matrix B and the m× n matrix A
to be the r × n matrix C = BA whose entries are given by

cik =

m∑

j=1

bijajk.

Thus the (i, k)th entry of C = BA is given by the standard scalar product

(BA)ik = Bi ·Ak

of the ith row of B with the kth column of A (where both Ak and Bi are
considered as vectors in Fm). Note that matrix multiplication is generally not
commutative, i.e., AB 6= BA. Indeed, the product AB may not even be defined.

Example 2.9. Let A and B be given by

A =




1 6 −2
3 4 5
7 0 8


 B =




2 −9
6 1
1 −3


 .

Then the product of A and B is given by

C = AB =




1 6 −2
3 4 5
7 0 8






2 −9
6 1
1 −3






2.5. MATRIX ALGEBRA 73

=




1 · 2 + 6 · 6− 2 · 1 −1 · 9 + 6 · 1 + 2 · 3
3 · 2 + 4 · 6 + 5 · 1 −3 · 9 + 4 · 1− 5 · 3
7 · 2 + 0 · 6 + 8 · 1 −7 · 9 + 0 · 1− 8 · 3




=




36 3
35 −38
22 −87


 .

Note that it makes no sense to evaluate the product BA.
It is also easy to see that if we have the matrices

A =

[
1 2
3 4

]
and B =

[
0 1
1 0

]

then

AB =

[
1 2
3 4

] [
0 1
1 0

]
=

[
2 1
4 3

]

while

BA =

[
0 1
1 0

] [
1 2
3 4

]
=

[
3 4
1 2

]
6= AB.

Example 2.10. Two other special cases of matrix multiplication are worth
explicitly mentioning. Let X ∈ Rn be the column vector

X =



x1

...
xn


 .

If A is an m × n matrix, we may consider X to be an n × 1 matrix and form
the product AX :

AX =



a11 · · · a1n

...
...

am1 · · · amn






x1

...
xn


 =



a11x1 + · · ·+ a1nxn

...
am1x1 + · · ·+ amnxn


 =



A1 ·X

...
Am ·X


 .

As expected, the product AX is an m× 1 matrix with entries given by the
standard scalar product Ai · X in Rn of the ith row of A with the vector X .
Note that this may also be written in the form
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AX =



a11

...
am1


 x1 + · · ·+



a1n

...
amn


 xn

which clearly shows that AX is just a linear combination of the columns of A.
Now let Y ∈ Rm be the row vector Y = (y1, . . . , ym). If we view this as a

1×m matrix, then we may form the 1× n matrix product Y A given by

Y A = (y1, . . . , ym)



a11 · · · a1n

...
...

am1 · · · amn




= (y1a11 + · · ·+ ymam1, . . . , y1a1n + · · ·+ ymamn)

= (Y ·A1, . . . , Y ·An)

This again yields the expected form of the product with entries Y ·Ai.

This example suggests the following commonly used notation for systems of
linear equations. Consider the system

n∑

j=1

aijxj = yi

where A = (aij) is an m×n matrix. Suppose that we define the column vectors

X =



x1

...
xn


 ∈ Fn and Y =



y1
...
ym


 ∈ Fm.

If we consider X to be an n× 1 matrix and Y to be an m× 1 matrix, then we
may write this system in matrix notation as

AX = Y.

Note that the ith row vector of A is Ai = (ai1, . . . , ain), so if F = R the
expression

∑
j aijxj = yi may be written as the standard scalar product

Ai ·X = yi.

We leave it to the reader to show that if A is an n× n matrix, then

AIn = InA = A.

Even if A and B are both square matrices (i.e., matrices of the form m×m), the
product AB will not generally be the same as BA unless A and B are diagonal
matrices (see Exercise 2.5.4). However, we do have the following.
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Theorem 2.14. For matrices of proper size (so these operations are defined),
we have:

(i) (AB)C = A(BC) (associative law).
(ii) A(B + C) = AB +AC (left distributive law).
(iii) (B + C)A = BA+ CA (right distributive law).
(iv) k(AB) = (kA)B = A(kB) for any scalar k.

Proof. (i) [(AB)C]ij =
∑

k(AB)ikckj =
∑

r,k(airbrk)ckj =
∑

r,k air(brkckj)

=
∑

r air(BC)rj = [A(BC)]ij .

(ii) [A(B + C)]ij =
∑

k aik(B + C)kj =
∑

k aik(bkj + ckj)

=
∑

k aikbkj +
∑

k aikckj = (AB)ij + (AC)ij

= [(AB) + (AC)]ij .

(iii) Left to the reader (Exercise 2.5.1).
(iv) Left to the reader (Exercise 2.5.1).

Given a matrix A = (aij), we define the transpose of A, denoted by AT =
(aT

ij) to be the matrix with entries given by aT
ij = aji. In other words, if A is an

m× n matrix, then AT is an n×m matrix whose columns are just the rows of
A. Note in particular that a column vector is just the transpose of a row vector.

Example 2.11. If A is given by

[
1 2 3
4 5 6

]

then AT is given by 


1 4
2 5
3 6


 .

Theorem 2.15. The transpose has the following properties:
(i) (A+B)T = AT +BT .
(ii) (AT )T = A.
(iii) (cA)T = cAT for any scalar c.
(iv) (AB)T = BTAT .

Proof. (i) [(A+B)T ]ij = [(A+B)]ji = aji + bji = aT
ij + bTij = (AT +BT )ij .

(ii) (AT )T
ij = (AT )ji = aij = (A)ij .
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(iii) (cA)T
ij = (cA)ji = caij = c(AT )ij .

(iv) (AB)T
ij = (AB)ji =

∑
k ajkbki =

∑
k b

T
ika

T
kj = (BTAT )ij .

Our last basic property of the transpose is the following theorem, the easy
proof of which is left as an exercise.

Theorem 2.16. For any matrix A we have rank(AT ) = rank(A).

Proof. This is Exercise 2.5.2.

We now wish to relate this matrix algebra to our previous results dealing
with the rank of a matrix. Before doing so, let us first make some elementary
observations dealing with the rows and columns of a matrix product. Assume
that A ∈Mm×n(F) and B ∈Mn×r(F) so that the product AB is defined. Since
the (i, j)th entry of AB is given by (AB)ij =

∑
k aikbkj , we see that the ith row

of AB is given by a linear combination of the rows of B:

(AB)i =

(∑

k

aikbk1, . . . ,
∑

k

aikbkr

)
=
∑

k

aik (bk1, . . . , bkr) =
∑

k

aikBk.

This shows that the row space of AB is a subspace of the row space of B.
Another way to write this is to observe that

(AB)i =

(∑

k

aikbk1, . . . ,
∑

k

aikbkr

)

= (ai1, . . . , ain)



b11 · · · b1r

...
...

bn1 · · · bnr


 = AiB.

Similarly, for the columns of a product we find that the jth column of AB
is a linear combination of the columns of A:

(AB)j =




∑
k a1kbkj

...∑
k amkbkj


 =

n∑

k=1



a1k

...
amk


 bkj =

n∑

k=1

Akbkj

and therefore the column space of AB is a subspace of the column space of A.
We also have the result

(AB)j =




∑
k a1kbkj

...∑
k amkbkj


 =



a11 · · · a1n

...
...

am1 · · · amn






b1j

...
bnj


 = ABj .

These formulas will be quite useful to us in a number of theorems and calcula-
tions.
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Theorem 2.17. If A and B are any matrices for which the product AB is
defined, then the row space of AB is a subspace of the row space of B, and the
column space of AB is a subspace of the column space of A.

Proof. As we saw above, using (AB)i =
∑

k aikBk it follows that the ith row of
AB is in the space spanned by the rows of B, and hence the row space of AB
is a subspace of the row space of B.

As to the column space, this was also shown above. Alternatively, note that
the column space of AB is just the row space of (AB)T = BTAT , which is a
subspace of the row space of AT by the first part of the theorem. But the row
space of AT is just the column space of A.

Corollary. rank(AB) ≤ min{rank(A), rank(B)}.

Proof. Let row(A) be the row space of A, and let col(A) be the column space
of A. Then

rank(AB) = dim(row(AB)) ≤ dim(row(B)) = rank(B)

while
rank(AB) = dim(col(AB)) ≤ dim(col(A)) = rank(A).

Let us now prove some very useful properties of the row and column spaces
of a matrix. To begin with, suppose A ∈ Mm×n(F). We define the kernel of
A to be the set

kerA = {X ∈ Fn : AX = 0}.
(In the context of matrices, this is usually called the null space of A and
denoted by nul(A). The dimension of nul(A) is then called the nullity of A and
is denoted nullity(A) or null(A). Since we think this is somewhat confusing,
and in Chapter 4 we will use nul(A) to denote the dimension of the kernel of a
linear transformation, we chose the notation as we did.)

It is easy to see that kerA is a subspace of Fn. Indeed, if X,Y ∈ kerA and
k ∈ F , then clearly A(kX + Y ) = kAX +AY = 0 so that kX + Y ∈ kerA also.
In fact, kerA is just the solution set to the homogeneous system AX = 0, and
therefore dim(kerA) is just the dimension dimS of the solution set. In view of
Theorem 2.10, this proves the following very useful result, known as the rank

theorem (or the dimension theorem).

Theorem 2.18. Let A ∈Mm×n(F). Then

rankA+ dim(kerA) = n.
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Another very useful result we will need in a later chapter comes by consider-
ing the orthogonal complement of the row space of a real matrix A ∈Mm×n(R).
This is by definition the set of all X ∈ Rn that are orthogonal to every row of
A. In other words, using the standard inner product on Rn we have

(row(A))⊥ = {X ∈ Rn : Ai ·X = 0 for all i = 1, . . . ,m}.
But this is just the homogeneous system AX = 0 and hence (row(A))⊥ = kerA.
Applying this relation to AT we have (row(AT ))⊥ = kerAT . But row(AT ) =
col(A) and therefore (col(A))⊥ = kerAT .

We state this result as a theorem for future reference.

Theorem 2.19. Let A ∈Mm×n(R). Then

(row(A))⊥ = kerA and (col(A))⊥ = kerAT .

Exercises

1. Complete the proof of Theorem 2.14.

2. Prove Theorem 2.16.

3. Let A be any m × n matrix and let X be any n × 1 matrix, both with
entries in F . Define the mapping f : Fn → Fm by f(X) = AX .

(a) Show that f is a linear transformation (i.e., a vector space homomor-
phism).

(b) Define the set Im f = {AX : X ∈ Fn}. Show that Im f is a subspace
of Fm.

(c) Let U be the column space of A. Show that Im f = U . [Hint : Use
Example 2.10 to show that Im f ⊂ U . Next, use the equation (AI)j =
AIj to show that U ⊂ Im f .]

(d) Let N denote the solution space to the system AX = 0. In other
words, N = {X ∈ Fn : AX = 0}. (N is just the null space of A.)
Show that

dimN + dimU = n.

[Hint : Suppose dimN = r, and extend a basis {x1, . . . , xr} for N
to a basis {xi} for Fn. Show that U is spanned by the vectors
Axr+1, . . . , Axn, and then that these vectors are linearly independent.
Note that this exercise is really just another proof of Theorem 2.10.]

4. A square matrix of the form



a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann
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is called a diagonal matrix. In other words, A = (aij) is diagonal if
aij = 0 for i 6= j. If A and B are both square matrices, we may define the
commutator [A,B] of A and B to be the matrix [A,B] = AB − BA. If
[A,B] = 0, we say that A and B commute.

(a) Show that any diagonal matrices A and B commute.
(b) Prove that the only n× n matrices which commute with every n× n

diagonal matrix are diagonal matrices.

5. Given the matrices

A =




2 −1
1 0
−3 4


 B =

[
1 −2 −5
3 4 0

]

compute the following:

(a) AB.
(b) BA.
(c) AAT .
(d) ATA.
(e) Verify that (AB)T = BTAT .

6. Consider the matrix A ∈Mn(F) given by

A =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0




Thus A has zero entries everywhere except on the superdiagonal where
the entries are 1’s. Let A2 = AA, A3 = AAA, and so on. Show that
An = 0 but An−1 6= 0.

7. Given a matrix A = (aij) ∈ Mn(F), the sum of the diagonal elements of
A is called the trace of A, and is denoted by trA. Thus

trA =
n∑

i=1

aii.

(a) Prove that tr(A+B) = trA+ trB and that tr(αA) = α(trA) for any
scalar α.

(b) Prove that tr(AB) = tr(BA).

8. Prove that it is impossible to find matrices A,B ∈Mn(R) such that their
commutator [A,B] = AB −BA is equal to 1.
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9. A matrix A = (aij) is said to be upper triangular if aij = 0 for i > j. In
other words, every entry of A below the main diagonal is zero. Similarly,
A is said to be lower triangular if aij = 0 for i < j. Prove that the
product of upper (lower) triangular matrices is an upper (lower) triangular
matrix.

10. Consider the so-called Pauli spin matrices

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]

and define the permutation symbol εijk by

εijk =





1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 if and two indices are the same
.

The commutator of two matrices A,B ∈ Mn(F) is defined by [A,B] =
AB −BA, and the anticommutator is given by [A,B]+ = AB +BA.

(a) Show that [σi, σj ] = 2i
∑

k εijkσk. In other words, show that σiσj =
iσk where (i, j, k) is an even permutation of (1, 2, 3).

(b) Show that [σi, σj ]+ = 2Iδij .
(c) Using part (a), show that tr σi = 0.
(d) For notational simplicity, define σ0 = I. Show that {σ0, σ1, σ2, σ3}

forms a basis for M2(C). [Hint : Show that tr(σασβ) = 2δαβ where
0 ≤ α, β ≤ 3. Use this to show that {σα} is linearly independent.]

(e) According to part (d), any X ∈ M2(C) may be written in the form
X =

∑
α xασα. How would you find the coefficients xα?

(f) Show that 〈σα, σβ〉 = (1/2) tr(σασβ) defines an inner product on
M2(C).

(g) Show that any matrix X ∈ M2(C) that commutes with all of the σi

(i.e., [X,σi] = 0 for each i = 1, 2, 3) must be a multiple of the identity
matrix.

11. A square matrix S is said to be symmetric if ST = S, and a square matrix
A is said to be skewsymmetric (or antisymmetric) if AT = −A.

(a) Show that S 6= 0 and A 6= 0 are linearly independent in Mn(F).
(b) What is the dimension of the space of all n× n symmetric matrices?
(c) What is the dimension of the space of all n×n antisymmetric matrices?

12. Find a basis {Ai} for the space Mn(F) that consists only of matrices with
the property that Ai

2 = Ai (such matrices are called idempotent or
projections). [Hint : The matrices

[
1 0
0 0

] [
1 1
0 0

] [
0 0
1 0

] [
0 0
1 1

]

will work in the particular case of M2(F).]
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13. Show that it is impossible to find a basis for Mn(F) such that every pair
of matrices in the basis commutes with each other.

14. (a) Show that the set of all nonsingular n× n matrices forms a spanning
set for Mn(F). Exhibit a basis of such matrices.

(b) Repeat part (a) with the set of all singular matrices.

15. Show that the set of all matrices of the form AB−BA do not span Mn(F).
[Hint : Use the trace.]

16. Is it possible to span Mn(F) using powers of a single matrix A? In other
words, can {In, A,A2, . . . , An, . . . } spanMn(F)? [Hint : Consider Exercise
4 above.]

2.6 Invertible Matrices

As mentioned earlier, we say that a matrix A ∈ Mn(F) is nonsingular if
rank(A) = n, and singular if rank(A) < n. Given a matrix A ∈ Mn(F), if
there exists a matrix B ∈ Mn(F) such that AB = BA = In, then B is called
an inverse of A, and A is said to be invertible.

Technically, a matrix B is called a left inverse of A if BA = I, and a matrix
B′ is a right inverse of A if AB′ = I. Then, if AB = BA = I, we say that B is
a two-sided inverse of A, and A is then said to be invertible. Furthermore,
if A has a left inverse B and a right inverse B′, then it is easy to see that B = B′

since B = BI = B(AB′) = (BA)B′ = IB′ = B′. We shall now show that if B
is either a left or a right inverse of A, then A is invertible. (We stress that this
result is valid only in finite dimensions. In the infinite dimensional case, either a
left or right inverse alone is not sufficient to show invertibility. This distinction
is important in fields such as functional analysis and quantum mechanics.)

Theorem 2.20. A matrix A ∈ Mn(F) has a right (left) inverse if and only
if A is nonsingular. This right (left) inverse is also a left (right) inverse, and
hence is an inverse of A.

Proof. Suppose A has a right inverse B. Then AB = In so that rank(AB) =
rank(In). Since rank(In) is clearly equal to n (Theorem 2.6), we see that
rank(AB) = n. But then from the corollary to Theorem 2.17 and the fact
that both A and B are n× n matrices (so that rank(A) ≤ n and rank(B) ≤ n),
it follows that rank(A) = rank(B) = n, and hence A is nonsingular.

Now suppose that A is nonsingular so that rank(A) = n. If we let Ej be the
jth column of the identity matrix In, then for each j = 1, . . . , n the system of
equations

n∑

i=1

Aixi = AX = Ej
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has a unique solution which we denote by X = Bj (Theorem 2.13). Now let B
be the matrix with columns Bj . Then the jth column of AB is given by

(AB)j = ABj = Ej

and hence AB = In. It remains to be shown that BA = In.
To see this, note that rank(AT ) = rank(A) = n (Theorem 2.16) so that AT

is nonsingular also. Hence applying the same argument shows there exists a
unique n × n matrix CT such that ATCT = In. Since (CA)T = ATCT and
In

T = In, this is the same as CA = In. We now recall that it was shown prior
to the theorem that if A has both a left and a right inverse, then they are the
same. Therefore B = C so that BA = AB = In, and hence B is an inverse of A.
Clearly, the proof remains valid if “right” is replaced by “left” throughout.

This theorem has several important consequences which we state as corol-
laries.

Corollary 1. A matrix A ∈ Mn(F) is nonsingular if and only if it has an
inverse. Furthermore, this inverse is unique.

Proof. As we saw above, if B and C are both inverses of A, then B = BI =
B(AC) = (BA)C = IC = C.

In view of this corollary, the unique inverse to a matrix A will be denoted
by A−1 from now on.

Corollary 2. If A is an n × n nonsingular matrix, then A−1 is nonsingular
and (A−1)−1 = A.

Proof. If A is nonsingular, then (by Theorem 2.20) A−1 exists so that A−1A =
AA−1 = I. But this means that (A−1)−1 exists and is equal to A, and hence
A−1 is also nonsingular.

Corollary 3. If A and B are nonsingular then so is AB, and (AB)−1 =
B−1A−1.

Proof. The fact that A and B are nonsingular means that A−1 and B−1 exist.
We therefore see that

(B−1A−1)(AB) = B−1IB = B−1B = I

and similarly (AB)(B−1A−1) = I. It then follows that B−1A−1 = (AB)−1.
Since we have now shown that AB has an inverse, Theorem 2.20 tells us that
AB must be nonsingular.
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Corollary 4. If A is nonsingular then so is AT , and (AT )−1 = (A−1)T .

Proof. That AT is nonsingular is a direct consequence of Theorem 2.16. Next
we observe that

(A−1)TAT = (AA−1)T = IT = I

so the uniqueness of the inverse tells us that (AT )−1 = (A−1)T . Note this also
shows that AT is nonsingular.

Corollary 5. A system of n linear equations in n unknowns has a unique
solution if and only if its matrix of coefficients is nonsingular.

Proof. Consider the system AX = Y . If A is nonsingular, then a unique A−1

exists, and therefore we have X = A−1Y as the unique solution. (Note that
this is essentially the content of Theorem 2.13.)

Conversely, if this system has a unique solution, then the solution space
of the associated homogeneous system must have dimension 0 (Theorem 2.12).
Then Theorem 2.10 shows that we must have rank(A) = n, and hence A is
nonsingular.

A major problem that we have not yet discussed is how to actually find the
inverse of a matrix. One method involves the use of determinants as we will see
in the next chapter. However, let us show another approach based on the fact
that a nonsingular matrix is row-equivalent to the identity matrix (Theorem
2.7). This method has the advantage that it is algorithmic, and hence is easily
implemented on a computer.

Since the jth column of a product AB is ABj , we see that considering the
particular case of AA−1 = I leads to

(AA−1)j = A(A−1)j = Ej

where Ej is the jth column of I. What we now have is the inhomogeneous
system

AX = Y

(or
∑

j aijxj = yi) where X = (A−1)j and Y = Ej . As we saw in Section 2.2,
we may solve for the vector X by reducing the augmented matrix to reduced
row echelon form. For the particular case of j = 1 we have

augA =




a11 · · · a1n 1
a21 · · · a2n 0
...

...
...

an1 · · · ann 0
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and hence the reduced form will be



1 0 0 · · · 0 c11
0 1 0 · · · 0 c21
...

...
...

...
...

0 0 0 · · · 1 cn1




for some set of scalars cij . This means that the solution to the system is x1 = c11,
x2 = c21, . . . , xn = cn1. But X = (A−1)1 = the first column of A−1, and
therefore this last matrix may be written as




1 · · · 0 a−1
11

...
...

...

0 · · · 1 a−1
n1




Now, for each j = 1, . . . , n the system AX = A(A−1)j = Ej always has the
same matrix of coefficients, and only the last column of the augmented matrix
depends on j. Since finding the reduced row echelon form of the matrix of
coefficients is independent of this last column, it follows that we may solve all
n systems simultaneously by reducing the single matrix



a11 · · · a1n 1 · · · 0
...

...
...

...

an1 · · · ann 0 · · · 1




In other words, the reduced form will be




1 · · · 0 a−1
11 · · · a−1

1n

...
...

...
...

0 · · · 1 a−1
n1 · · · a−1

nn




where the matrixA−1 = (a−1
ij) satisfiesAA−1 = I since (AA−1)j = A(A−1)j =

Ej is satisfied for each j = 1, . . . , n.

Example 2.12. Let us find the inverse of the matrix A given by



−1 2 1

0 3 −2
2 −1 0




We leave it as an exercise for the reader to show that the reduced row echelon
form of 


−1 2 1 1 0 0

0 3 −2 0 1 0
2 −1 0 0 0 1
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is 


1 0 0 1/6 1/12 7/12
0 1 0 1/3 1/6 1/6
0 0 1 1/2 −1/4 1/4




and hence A−1 is given by




1/6 1/12 7/12
1/3 1/6 1/6
1/2 −1/4 1/4




Exercises

1. Verify the reduced row echelon form of the matrix given in Example 2.12.

2. Find the inverse of a general 2× 2 matrix. What constraints are there on
the entries of the matrix?

3. Show that a matrix is not invertible if it has any zero row or column.

4. Find the inverse of each of the following matrices:

(a)




1 0 2
2 −1 3
4 1 8


 (b)




1 3 4
3 −1 6
−1 5 1


 (c)




1 2 1
2 5 2
1 3 3




5. Use the inverse of the matrix in Exercise 4(c) above to find the solutions
of each of the following systems:

(a) x+ 2y + z = 10
2x+ 5y + 2z = 14
x+ 3y + 3z = 30

(b) x+ 2y + z = 2
2x+ 5y + 2z =−1
x+ 3y + 3z = 6

6. What is the inverse of a diagonal matrix?

7. (a) Prove that an upper triangular matrix is invertible if and only if ev-
ery entry on the main diagonal is nonzero (see Exercise 2.5.9 for the
definition of an upper triangular matrix).

(b) Prove that the inverse of a lower (upper) triangular matrix is lower
(upper) triangular.

8. Find the inverse of the following matrix:




1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4
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9. (a) Let A be any 2× 1 matrix, and let B be any 1× 2 matrix. Prove that
AB is not invertible.

(b) Repeat part (a) where A is any m × n matrix and B is any n × m
matrix with n < m.

10. Summarize several of our results by proving the equivalence of the follow-
ing statements for any n× n matrix A:

(a) A is invertible.
(b) The homogeneous system AX = 0 has only the zero solution.
(c) The system AX = Y has a solution X for every n× 1 matrix Y .

11. Let A and B be square matrices of size n, and assume that A is nonsin-
gular. Prove that rank(AB) = rank(B) = rank(BA).

12. A matrix A is called a left zero divisor if there exists a nonzero matrix
B such that AB = 0, and A is called a right zero divisor if there exists
a nonzero matrix C such that CA = 0. If A is an m × n matrix, prove
that:

(a) If m < n, then A is a left zero divisor.
(b) If m > n, then A is a right zero divisor.
(c) If m = n, then A is both a left and a right zero divisor if and only if

A is singular.

13. Let A and B be nonsingular symmetric matrices for which AB−BA = 0.
Show that AB, A−1B, AB−1 and A−1B−1 are all symmetric.

2.7 Elementary Matrices

Recall the elementary row operations α, β, γ described in Section 2.2. We now
let e denote any one of these three operations, and for any matrix A we define
e(A) to be the result of applying the operation e to the matrix A. In particular,
we define an elementary matrix to be any matrix of the form e(I). The great
utility of elementary matrices arises from the following theorem.

Theorem 2.21. If A is any m×n matrix and e is any elementary row operation,
then

e(A) = e(Im)A.

Proof. We must verify this equation for each of the three types of elementary
row operations. First consider an operation of type α. In particular, let α be
the interchange of rows i and j. Then

[e(A)]k = Ak for k 6= i, j

while
[e(A)]i = Aj and [e(A)]j = Ai.
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On the other hand, using (AB)k = AkB we also have

[e(I)A]k = [e(I)]kA.

If k 6= i, j then [e(I)]k = Ik (the kth row of I, not the k× k identity matrix)
so that

[e(I)]kA = IkA = Ak.

Written out in full, the rules of matrix multiplication make it easy to see what
it going on:

IkA = [ 0 · · · 1 · · · 0 ]



a11 · · · a1n

...
...

am1 · · · amn


 = [ ak1 · · · akn ] = Ak. (2.8)

If k = i, then [e(I)]i = Ij and

[e(I)]iA = IjA = Aj .

Similarly, we see that
[e(I)]jA = IiA = Ai.

This verifies the theorem for transformations of type α.
For a type β transformation that multiplies row k by the scalar c, we just

have [e(I)]i = Ii for i 6= k and [e(I)]k = cIk. Then looking at equation (2.8)
should make it obvious that e(A) = e(I)A.

We now go on to transformations of type γ. So, let e be the addition of c
times row j to row i. Then

[e(I)]k = Ik for k 6= i

and
[e(I)]i = Ii + cIj .

Therefore
[e(I)]iA = (Ii + cIj)A = Ai + cAj = [e(A)]i

and for k 6= i we have

[e(I)]kA = IkA = Ak = [e(A)]k.

If e is of type α, then rows i and j are interchanged. But this is readily
undone by interchanging the same rows again, and hence e−1 is defined and is
another elementary row operation. For type β operations, some row is multiplied
by a scalar c, so in this case e−1 is simply multiplication by 1/c. Finally, a type
γ operation adds c times row j to row i, and hence e−1 adds −c times row j to
row i. Thus all three types of elementary row operations have inverses which
are also elementary row operations.

By way of nomenclature, a square matrix A = (aij) is said to be diagonal if
aij = 0 for i 6= j (see Exercise 2.5.4). The most common example of a diagonal
matrix is the identity matrix.
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Theorem 2.22. Every elementary matrix is nonsingular, and

[e(I)]−1 = e−1(I).

Furthermore, the transpose of an elementary matrix is an elementary matrix.

Proof. By definition, e(I) is row equivalent to I and hence has the same rank
as I (Theorem 2.4). Thus e(I) is nonsingular since I is nonsingular, and hence
e(I)−1 exists. Since it was shown above that e−1 is an elementary row operation,
we apply Theorem 2.21 to the matrix e(I) to obtain

e−1(I)e(I) = e−1(e(I)) = I.

Similarly, applying Theorem 2.21 to e−1(I) yields

e(I)e−1(I) = e(e−1(I)) = I.

This shows that e−1(I) = [e(I)]−1.
Now let e be a type α transformation that interchanges rows i and j (with

i < j). Then the ith row of e(I) has a 1 in the jth column, and the jth row has
a 1 in the ith column. In other words,

[e(I)]ij = 1 = [e(I)]ji

while for r, s 6= i, j we have

[e(I)]rs = 0 if r 6= s

and

[e(I)]rr = 1.

Taking the transpose shows that

[e(I)]T ij = [e(I)]ji = 1 = [e(I)]ij

and

[e(I)]T rs = [e(I)]sr = 0 = [e(I)]rs.

Thus [e(I)]T = e(I) for type α operations.
Since I is a diagonal matrix, it is clear that for a type β operation which

simply multiplies one row by a nonzero scalar, we have [e(I)]T = e(I).
Finally, let e be a type γ operation that adds c times row j to row i. Then

e(I) is just I with the additional entry [e(I)]ij = c, and hence [e(I)]T is just
I with the additional entry [e(I)]ji = c. But this is the same as c times row i
added to row j in the matrix I. In other words, [e(I)]T is just another elementary
matrix.
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We now come to our main result dealing with elementary matrices. For
ease of notation, we denote an elementary matrix by E rather than by e(I). In
other words, the result of applying the elementary row operation ei to I will be
denoted by the matrix Ei = ei(I).

Theorem 2.23. Every nonsingular n× n matrix may be written as a product
of elementary n× n matrices.

Proof. It follows from Theorem 2.7 that any nonsingular n×n matrix A is row
equivalent to In. This means that In may be obtained by applying r successive
elementary row operations to A. Hence applying Theorem 2.21 r times yields

Er · · ·E1A = In

so that

A = E1
−1 · · ·Er

−1In = E1
−1 · · ·Er

−1.

The theorem now follows if we note that each Ei
−1 is an elementary matrix

according to Theorem 2.22 (since Ei
−1 = [e(I)]−1 = e−1(I) and e−1 is an

elementary row operation).

Corollary. If A is an invertible n×n matrix, and if some sequence of elemen-
tary row operations reduces A to the identity matrix, then the same sequence of
row operations reduces the identity matrix to A−1.

Proof. By hypothesis we may write Er · · ·E1A = I. But then multiplying from
the right by A−1 shows that A−1 = Er · · ·E1I.

Note this corollary provides another proof that the method given in the
previous section for finding A−1 is valid.

There is one final important property of elementary matrices that we will
need in a later chapter. Let E be an n× n elementary matrix representing any
of the three types of elementary row operations, and let A be an n× n matrix.
As we have seen, multiplying A from the left by E results in a new matrix with
the same rows that would result from applying the elementary row operation to
A directly. We claim that multiplying A from the right by ET results in a new
matrix whose columns have the same relationship as the rows of EA. We will
prove this for a type γ operation, leaving the easier type α and β operations to
the reader (see Exercise 2.7.1).

Let γ be the addition of c times row j to row i. Then the rows of E are
given by Ek = Ik for k 6= i, and Ei = Ii + cIj . Therefore the columns of ET are
given by

(ET )k = Ik for k 6= i
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and
(ET )i = Ii + cIj .

Now recall that the kth column of AB is given by (AB)k = ABk. We then have

(AET )k = A(ET )k = AIk = Ak for k 6= i

and
(AET )i = A(ET )i = A(Ii + cIj) = AIi + cAIj = Ai + cAj .

This is the same relationship as that found between the rows of EA where
(EA)k = Ak and (EA)i = Ai + cAj (see the proof of Theorem 2.21).

Exercises

1. Let A be an n × n matrix, and let E be an n × n elementary matrix
representing a type α or β operation. Show that the columns of AET

have the same relationship as the rows of EA.

2. Write down 4× 4 elementary matrices that will induce the following ele-
mentary operations in a 4× 4 matrix when used as left multipliers. Verify
that your answers are correct.

(a) Interchange the 2nd and 4th rows of A.
(b) Interchange the 2nd and 3rd rows of A.
(c) Multiply the 4th row of A by 5.
(d) Add k times the 4th row of A to the 1st row of A.
(e) Add k times the 1st row of A to the 4th row of A.

3. Show that any eα(A) may be written as a product of eβ(A)’s and eγ(A)’s.
(The notation should be obvious.)

4. Pick any 4 × 4 matrix A and multiply it from the right by each of the
elementary matrices found in the previous problem. What is the effect on
A?

5. Prove that a matrix A is row equivalent to a matrix B if and only if there
exists a nonsingular matrix P such that B = PA.

6. Reduce the matrix

A =




1 0 2
0 3 −1
2 3 3




to the reduced row echelon form R, and write the elementary matrix cor-
responding to each of the elementary row operations required. Find a
nonsingular matrix P such that PA = R by taking the product of these
elementary matrices.

7. Let A be an n × n matrix. Summarize several of our results by proving
that the following are equivalent:
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(a) A is invertible.
(b) A is row equivalent to In .
(c) A is a product of elementary matrices.

8. Using the results of the previous problem, prove that if A = A1A2 · · ·Ak

where each Ai is a square matrix, then A is invertible if and only if each
of the Ai is invertible.

The remaining problems are all connected, and should be worked in the
given order.

9. Suppose that we define elementary column operations exactly as we did
for rows. Prove that every elementary column operation on A can be
achieved by multiplying A on the right by an elementary matrix. [Hint :
You can either do this directly as we did for rows, or by taking transposes
and using Theorem 2.22.]

10. Show that anm×n reduced row echelon matrix R of rank k can be reduced
by elementary column operations to an m× n matrix C of the form

C =




1 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 · · · 0 0
0 0 · · · 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 · · · 0 0




where the first k entries on the main diagonal are 1’s, and the rest are 0’s.

11. From the previous problem and Theorem 2.3, show that everym×nmatrix
A of rank k can be reduced by elementary row and column operations to
the form C. We call the matrix C the canonical form of A.

12. We say that a matrix A is row-column-equivalent (abbreviated r.c.e.)
to a matrix B if A can be transformed into B by a finite number of
elementary row and column operations. Prove:

(a) If A is a matrix, e is an elementary row operation, and e′ is an ele-
mentary column operation, then (eA)e′ = e(Ae′).

(b) r.c.e. is an equivalence relation.
(c) Two m × n matrices A and B are r.c.e. if and only if they have the

same canonical form, and hence if and only if they have the same rank.

13. If A is any m×n matrix of rank k, prove there exists a nonsingular m×m
matrix P and a nonsingular n × n matrix Q such that PAQ = C (the
canonical form of A).
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14. Prove that two m × n matrices A and B are r.c.e. if and only if there
exists a nonsingular m ×m matrix P and a nonsingular n × n matrix Q
such that PAQ = B.

2.8 The LU Factorization*

We now show how elementary matrices can be used to “factor” a matrix into
the product of a lower triangular matrix times an upper triangular matrix. This
factorization can then be used to easily implement the solution to a system of
inhomogeneous linear equations. We will first focus our attention on type β
(multiply a row by a nonzero scalar) and type γ (add a scalar multiple of one
row to another) transformations. Afterwards, we will discuss how to handle the
additional complications introduced by the interchange of two rows (the type α
transformations).

Before beginning, let us introduce some very common and useful terminology.
As we mentioned in the last section, a square matrix A = (aij) ∈Mn(F) is said
to be diagonal if the only nonzero entries are those on the main diagonal. In
other words, aij = 0 if i 6= j and each aii may or may not be zero. A typical
diagonal matrix thus looks like




a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann


 .

Referring to Exercise 2.5.9, a square matrix A = (aij) is said to be upper

triangular if aij = 0 for i > j. In other words, every entry of A below the
main diagonal is zero. Similarly, A is said to be lower triangular if aij = 0
for i < j. Thus a general lower triangular matrix is of the form




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann



.

And in that exercise, you were asked to prove that the product of lower (upper)
triangular matrices is a lower (upper) triangular matrix.

In fact, it is easy to see that the inverse of a nonsingular lower triangular
matrix L is also lower triangular. This is because the fact that L is nonsingular
means that it can be row-reduced to the identity matrix, and following the
method described in Section 2.6, it should be clear from the form of L that
the elementary row operations required to accomplish this will transform the
identity matrix I into lower triangular form. Of course, this also applies equally
to upper triangular matrices.
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Now, if we apply a type β transformation eβ to the identity matrix I, then
what we have is a diagonal matrix of the form

Eβ = eβ(I) =




1 · · · 0 · · · 0
...

. . .
...

...

0 · · · k · · · 0
...

...
. . .

...

0 · · · 0 · · · 1



.

And if we apply a type γ transformation to the identity matrix by adding a
scalar multiple of row i to row j where j > i, then we obtain a lower triangular
matrix of the form

Eγ = eγ(I) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · 1 · · · 0 · · · 0
...

...
. . .

...
...

0 · · · k · · · 1 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




.

A moments thought should make it clear that multiplying a diagonal ma-
trix times a lower triangular matrix in either order always results in a lower
triangular matrix. So if we can reduce a matrix to row echelon form without
requiring any row interchanges, then the row echelon form U will be a product
U = Er · · ·E1A of elementary matrices acting on A, and the product Er · · ·E1

will be lower triangular. (An elementary matrix that results from a type α
transformation is not lower triangular.) Since U is by definition upper triangu-
lar, we see that writing A = E−1

1 · · ·E−1
r U shows that A has been written as

the product of a lower triangular matrix E−1
1 · · ·E−1

r = (Er · · ·E1)
−1 times an

upper triangular matrix U .
Actually, the type β transformations are not needed at all. If we start

from the first row of the matrix A and subtract multiples of this row from the
remaining rows (i.e., use a11 as a pivot), then we can put A into the form that
has all 0’s in the first column below a11. Next, we use a22 as a pivot to make
all of the entries in the second column below a22 equal to zero. Continuing this
procedure, we eventually arrive at an (upper triangular) row echelon form for
A by using only type γ transformations. But a product of type γ elementary
matrices is just a lower triangular matrix that has all 1’s on the diagonal. Such
a lower triangular matrix is called special lower triangular (or sometimes
unit lower triangular). Therefore we may write A = LU where L is special
lower triangular (the product of elementary matrices) and U is upper triangular
(the row echelon form of A). This is called the LU factorization of A. Note
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that if any pivot turns out to be zero, then we would have to interchange rows
to continue the process, and this approach fails. We will treat this case a little
later.

In summary, if we can reduce a matrix A to row echelon form without having
to interchange any rows, then A has an LU factorization.

Example 2.13. Let us find the LU factorization of

A =




1 −3 2
−3 7 −5

2 −5 8


 .

We have the sequence

A =




1 −3 2
−3 7 −5

2 −5 8




A2+3A1

A3−2A1−−−−−→




1 −3 2
0 −2 1
0 1 4




A3+(1/2)A2−−−−−−−−→




1 −3 2
0 −2 1
0 0 9/2


 = U.

The corresponding elementary matrices are (in order)

E1 =




1 0 0
3 1 0
0 0 1


 E2 =




1 0 0
0 1 0
−2 0 1


 E3 =




1 0 0
0 1 0
0 1/2 1




and these have inverses

E−1
1 =




1 0 0
−3 1 0

0 0 1


 E−1

2 =




1 0 0
0 1 0
2 0 1


 E−1

3 =




1 0 0
0 1 0
0 −1/2 1


 .

Then E3E2E1A = U so we should have E−1
1 E−1

2 E−1
3 U = LU = A. And

indeed we do see that

E−1
1 E−1

2 E−1
3 U =




1 0 0
−3 1 0

2 −1/2 1






1 −3 2
0 −2 1
0 0 9/2




=




1 −3 2
−3 7 −5

2 −5 8


 = A

In other words, we have factored A into the form A = LU as claimed.
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Next, we can get even more clever and save some work by making the fol-
lowing observation based on the previous example. We started with the (1, 1)
entry of A as the pivot, and subtracted a scalar multiple of the first row from
each of the rows below. Let ki be the scalar multiple required to get a 0 in the
(i, 1) position. The corresponding inverse elementary matrix is then just the
identity matrix with ki in the (i, 1) position. Since we do this once for each row,
the product of all the inverse elementary matrices has as its first column below
its (1, 1) entry just the scalars k2, . . . , kn.

Now we go to the second row of A and subtract scalar multiples of a22 from
each of the rows below. Again, the corresponding inverse elementary matrix is
the identity matrix but with its (i, 2) entry just the scalar that was required to
get a 0 into the (i, 2) position of A, and the product of these inverse elementary
matrices has the required scalars as its second column below the (2, 2) entry.

Continuing this procedure, we see that the required L matrix is just the
identity matrix with columns below the main diagonal that are made up of
the scalar multiples that were required to put the original matrix into row
echelon form. This gives us a quick way to write down L without computing
the individual elementary matrices.

Example 2.14. Let us find the LU factorization of the matrix

A =




3 1 3 −4
6 4 8 −10
3 2 5 −1
−9 5 −2 −4


 .

To reduce this to row echelon form we have the sequence

A =




3 1 3 −4
6 4 8 −10
3 2 5 −1
−9 5 −2 −4




A2−2A1

A3−A1

A4−(−3)A1−−−−−−−−→




3 1 3 −4
0 2 2 −2
0 1 2 3
0 8 7 −16




A3−(1/2)A2

A4−4A2−−−−−−−−→




3 1 3 −4
0 2 2 −2
0 0 1 4
0 0 −1 4




A4−(−1)A3−−−−−−−−→




3 1 3 −4
0 2 2 −2
0 0 1 4
0 0 0 −4


 = U.

For column 1 we have the scalar multiples 2, 1 and −3; for column 2 we have
1/2 and 4; and for column 3 we have −1. So the matrix L in this case is
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L =




1 0 0 0
2 1 0 0
1 1/2 1 0
−3 4 −1 1




and

LU =




1 0 0 0
2 1 0 0
1 1/2 1 0
−3 4 −1 1







3 1 3 −4
0 2 2 −2
0 0 1 4
0 0 0 −4




=




3 1 3 −4
6 4 8 −10
3 2 5 −1
−9 5 −2 −4


 = A.

Before giving an example of how the LU factorization can be used to solve
systems of linear equations, let us make some remarks.

First of all, it is straightforward to generalize our definition of LU factor-
ization to include matrices that are not square. All we have to do is require
that the U matrix be in row echelon form. The rest of the process remains
unchanged.

Second, we still have to take care of the situation where some rows of A must
be interchanged in order to achieve the row echelon form. We will address this
shortly.

And third, while in general the row echelon form of a matrix is not unique,
if A is nonsingular, then in fact the LU factorization is unique. To see this,
suppose we have two different factorizations A = LU and A = L′U ′ where U
and U ′ are two row echelon forms of A. We first observe that L and L′ (or
any special lower triangular matrix for that matter) are necessarily invertible.
This is because the diagonal entries of L are all equal to 1, so by subtracting
suitable multiples of each row from the rows below it, we can row reduce L to
the identity matrix (which is nonsingular).

By assumption, A is nonsingular too, so both U = L−1A and U ′ = L′−1
A

must be nonsingular (by Theorem 2.20, Corollary 3). Then using LU = L′U ′

we may write

L′−1
(LU)U−1 = L′−1

(L′U ′)U−1

or
(L′−1

L)(UU−1) = (L′−1
L′)(U ′U−1)

which then implies that L′−1
L = U ′U−1. But the left side of this equation is

a product of lower triangular matrices and hence is also lower triangular, while
the right side is similarly upper triangular. Since the only matrix that is both
special lower triangular and upper triangular is the identity matrix (think about
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it), it follows that L′−1
L = I and U ′U−1 = I so that L = L′ and U = U ′ and

the factorization is unique. Thus we have proved the following theorem.

Theorem 2.24. If a nonsingular matrix A has an LU factorization, then the
matrices L and U are unique.

Now let’s see how the LU factorization can be used to solve a system of
inhomogeneous linear equations. First some more terminology. Recall that we
solve an inhomogeneous system AX = Y by reducing to row echelon form. For
example, in the case of three equations and three unknowns we might end up
with something like

2x− 3y + z = 5

4y − z = 2

3z = 6.

To solve this, we start at the bottom and find z = 2. We then go up one row
and use this value for z to find 4y = z + 2 = 4 so that y = 1. Now go up
another row and use the previous two results to find 2x = 5+3y−z = 6 so that
x = 3. This procedure of starting at the bottom of the row echelon form of an
inhomogeneous system of linear equations and working your way up to find the
solution to the system is called back substitution.

Note that the row echelon form of the equations in the example above can
be written as UX = Y where U is upper triangular. Now suppose we have a
system that is something like

x = 2

2x− y = 1

3x+ y − 4z = 3.

This can be written in the form LX = Y where L is lower triangular. To solve
this we start at the top and work our way down. This is referred to as forward

substitution.
So, if we have the system AX = Y , we write A in its factored form A = LU

so that our system is LUX = Y . If we now define the vector Z = UX , then we
have the system LZ = Y which can be solved by forward substitution. Then
given this solution Z, we can solve UX = Z for X by back substitution.

Example 2.15. Let us solve the system AX = Y where

A =




2 1 3
4 −1 3
−2 5 5


 and Y =




1
−4

9


 .
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We have the sequence

A =




2 1 3
4 −1 3
−2 5 5




A2−2A1

A3−(−1)A1−−−−−−−−→




2 1 3
0 −3 −3
0 6 8




A3−(−2)A2−−−−−−−−→




2 1 3
0 −3 −3
0 0 2




so that

A =




2 1 3
4 −1 3
−2 5 5


 =




1 0 0
2 1 0
−1 −2 1






2 1 3
0 −3 −3
0 0 2


 = LU.

We first solve LZ = Y for Z as follows. Writing Z = (z1, z2, z3), this system
is

z1 = 1
2z1 + z2 =−4
−z1 − 2z2 + z3 = 9

which is easily solved by forward substitution to find z1 = 1, z2 = −4−2z1 = −6
and z3 = 9 + z1 + 2z2 = −2.

Now we solve UX = Z forX using back substitution. Write X = (x1, x2, x3)
so we have the system

2x1 + x2 + 3x3 = 1
−3x2 − 3x3 =−6

2x3 =−2

which yields x3 = −1,−3x2 = −6 + 3x3 or x2 = 3, and 2x1 = 1 − x2 − 3x3 or
x1 = 1/2. In other words, our solution is

X =




1/2
3
−1


 .

The last item we still have to address with respect to the LU factorization
is what to do if we need to use type α transformations (i.e., interchanging rows)
to get our system into row echelon form. This can occur if adding a multiple
of one row to another results in a zero pivot (i.e., diagonal entry). Let’s take a
look at the elementary matrices that arise from a row interchange.

For definiteness, consider a system of four equations. The general result will



2.8. THE LU FACTORIZATION* 99

be quite obvious. If we switch say rows 2 and 3 then we have

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




I2→I3
I3→I2−−−−→




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Note that there is always a single 1 in each row and column, and that the columns
are just the standard basis vectors {ei} for R4, although their order has been
changed. (Don’t confuse this notation for the basis vectors with the similar
notation for an elementary row operation.) We say that the ordered set of basis
vectors {e1, e3, e2, e4} is a permutation of the ordered set {e1, e2, e3, e4}. In
other words, a permutation us just a rearrangement of a set that was originally
in some standard order. We will denote such an elementary matrix by the letter
P and refer to it as a permutation matrix.

If we have two permutation matrices, for example

P1 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 and P2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




then we can form the product

P = P1P2 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




which is also another permutation matrix. Since the ith row of PT is the same
as the ith column of P , and each is just one of the standard basis vectors ek, we
see that the (i, j)th entry of the product PTP is given by (see Example 1.13)

(PTP )ij =
∑

k

pT
ikpkj =

∑

k

pkipkj = 〈er, es〉 = δrs

where er is the basis vector that is the ith column of P , and es is the basis
vector that is the jth column of P . In other words, PTP = I and we have
proved

Theorem 2.25. For any permutation matrix P we have P−1 = PT .

Now, if we attempt the LU factorization of a matrix A and find at some
point that we obtain a zero as pivot, then we need to interchange two rows in
order to proceed and the factorization fails. However, with hindsight we could
have performed that interchange first, and then proceeded with the reduction.
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Let us denote the combination (or product) of all required interchanges (or
permutations) by P . While the original matrix A does not have an LU factor-
ization because of the required interchanges, the permuted matrix PA does have
such an LU factorization by its construction. We therefore have PA = LU or
A = P−1LU = PTLU . This is called the P T LU factorization (or permuted

LU factorization) of A.
Note also that while the interchanges performed to achieve the LU factor-

ization are not unique — in general you have a choice of which rows to switch
— once that choice has been made and the LU factorization exists, it is unique.
We therefore have the following result.

Theorem 2.26. Every square matrix A ∈Mn(F) has a PTLU factorization.

One of the main advantages of the PTLU factorization is its efficiency. Since
each column of L consists of the scalars that were needed to obtain zeros in the
corresponding positions of A (as illustrated in Example 2.14), this means that
we can construct L as we perform the type γ operations. Similarly, if we need to
perform a type α interchange, we apply it to the identity matrix I. In addition,
all subsequent interchanges get applied to the previous result and this gives us
the matrix P . However, we must also apply the interchange to the corresponding
column of L. This is because had the interchange been done before the type γ
operation, only that same column of L would be different. And any subsequent
interchanges must also be done to all previous columns because it is as if the
interchanges were performed before we started with the type γ operations. Our
next example illustrates the technique.

Example 2.16. Let us find the PTLU factorization of the matrix

A =




1 2 −1 0
2 4 −2 −1
−3 −5 6 1
−1 2 8 −2


 .

Performing the type γ operations on the first column we have

A→




1 2 −1 0
0 0 0 −1
0 1 3 1
0 4 7 −2


 L =




1 0 0 0
2 1 0 0
−3 0 1 0
−1 0 0 1


 P =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Since the (2, 2) entry of A is now 0, we interchange rows 2 and 3 to obtain

A→




1 2 −1 0
0 1 3 1
0 0 0 −1
0 4 7 −2


 L =




1 0 0 0
−3 1 0 0

2 0 1 0
−1 0 0 1


 P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .
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Note that the interchange was only applied to the first column of L.
We now use the (2, 2) entry of A as pivot to obtain

A→




1 2 −1 0
0 1 3 1
0 0 0 −1
0 0 −5 −6


 L =




1 0 0 0
−3 1 0 0

2 0 1 0
−1 4 0 1


 P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Next we have to perform another interchange to get a nonzero entry in the (3, 3)
position and we are done:

U =




1 2 −1 0
0 1 3 1
0 0 −5 −6
0 0 0 −1


 L =




1 0 0 0
−3 1 0 0
−1 4 1 0

2 0 0 1


 P =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

Observe that this last interchange had to be applied to all previous columns
of L. This is again because had the interchange been done at the start, the
resulting L would have been different.

Finally, we can check that

PA =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0







1 2 −1 0
2 4 −2 −1
−3 −5 6 1
−1 2 8 −2




=




1 2 −1 0
−3 −5 6 1
−1 2 8 −2

2 4 −2 −1




=




1 0 0 0
−3 1 0 0
−1 4 1 0

2 0 0 1







1 2 −1 0
0 1 3 1
0 0 −5 −6
0 0 0 −1


 = LU.

Exercises

1. Find the LU factorization of the following matrices.

(a)

[
1 2
−3 −1

]
(b)

[
2 −4
3 1

]
(c)

[
1 3
−1 0

]
(d)

[
1 3
3 1

]

(e)




1 2 3
4 5 6
8 7 9


 (f)




2 2 −1
4 0 4
3 4 4


 (g)




1 0 −1
2 3 2
−3 1 0
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(h)




1 2 3 −1
2 6 3 0
0 6 −6 7
−1 −2 −9 0


 (i)




2 2 2 1
−2 4 −1 2

4 4 7 3
6 9 5 8




(j)




1 1 −2 3
−1 2 3 0
−2 1 1 −2

3 0 −1 5


 (k)




2 1 3 1
1 4 0 1
3 0 2 2
1 1 2 2




2. Using the generalized definition mentioned in the text to find the LU fac-
torization of the following matrices.

(a)




1 0 1 −2
0 3 3 1
0 0 0 5


 (b)




1 2 0 −1 1
−2 −7 3 8 −2

1 1 3 5 2
0 3 −3 −6 0




3. Find a PTLU factorization for each of the following matrices.

(a)




0 1 4
−1 2 1

1 3 3


 (b)




0 0 1 2
−1 1 3 2

0 2 1 1
1 1 −1 0


 (c)




0 −1 1 3
−1 1 1 2

0 1 −1 1
0 0 1 1




4. For each of the following systems of equations, find a PTLU factorization
for the matrix of coefficients, and then use forward and back substitution
to solve the system.

(a) 4x− 4y + 2z = 1
−3x+ 3y + z = 3
−3x+ y − 2z =−5

(b) y − z + w = 0
y + z = 1

x− y + z − 3w = 2
x+ 2y − z + w = 4

(c) x− y + 2z + w = 0
−x+ y − 3z = 1
x− y + 4z − 3w = 2
x+ 2y − z + w = 4

5. (a) Let U be an upper triangular square matrix with no zeros on the
diagonal. Show that we can always write U = DV where D is a
diagonal matrix and V is special upper triangular. If A = LU = LDV ,
then this is called an LDV factorization of A.

(b) Find the LDV factorization of each of the following matrices.

(i)




2 1 1
4 5 2
2 −2 0


 (ii)




2 −4 0
3 −1 4
−1 2 2
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2.9 The QR Factorization*

Another very useful matrix factorization is based on the Gram-Schmidt process
(see the corollary to Theorem 1.21). We will show that if A ∈ Mm×n(R) is
such that all n ≤ m columns are linearly independent, then it is possible to
write A = QR where Q has orthonormal columns and R is a nonsingular upper
triangular matrix.

To begin with, the assumption that all n columns of A are linearly inde-
pendent means that they form a basis for Rn. Let us denote these columns
by {u1, . . . , un}, and let {w1, . . . , wn} be the corresponding orthonormal basis
constructed by the Gram-Schmidt process. According to the Gram-Schmidt
algorithm, this means that for each k = 1, . . . , n we know that the linear span
of {u1, . . . , uk} is equal to the linear span of {w1, . . . , wk}.

By definition of linear span, we can then write each (column) vector ui as a
linear combination of the (column) vectors w1, . . . , wi. In particular, there are
coefficients rij ∈ R so that

u1 = w1r11

u2 = w1r12 + w2r22

...

un = w1r1n + w2r2n + · · ·+ wnrnn.

Since ui is the ith column of A, let us use a shorthand notation and write a
matrix as a function of its columns. Then these equations can be written in
matrix form as

A =
[
u1 u2 · · · un

]

=
[
w1 w2 · · · wn

]




r11 r12 · · · r1n

0 r22 · · · r2n

...
...

. . .
...

0 0 · · · rnn


 := QR

By construction, the matrix Q has orthonormal columns (the wi as deter-
mined by the Gram-Schmidt process). Furthermore, it is also a consequence of
the Gram-Schmidt process that all of the diagonal entries rii are nonzero. For
if rii = 0, then ui = w1r1i + · · · + wi−1ri−1 i which implies that ui is a linear
combination of u1, . . . , ui−1 (since each wk is a linear combination of u1, . . . , uk).
Since this contradicts the fact that the ui are all linearly independent, it must
be that all of the rii are nonzero.

Lastly, it follows from the fact that R is upper triangular and none of its
diagonal entries are zero, that rank(R) = n so that R is nonsingular. This is
the QR factorization, and we have now proved the following.
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Theorem 2.27. If A ∈ Mm×n(R) has n ≤ m linearly independent columns,
then we can write A = QR where Q ∈ Mm×n(R) has n linearly independent
columns, and R ∈Mn(R) is a nonsingular upper triangular matrix.

We also point out that the fact that Q has orthonormal columns means that
QTQ = I. Using this, we multiply A = QR from the left by QT to obtain
QTA = R, and this gives us a practical method of finding R given A and Q.

Let us remark however, that as we will see in a later chapter, a square
matrix A such that ATA = I is said to be orthogonal. An orthogonal matrix
has the property that its rows and columns each form an orthonormal set,
and AT = A−1. However, in our discussion of the QR factorization, Q is not
orthogonal unless it also happens to be square.

Example 2.17. Let us find the QR factorization of the matrix

A =




3 −1 2
0 0 9
4 7 11


 .

Noting that the columns of A are the vectors ui used in Example 1.15, we have
the orthonormal basis

w1 =




3/5
0

4/5


 w2 =



−4/5

0
3/5


 w3 =




0
1
0




so that

Q =




3/5 −4/5 0
0 0 1

4/5 3/5 0


 .

To find R we use the fact that QTQ = I to write R = QTA so that

R = QTA =




3/5 0 4/5
−4/5 0 3/5

0 1 0






3 −1 2
0 0 9
4 7 11




=




5 5 10
0 5 5
0 0 9


 .

We easily verify that

QR =




3/5 −4/5 0
0 0 1

4/5 3/5 0






5 5 10
0 5 5
0 0 9


 =




3 −1 2
0 0 9
4 7 11


 = A.
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Exercises

1. For each of the following matrices, use the Gram-Schmidt process to find
an orthonormal basis for the column space, and find the QR factorization
of the matrix.

(a)




0 1 1
1 0 1
1 1 0


 (b)




2 1 −1
0 1 3
−1 −1 1


 (c)




0 0 2
0 4 1
−1 0 1




(d)




1 1 1
1 −1 2
−1 1 0

1 5 1


 (e)




1 1 1 1
1 2 1 0
1 1 2 1
1 0 1 1




2. (a) Prove that an upper triangular matrix U is orthogonal if and only if
it is a diagonal matrix.

(b) Prove that the QR factorization of a matrix is unique if all of the
diagonal entries of R are positive.

3. If we have a system of linear equations AX = Y where A = QR, then
RX = QTY . Since R is upper triangular, it is easy to solve for X using
back substitution. Use this approach to solve the following systems of
equations.

(a)

[
1 2
−1 3

] [
x
y

]
=

[
−1

2

]
(b)




2 1 −1
1 0 2
2 −1 3





x
y
z


 =




2
−1

0




(c)




1 1 0
−1 0 1

0 −1 1





x
y
z


 =




0
1
0
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Chapter 3

Determinants

Suppose we want to solve the system of equations

ax+ by = f

cx+ dy = g

where a, b, c, d, f, g ∈ F . It is easily verified that if we reduce the augmented
matrix to reduced row-echelon form we obtain

[
1 0 (fd− gb)/∆
0 1 (ag − cf)/∆

]

where ∆ = ad − cb. We must therefore have ∆ 6= 0 if a solution is to exist
for every choice of f and g. If A ∈ M2(F) is the matrix of coefficients of our
system, we call the number ∆ the determinant of A, and write this as detA.
While it is possible to proceed from this point and define the determinant of
larger matrices by induction, we prefer to take another more useful approach in
developing the general theory.

It is unfortunate that many authors nowadays seem to feel that determinants
are no longer as important as they once were, and as a consequence they are
treated only briefly if at all. While it may be true that in and of themselves
determinants aren’t as important, it is our strong opinion that by developing
the theory of determinants in a more sophisticated manner, we introduce the
student to some very powerful tools that are of immense use in many other
current fields of mathematical and physical research that utilize the techniques
of differential geometry.

While the techniques and notation that we are about to introduce can seem
too abstract and intimidating to the beginning student, it really doesn’t take
long to gain familiarity and proficiency with the method, and it quickly becomes
second nature well worth the effort it takes to learn.

107
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3.1 The Levi-Civita Symbol

In order to ease into the notation we will use, we begin with an elementary
treatment of the vector cross product. This will give us a very useful computa-
tional tool that is of importance in and of itself. While the reader is probably
already familiar with the cross product, we will still go through its development
from scratch just for the sake of completeness.

To begin with, consider two vectors ~A and ~B in R3 (with Cartesian coordi-
nates). There are two ways to define their vector product (or cross product)
~A× ~B. The first way is to define ~A× ~B as that vector with norm given by

‖ ~A× ~B‖ = ‖ ~A‖ ‖ ~B‖ sin θ

where θ is the angle between ~A and ~B, and whose direction is such that the triple
( ~A, ~B, ~A× ~B) has the same “orientation” as the standard basis vectors (x̂, ŷ, ẑ).
This is commonly referred to as “the right hand rule.” In other words, if you
rotate ~A into ~B through the smallest angle between them with your right hand
as if you were using a screwdriver, then the screwdriver points in the direction
of ~A× ~B. Note that by definition, ~A× ~B is perpendicular to the plane spanned
by ~A and ~B.

The second way to define ~A × ~B is in terms of its vector components. I
will start from this definition and show that it is in fact equivalent to the first
definition. So, we define ~A× ~B to be the vector ~C with components

Cx = ( ~A× ~B)x = AyBz −AzBy

Cy = ( ~A× ~B)y = AzBx −AxBz

Cz = ( ~A× ~B)z = AxBy −AyBx

Before proceeding, note that instead of labeling components by (x, y, z) it
will be very convenient for us to use (x1, x2, x3). This is standard practice,
and it will greatly facilitate many equations throughout the remainder of this
text. (Besides, it’s what we have been doing ever since Example ??.) Using this
notation, the above equations are written

C1 = ( ~A× ~B)1 = A2B3 −A3B2

C2 = ( ~A× ~B)2 = A3B1 −A1B3

C3 = ( ~A× ~B)3 = A1B2 −A2B1

We now see that each equation can be obtained from the previous by cyclically
permuting the subscripts 1→ 2→ 3→ 1.

Using these equations, it is easy to multiply out components and verify that
~A · ~C = A1C1 + A2C2 + A3C3 = 0, and similarly ~B · ~C = 0. This shows that
~A× ~B is perpendicular to both ~A and ~B, in agreement with our first definition.

Next, there are two ways to show that ‖ ~A × ~B‖ is also the same as in the

first definition. The easy way is to note that any two vectors ~A and ~B in R3
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(both based at the same origin) define a plane. So we choose our coordinate

axes so that ~A lies along the x1-axis as shown below.

x1

x2

h

~A

~B

θ

Then ~A and ~B have components ~A = (A1, 0, 0) and ~B = (B1, B2, 0) so that

( ~A× ~B)1 = A2B3 −A3B2 = 0

( ~A× ~B)2 = A3B1 −A1B3 = 0

( ~A× ~B)3 = A1B2 −A2B1 = A1B2

and therefore ~C = ~A× ~B = (0, 0, A1B2). But A1 = ‖ ~A‖ and B2 = h = ‖ ~B‖ sin θ

so that ‖ ~C‖2 =
∑3

i=1 Ci
2 = (A1B2)

2 = (‖ ~A‖ ‖ ~B‖ sin θ)2 and therefore

‖ ~A× ~B‖ = ‖ ~A‖ ‖ ~B‖ sin θ.

Since both the length of a vector and the angle between two vectors is indepen-
dent of the orientation of the coordinate axes, this result holds for arbitrary ~A
and ~B (see also the discussion after Lemma 1.3). Therefore ‖ ~A× ~B‖ is the same
as in our first definition.

The second way to see this is with a very unenlightening brute force calcu-
lation:

‖ ~A× ~B‖2 = ( ~A× ~B) · ( ~A× ~B) = ( ~A× ~B)1
2

+ ( ~A× ~B)2
2
+ ( ~A× ~B)3

2

= (A2B3 −A3B2)
2 + (A3B1 −A1B3)

2 + (A1B2 −A2B1)
2

= A2
2B3

2 +A3
2B2

2 +A3
2B1

2 +A1
2B3

2 +A1
2B2

2 + A2
2B1

2

− 2(A2B3A3B2 +A3B1A1B3 +A1B2A2B1)

= (A2
2 +A3

2)B1
2 + (A1

2 +A3
2)B2

2 + (A1
2 +A2

2)B3
2

− 2(A2B2A3B3 +A1B1A3B3 +A1B1A2B2)

= (add and subtract terms)

= (A1
2 +A2

2 +A3
2)B1

2 + (A1
2 +A2

2 +A3
2)B2

2

+ (A1
2 +A2

2 +A3
2)B3

2 − (A1
2B1

2 +A2
2B2

2 +A3
2B3

2)

− 2(A2B2A3B3 +A1B1A3B3 +A1B1A2B2)
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= (A1
2 +A2

2 +A3
2)(B1

2 +B2
2 +B3

2)− (A1B1 +A2B2 +A3B3)
2

= ‖ ~A‖2 ‖ ~B‖2 − ( ~A · ~B)2 = ‖ ~A‖2 ‖ ~B‖2 − ‖ ~A‖2 ‖ ~B‖2 cos2 θ

= ‖ ~A‖2 ‖ ~B‖2(1− cos2 θ) = ‖ ~A‖2 ‖ ~B‖2 sin2 θ

so again we have ‖ ~A× ~B‖ = ‖ ~A‖ ‖ ~B‖ sin θ.
To see the geometrical meaning of the vector product, first take a look at

the parallelogram with sides defined by ~A and ~B.

~A

~B

θ
h

In the figure, the height h is equal to B sin θ (where A = ‖ ~A‖ and similarly for
B), and the area of the parallelogram is equal to the area of the two triangles
plus the area of the rectangle:

area = 2 · 1
2
(B cos θ)h+ (A−B cos θ)h

= Ah = AB sin θ = ‖ ~A× ~B‖.

Now suppose we have a third vector ~C that is not coplanar with ~A and ~B,
and consider the parallelepiped defined by the three vectors as shown below.

~A

~B

~C

~A × ~B

θ

The volume of this parallelepiped is given by the area of the base times the
height, and hence is equal to

volume = ‖ ~A× ~B‖ ‖ ~C‖ cos θ = ( ~A× ~B) · ~C.

So we see that the so-called scalar triple product ( ~A× ~B) · ~C represents the
volume spanned by the three vectors. In Sections 8.5 and 8.6 we will generalize
this result to Rn.

Most of our discussion so far should be familiar to most readers. Now we
turn to a formalism that is probably not so familiar. While this is a text on
linear algebra and not vector analysis, our formulation of determinants will use
a generalization of the permutation symbol that we now introduce. Just keep
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in mind that the long term benefits of what we are about to do far outweigh
the effort required to learn it.

While the concept of permutation should be fairly intuitive, let us make some
rather informal definitions. If we have a set of n numbers {a1, a2, . . . , an} then,
as mentioned in Section 1.3, these n numbers can be arranged into n! ordered
collections (ai1 , ai2 , . . . , ain

) where (i1, i2, . . . , in) is just the set (1, 2, . . . , n) ar-
ranged in any one of the n! possible orderings. Such an arrangement is called a
permutation of the set {a1, a2, . . . , an}. If we have a set S of n numbers, then
we denote the set of all permutations of these numbers by Sn. This is called
the permutation group of order n. Because there are n! rearrangements
(i.e., distinct orderings) of a set of n numbers (this can really be any n objects),
the permutation group of order n consists of n! elements. It is conventional to
denote an element of Sn (i.e., a particular permutation) by Greek letters such
as σ, τ, θ etc.

Now, it is fairly obvious intuitively that any permutation can be achieved
by a suitable number of interchanges of pairs of elements. Each interchange
of a pair is called a transposition. (The formal proof of this assertion is,
however, more difficult than you might think.) For example, let the ordered set
(1, 2, 3, 4) be permuted to the ordered set (4, 2, 1, 3). This can be accomplished
as a sequence of transpositions as follows:

(1, 2, 3, 4)
1↔4−−−→ (4, 2, 3, 1)

1↔3−−−→ (4, 2, 1, 3).

It is also easy enough to find a different sequence that yields the same final result,
and hence the sequence of transpositions resulting in a given permutation is by
no means unique. However, it is a fact (also not easy to prove formally) that
whatever sequence you choose, the number of transpositions is either always
an even number or always an odd number. In particular, if a permutation σ
consists of m transpositions, then we define the sign of the permutation by

sgnσ = (−1)m.

Because of this, it makes sense to talk about a permutation as being either even

(if m is even) or odd (if m is odd).
Now that we have a feeling for what it means to talk about an even or an

odd permutation, let us define the Levi-Civita symbol εijk (also frequently
referred to as the permutation symbol) by

εijk =





1 if (i, j, k) is an even permutation of (1, 2, 3)

−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 if (i, j, k) is not a permutation of (1, 2, 3)

.

In other words,

ε123 = −ε132 = ε312 = −ε321 = ε231 = −ε213 = 1

and εijk = 0 if there are any repeated indices. We also say that εijk is antisym-

metric in all three indices, meaning that it changes sign upon interchanging
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any two indices. For a given order (i, j, k) the resulting number εijk is also called
the sign of the permutation.

Before delving further into some of the properties of the Levi-Civita symbol,
let’s take a brief look at how it is used. Given two vectors ~A and ~B, we can
let i = 1 and form the double sum

∑3
j,k=1 ε1jkAjBk. Since εijk = 0 if any two

indices are repeated, the only possible values for j and k are 2 and 3. Then

3∑

j,k=1

ε1jkAjBk = ε123A2B3 + ε132A3B2 = A2B3 −A3B2 = ( ~A× ~B)1.

But the components of the cross product are cyclic permutations of each other,
and εijk doesn’t change sign under cyclic permutations, so we have the impor-
tant general result

( ~A× ~B)i =

3∑

j,k=1

εijkAjBk. (3.1)

(A cyclic permutation is one of the form 1→ 2→ 3→ 1 or x→ y → z → x.)
Now, in order to handle various vector identities, we need to prove some

other properties of the Levi-Civita symbol. The first identity to prove is this:

3∑

i,j,k=1

εijkεijk = 3! = 6. (3.2)

But this is actually easy, because (i, j, k) must all be different, and there are 3!
ways to order (1, 2, 3). In other words, there are 3! permutations of {1, 2, 3}.
For every case where all three indices are different, whether εijk is +1 or −1, we
always have (εijk)2 = +1, and therefore summing over the 3! possibilities yields
the desired result.

Before continuing, it will be extremely convenient to introduce a notational
shorthand device, called the Einstein summation convention. According to
this convention, repeated indices are automatically summed over. (The range
of summation is always clear from the context.) Furthermore, in order to make
it easier to distinguish just which indices are to be summed, we require that
one be a subscript and one a superscript. In this notation, a vector would be
written as ~A = Aix̂i = Aiei. In those relatively rare cases where an index might
be repeated but is not to be summed over, we will explicitly state that there is
to be no sum.

From a ‘bookkeeping’ standpoint, it is important to keep the placement of
any free (i.e., unsummed over) indices the same on both sides of an equation.
For example, we would always write something like AijB

jk = Ci
k and not

AijB
jk = Cik. In particular, the ith component of the cross product is written

( ~A× ~B)i = εijkA
jBk. (3.3)

For our present purposes, raising and lowering an index is purely a notational
convenience. And in order to maintain the proper index placement, we will
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frequently move an index up or down as necessary. In a later chapter, when we
discuss tensors in general, we will see that there is a technical difference between
upper and lower indices, but even then, in the particular case of Cartesian
coordinates there is no difference. (This is because the “metric” on R3 with
Cartesian coordinates is just δij .) While this may seem quite confusing at first,
with a little practice it becomes second nature and results in vastly simplified
calculations.

Using this convention, equation (3.2) is simply written εijkε
ijk = 6. This

also applies to the Kronecker delta, so that we have expressions like Aiδj
i =∑3

i=1 A
iδj

i = Aj (where δj
i is numerically the same as δij). An inhomogeneous

system of linear equations would be written as simply ai
jx

j = yi, and the dot
product as

~A · ~B = AiB
i = AiBi. (3.4)

Note also that indices that are summed over are “dummy indices” meaning, for
example, thatAiB

i = AkB
k. This is simply another way of writing

∑3
i=1 AiBi =

A1B1 +A2B2 +A3B3 =
∑3

k=1 AkBk.

As we have said, the Levi-Civita symbol greatly simplifies many calculations
dealing with vectors. Let’s look at some examples.

Example 3.1. Let us take a look at the scalar triple product. We have

~A · ( ~B × ~C) = Ai( ~B × ~C)i = Aiε
ijkBjCk

= Bjε
jkiCkAi (because εijk = −εjik = +εjki)

= Bj(~C × ~A)j

= ~B · (~C × ~A).

Note also that this formalism automatically takes into account the anti-
symmetry of the cross product:

(~C × ~A)i = εijkC
jAk = −εikjC

jAk = −εikjA
kCj = −( ~A× ~C)i.

It doesn’t get any easier than this.

Of course, this formalism works equally well with vector calculus equations
involving the gradient ∇. This is the vector defined by

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= x̂1

∂

∂x1
+ x̂2

∂

∂x2
+ x̂3

∂

∂x3
= ei ∂

∂xi
.

In fact, it will also be convenient to simplify our notation further by defining
∇i = ∂/∂xi = ∂i, so that ∇ = ei∂i.
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Example 3.2. Let us prove the well-known identity ∇ · (∇× ~A) = 0. We have

∇ · (∇× ~A) = ∇i(∇× ~A)i = ∂i(ε
ijk∂jAk) = εijk∂i∂jAk.

But now notice that εijk is antisymmetric in i and j (so that εijk = −εjik),
while the product ∂i∂j is symmetric in i and j (because we assume that the
order of differentiation can be interchanged so that ∂i∂j = ∂j∂i). Then

εijk∂i∂j = −εjik∂i∂j = −εjik∂j∂i = −εijk∂i∂j

where the last step follows because i and j are dummy indices, and we can
therefore relabel them. But then εijk∂i∂j = 0 and we have proved our identity.

The last step in the previous example is actually a special case of a general
result. To see this, suppose that we have an object Aij··· that is labeled by two
or more indices, and suppose that it is antisymmetric in two of those indices
(say i, j). This means that Aij··· = −Aji···. Now suppose that we have another
object Sij··· that is symmetric in i and j, so that Sij··· = Sji···. If we multiply
A times S and sum over the indices i and j, then using the symmetry and
antisymmetry properties of S and A we have

Aij···Sij··· = −Aji···Sij··· by the antisymmetry of A

= −Aji···Sji··· by the symmetry of S

= −Aij···Sij··· by relabeling the dummy indices i and j

and therefore we have the general result

Aij···Sij··· = 0.

It is also worth pointing out that the indices i and j need not be the first
pair of indices, nor do they need to be adjacent. For example, we still have
A···i···j···S···i···j··· = 0.

Now suppose that we have an arbitrary object T ij without any particular
symmetry properties. Then we can turn this into an antisymmetric object T [ij]

by a process called antisymmetrization as follows:

T ij → T [ij] :=
1

2!
(T ij − T ji).

In other words, we add up all possible permutations of the indices, with the sign
of each permutation being either +1 (for an even permutation) or −1 (for an odd
permutation), and then divide this sum by the total number of permutations,
which in this case is 2!. If we have something of the form T ijk then we would
have

T ijk → T [ijk] :=
1

3!
(T ijk − T ikj + T kij − T kji + T jki − T jik)
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where we alternate signs with each transposition. The generalization to an arbi-
trary number of indices should be clear. Note also that we could antisymmetrize
only over a subset of the indices if required.

It is also important to note that it is impossible to have a nonzero antisym-
metric object with more indices than the dimension of the space we are working
in. This is simply because at least one index will necessarily be repeated. For
example, if we are in R3, then anything of the form T ijkl must have at least one
index repeated because each index can only range between 1, 2 and 3.

Now, why did we go through all of this? Well, first recall that we can write
the Kronecker delta in any of the equivalent forms δij = δi

j = δj
i . Then we can

construct quantities like

δ
[1
i δ

2]
j =

1

2!

(
δ1i δ

2
j − δ2i δ1j

)
= δ1[iδ

2
j]

and

δ
[1
i δ

2
j δ

3]
k =

1

3!

(
δ1i δ

2
j δ

3
k − δ1i δ3j δ2k + δ3i δ

1
j δ

2
k − δ3i δ2j δ1k + δ2i δ

3
j δ

1
k − δ2i δ1j δ3k

)
.

In particular, we now want to show that

εijk = 3! δ
[1
i δ

2
j δ

3]
k . (3.5)

Clearly, if i = 1, j = 2 and k = 3 we have

3! δ
[1
1 δ

2
2 δ

3]
3 = 3!

1

3!

(
δ11δ

2
2δ

3
3 − δ11δ32δ23 + δ31δ

1
2δ

2
3 − δ31δ22δ13 + δ21δ

3
2δ

1
3 − δ21δ12δ33

)

= 1− 0 + 0− 0 + 0− 0 = 1 = ε123

so equation (3.5) is correct in this particular case. But now we make the crucial
observation that both sides of equation (3.5) are antisymmetric in (i, j, k), and
hence the equation must hold for all values of (i, j, k). This is because any
permutation of (i, j, k) results in the same change of sign on both sides, and
both sides also equal 0 if any two indices are repeated. Therefore equation (3.5)
is true in general.

To derive what is probably the most useful identity involving the Levi-Civita
symbol, we begin with the fact that ε123 = 1. Multiplying the left side of
equation (3.5) by 1 in this form yields

εijk ε
123 = 3! δ

[1
i δ

2
j δ

3]
k .

But now we again make the observation that both sides are antisymmetric in
(1, 2, 3), and hence both sides are equal for all values of the upper indices, and
we have the fundamental result

εijk ε
nlm = 3! δ

[n
i δ

l
j δ

m]
k . (3.6)
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We now set n = k and sum over k. (This process of setting two indices equal
to each other and summing is called contraction.) Using the fact that

δk
k =

3∑

i=1

δk
k = 3

along with terms such as δk
i δ

m
k = δm

i we find

εijk ε
klm = 3! δ

[k
i δ

l
j δ

m]
k

= δk
i δ

l
jδ

m
k − δk

i δ
m
j δ

l
k + δm

i δ
k
j δ

l
k − δm

i δ
l
jδ

k
k + δl

iδ
m
j δ

k
k − δl

iδ
k
j δ

m
k

= δm
i δ

l
j − δl

iδ
m
j + δm

i δ
l
j − 3δm

i δ
l
j + 3δl

iδ
m
j − δl

iδ
m
j

= δl
iδ

m
j − δm

i δ
l
j.

In other words, we have the extremely useful result

εijk ε
klm = δl

iδ
m
j − δm

i δ
l
j . (3.7)

This result is so useful that it should definitely be memorized.

Example 3.3. Let us derive the well-known triple vector product known as the
“bac− cab” rule. We simply compute using equation (3.7):

[ ~A× ( ~B × ~C)]i = εijkA
j( ~B × ~C)k = εijkε

klmAjBlCm

= (δl
iδ

m
j − δm

i δ
l
j)A

jBlCm = AmBiCm −AjBjCi

= Bi( ~A · ~C)− Ci( ~A · ~B)

and therefore
~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B).

We also point out that some of the sums in this derivation can be done in
more than one way. For example, we have either δl

iδ
m
j A

jBlCm = AmBiCm =

Bi( ~A · ~C) or δl
iδ

m
j A

jBlCm = AjBiCj = Bi( ~A · ~C), but the end result is always
the same. Note also that at every step along the way, the only index that isn’t
repeated (and hence summed over) is i.

Example 3.4. Equation (3.7) is just as useful in vector calculus calculations.
Here is an example to illustrate the technique.

[∇× (∇× ~A)]i = εijk∂
j(∇× ~A)k = εijkε

klm∂j∂lAm

= (δl
iδ

m
j − δm

i δ
l
j)∂

j∂lAm = ∂j∂iAj − ∂j∂jAi

= ∂i(∇ · ~A)−∇2Ai
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and hence we have the identity

∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A

which is very useful in discussing the theory of electromagnetic waves.

Exercises

1. Using the Levi-Civita symbol, prove the following vector identities in R3

equipped with a Cartesian coordinate system (where the vectors are ac-
tually vector fields where necessary, f is differentiable, and ∇i = ∂i =
∂/∂xi):

(a) ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C

(b) ( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)
(c) ∇×∇f = 0

(d) ∇ · (∇× ~A) = 0

(e) ∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B)

(f) ∇× ( ~A× ~B) = ~A(∇ · ~B)− ~B(∇ · ~A) + ( ~B · ∇) ~A− ( ~A · ∇) ~B

2. Using the divergence theorem (
∫

V ∇ · ~Ad3x =
∫

S
~A · ~n da), prove

∫

V

∇× ~A d3x =

∫

S

~n× ~Ada.

[Hint : Let ~C be a constant vector and show

~C ·
∫

V

∇× ~Ad3x =

∫

S

(~n× ~A) · ~C da = ~C ·
∫

S

~n× ~Ada.]

3. Let Ai1··· ir
be an antisymmetric object, and suppose T i1··· ir ······ is an ar-

bitrary object. Show

Ai1··· ir
T i1··· ir ······ = Ai1··· ir

T [i1··· ir ]···
···.

3.2 Definitions and Elementary Properties

In treating vectors in R3, we used the permutation symbol εijk defined in the
last section. We are now ready to apply the same techniques to the theory of
determinants. The idea is that we want to define a mapping from a matrix
A ∈Mn(F) to F in a way that has certain algebraic properties. Since a matrix
in Mn(F) has components aij with i and j ranging from 1 to n, we are going to
need a higher dimensional version of the Levi-Civita symbol already introduced.
The obvious extension to n dimensions is the following.
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We define

εi1··· in =





1 if i1, . . . , in is an even permutation of 1, . . . , n

−1 if i1, . . . , in is an odd permutation of 1, . . . , n

0 if i1, . . . , in is not a permutation of 1, . . . , n

.

Again, there is no practical difference between εi1··· in and εi1··· in
. Using this,

we define the determinant of A = (aij) ∈Mn(F) to be the number

detA = εi1··· ina1i1a2i2 · · · anin
. (3.8)

Look carefully at what this expression consists of. Since εi1··· in vanishes unless
(i1, . . . , in) are all distinct, and there are n! such distinct orderings, we see that
detA consists of n! terms in the sum, where each term is a product of n factors
aij , and where each term consists precisely of one factor from each row and
each column of A. In other words, detA is a sum of terms where each term is
a product of one element from each row and each column, and the sum is over
all such possibilities.

The determinant is frequently written as

detA =

∣∣∣∣∣∣∣

a11 . . . a1n

...
...

an1 . . . ann

∣∣∣∣∣∣∣
.

The determinant of an n × n matrix is said to be of order n. Note also that
the determinant is only defined for square matrices.

Example 3.5. Leaving the easier 2× 2 case to you to verify, we will work out
the 3× 3 case and show that it gives the same result that you probably learned
in a more elementary course. So, for A = (aij) ∈M3(F) we have

detA = εijka1ia2ja3k

= ε123a11a22a33 + ε132a11a23a32 + ε312a13a21a32

+ ε321a13a22a31 + ε231a12a23a31 + ε213a12a21a33

= a11a22a33 − a11a23a32 + a13a21a32

− a13a22a31 + a12a23a31 − a12a21a33

You may recognize this in either of the mnemonic forms (sometimes called Sar-

rus’s rule)

a11a11 a12a12 a13

a21a21 a22a22 a23

a31a31 a32a32 a33

− −− ++ +



3.2. DEFINITIONS AND ELEMENTARY PROPERTIES 119

or

a11 a12 a13

a21 a22 a23

a31 a32 a33

− −
−

+

+
+

Here, we are to add together all products of terms connected by a (+) line,
and subtract all of the products connected by a (−) line. We will see in a later
section that this 3 × 3 determinant may be expanded as a sum of three 2 × 2
determinants.

Example 3.6. Let A = (aij) be a diagonal matrix, i.e., aij = 0 if i 6= j. Then

detA = εi1··· ina1i1 · · · anin
= ε1···na11 · · ·ann

= a11 · · · ann =
n∏

i=1

aii

so that ∣∣∣∣∣∣∣

a11 · · · 0
...

. . .
...

0 · · · ann

∣∣∣∣∣∣∣
=

n∏

i=1

aii.

In particular, we see that det I = 1.

We now prove a number of useful properties of determinants. These are all
very straightforward applications of the definition (3.8) once you have become
comfortable with the notation. In fact, in our opinion, this approach to deter-
minants affords the simplest way in which to arrive at these results, and is far
less confusing than the usual inductive proofs.

Theorem 3.1. For any A ∈Mn(F) we have

detA = detAT .

Proof. This is simply an immediate consequence of our definition of determi-
nant. We saw that detA is a sum of all possible products of one element from
each row and each column, and no product can contain more than one term
from a given column because the corresponding ε symbol would vanish. This



120 CHAPTER 3. DETERMINANTS

means that an equivalent way of writing all n! such products is (note the order
of subscripts is reversed)

detA = εi1··· inai11 · · ·ainn.

But aij = aT
ji so this is just

detA = εi1··· inai11 · · ·ainn = εi1··· inaT
1i1 · · · aT

nin
= detAT .

In order to help us gain some additional practice manipulating these quanti-
ties, we prove this theorem again based on another result which we will find very
useful in its own right. We start from the definition detA = εi1··· ina1i1 · · · anin

.
Again using ε1···n = 1 we have

ε1···n detA = εi1··· ina1i1 · · · anin
. (3.9)

By definition of the permutation symbol, the left side of this equation is anti-
symmetric in (1, . . . , n). But so is the right side because, taking a1i1 and a2i2

as an example, we see that

εi1i2··· ina1i1a2i2 · · · anin
= εi1i2··· ina2i2a1i1 · · · anin

= −εi2i1··· ina2i2a1i1 · · · anin

= −εi1i2··· ina2i1a1i2 · · · anin

where the last line follows by a relabeling of the dummy indices i1 and i2.
So, by a now familiar argument, both sides of equation (3.9) must be true

for any values of the indices (1, . . . , n) and we have the extremely useful result

εj1··· jn
detA = εi1··· inaj1i1 · · · ajnin

. (3.10)

This equation will turn out to be very helpful in many proofs that would oth-
erwise be considerably more difficult.

Let us now use equation (3.10) to prove Theorem 3.1. We begin with the
analogous result to equation (3.2). This is

εi1··· inεi1··· in
= n!. (3.11)

Using this, we multiply equation (3.10) by εj1··· jn to yield

n! detA = εj1··· jnεi1··· inaj1i1 · · ·ajnin
.

On the other hand, by definition of detAT we have

detAT = εi1··· inaT
1i1 · · · aT

nin
= εi1··· inai11 · · ·ainn.

Multiplying the left side of this equation by 1 = ε1···n and again using the
antisymmetry of both sides in (1, . . . , n) yields

εj1··· jn
detAT = εi1··· inai1j1 · · · ajnin

.
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(This also follows by applying equation (3.10) to AT directly.)
Now multiply this last equation by εj1··· jn to obtain

n! detAT = εi1··· inεj1··· jnai1j1 · · · ajnin
.

Relabeling the dummy indices i and j we have

n! detAT = εj1··· jnεi1··· inaj1i1 · · · ainjn

which is exactly the same as the above expression for n! detA, and we have
again proved Theorem 3.1.

Looking at the definition detA = εi1··· ina1i1 · · · anin
, we see that we can

view the determinant as a function of the rows of A: detA = det(A1, . . . , An).
Since each row is actually a vector in Fn, we can replace A1 (for example) by
any linear combination of two vectors in Fn so that A1 = rB1 + sC1 where
r, s ∈ F and B1, C1 ∈ Fn. Let B = (bij) be the matrix with rows Bi = Ai for
i = 2, . . . , n, and let C = (cij) be the matrix with rows Ci = Ai for i = 2, . . . , n.
Then

detA = det(A1, A2, . . . , An) = det(rB1 + sC1, A2, . . . , An)

= εi1··· in(rb1i1 + sc1i1)a2i2 · · ·anin

= rεi1··· inb1i1a2i2 · · ·anin
+ sεi1··· inc1i1a2i2 · · ·anin

= r detB + s detC.

Since this argument clearly could have been applied to any of the rows of A, we
have proved the following theorem.

Theorem 3.2. Let A ∈ Mn(F) have row vectors A1, . . . , An and assume that
for some i = 1, . . . , n we have

Ai = rBi + sCi

where Bi, Ci ∈ Fn and r, s ∈ F . Let B ∈ Mn(F) have
rows A1, . . . , Ai−1, Bi, Ai+1, . . . , An and C ∈ Mn(F) have rows
A1, . . . , Ai−1, Ci, Ai+1, . . . , An. Then

detA = r detB + s detC.

In fact, a simple induction argument gives the following result.

Corollary 1. Let A ∈ Mn(F) have row vectors A1, . . . , An and suppose that
for some i = 1, . . . , n we have

Ai =

k∑

j=1

rjBj
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where Bj ∈ Fn for j = 1, . . . , k and each ri ∈ F . Then

detA = det(A1, . . . , Ai−1,

k∑

j=1

rjBj , Ai+1, . . . , An)

=

k∑

j=1

det(A1, . . . , Ai−1, Bi, Ai+1, . . . , An).

Corollary 2. If any row of A ∈Mn(F) is zero, then detA = 0.

Proof. If any row of A is zero, then clearly detA = εi1··· ina1i1 · · · anin
= 0

because each product in the sum of products contains an element from each
row. This result also follows from the theorem by letting r = s = 0.

Corollary 3. If A ∈Mn(F) and r ∈ F , then det(rA) = rn detA.

Proof. Since rA = (raij) we have

det(rA) = εi1··· in(ra1i1 ) · · · (ranin
)

= rnεi1··· ina1i1 · · · anin

= rn detA.

Let us go back and restate an earlier result (equation (3.10)) for emphasis,
and also look at two of its immmediate consequences.

Theorem 3.3. If A ∈Mn(F), then

εj1··· jn
detA = εi1··· inaj1i1 · · · ajnin

.

Corollary 1. If B ∈Mn(F) is obtained from A ∈Mn(F) by interchanging two
rows of A, the detB = − detA.

Proof. This is really just what the theorem says in words. (See the discussion
between equations (3.9) and (3.10).) For example, let B result from interchang-
ing rows 1 and 2 of A. Then

detB = εi1i2··· inb1i1b2i2 · · · bnin
= εi1i2··· ina2i1a1i2 · · · anin
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= εi1i2··· ina1i2a2i1 · · ·anin
= −εi2i1··· ina1i2a2i1 · · · anin

= −εi1i2··· ina1i1a2i2 · · · anin

= − detA = ε213···n detA.

where again the next to last line follows by relabeling.

Corollary 2. If A ∈Mn(F) has two identical rows, then detA = 0.

Proof. If B is the matrix obtained by interchanging two identical rows of A,
then by the previous corollary we have

detA = detB = − detA

and therefore detA = 0.

Here is another way to view Theorem 3.3 and its corollaries. As we did
earlier, we view detA as a function of the rows of A. Then the corollaries state
that detA = 0 if any two rows are the same, and detA changes sign if two
nonzero rows are interchanged. In other words, we have

det(Aj1 , . . . , Ajn
) = εj1··· jn

detA.

If it isn’t immediately obvious to you that this is true, then note that for
(j1, . . . , jn) = (1, . . . , n) it’s just an identity. So by the antisymmetry of both
sides, it must be true for all j1, . . . , jn.

3.3 Additional Properties of Determinants

It is important to realize that because detAT = detA, these last two theorems
and their corollaries apply to columns as well as to rows. Furthermore, these
results now allow us easily see what happens to the determinant of a matrix A
when we apply elementary row (or column) operations to A. In fact, if you think
for a moment, the answer should be obvious. For a type α transformation (i.e.,
interchanging two rows), we have just seen that detA changes sign (Theorem
3.3, Corollary 1). For a type β transformation (i.e., multiply a single row by a
nonzero scalar), we can let r = k, s = 0 and Bi = Ai in Theorem 3.2 to see that
detA → k detA. And for a type γ transformation (i.e., add a multiple of one
row to another) we have (for Ai → Ai + kAj and using Theorems 3.2 and 3.3,
Corollary 2)

det(A1, . . . , Ai + kAj , . . . , An) = detA+ k det(A1, . . . , Aj , . . . , Aj , . . . , An)

= detA+ 0 = detA.

Summarizing these results, we have the following theorem.
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Theorem 3.4. Suppose A ∈ Mn(F) and let B ∈ Mn(F) be row equivalent to
A.

(i) If B results from the interchange of two rows of A, then detB = − detA.
(ii) If B results from multiplying any row (or column) of A by a scalar k,

then detB = k detA.
(iii) If B results from adding a multiple of one row of A to another row,

then detB = detA.

Corollary. If R is the reduced row-echelon form of a matrix A, then detR = 0
if and only if detA = 0.

Proof. This follows from Theorem 3.4 since A and R are row-equivalent.

Besides the very easy to handle diagonal matrices, another type of matrix
that is easy to deal with are the triangular matrices. To be precise, a matrix
A ∈ Mn(F) is said to be upper-triangular if aij = 0 for i > j, and A is said
to be lower-triangular if aij = 0 for i < j. Thus a matrix is upper-triangular
if it is of the form 



a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
...

0 0 0 · · · ann




and lower-triangular if it is of the form




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an1 an2 an3 · · · ann



.

We will use the term triangular to mean either upper- or lower-triangular.

Theorem 3.5. If A ∈Mn(F) is a triangular matrix, then

detA =

n∏

i=1

aii.

Proof. If A is lower-triangular, then A is of the form shown above. Now look
carefully at the definition detA = εi1··· ina1i1 · · · anin

. Since A is lower-triangular
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we have aij = 0 for i < j. But then we must have i1 = 1 or else a1i1 = 0. Now
consider a2i2 . Since i1 = 1 and a2i2 = 0 if 2 < i2, we must have i2 = 2. Next,
i1 = 1 and i2 = 2 means that i3 = 3 or else a3i3 = 0. Continuing in this way we
see that the only nonzero term in the sum is when ij = j for each j = 1, . . . , n
and hence

detA = ε12 ···n a11 · · · ann =

n∏

i=1

aii.

If A is an upper-triangular matrix, then the theorem follows from Theorem
3.1.

An obvious corollary is the following (which was also shown directly in Ex-
ample 3.6).

Corollary. If A ∈Mn(F) is diagonal, then detA =
∏n

i=1 aii.

Another fundamental result that relates the rank of a matrix to its determi-
nant is this.

Theorem 3.6. A matrix A ∈Mn(F) is singular if and only if detA = 0.

Proof. Let R be the reduced row-echelon form of A. If A is singular, then
by definition rank(A) < n so that by Theorem 2.6 there must be at least one
zero row in the matrix R. Hence detR = 0 by Theorem 3.2, Corollary 2, and
therefore detA = 0 by the corollary to Theorem 3.4.

Conversely, we want to show that detA = 0 implies rank(A) < n. To do
this we prove the contrapositive, i.e., we show rank(A) = n implies detA 6= 0.
So, assume that rank(A) = n. Then, by Theorem 2.7, we must have R = In
so that detR = 1. Hence detA 6= 0 by the corollary to Theorem 3.4. In other
words, if detA = 0 it follows that rank(A) < n.

Before turning to the method of evaluating determinants known as “expan-
sion by cofactors,” there is one last very fundamental result that we should
prove.

Theorem 3.7. If A,B ∈Mn(F), then

det(AB) = (detA)(detB).

Proof. If either A or B is singular (i.e., their rank is less than n) then so is AB
(by the corollary to Theorem 2.17). But then (by Theorem 3.6) either detA = 0
or detB = 0, and also det(AB) = 0 so the theorem is true in this case.
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Now assume that both A and B are nonsingular, and let C = AB. Then
Ci = (AB)i =

∑
k aikBk for each i = 1, . . . , n (see Section 2.5) so that from

Theorem 3.2, Corollary 1 we see that

detC = det(C1, . . . , Cn)

= det

(∑

j1

a1j1Bj1 , . . . ,
∑

jn

anjn
Bjn

)

=
∑

j1

· · ·
∑

jn

a1j1 · · · anjn
det(Bj1 , . . . , Bjn

).

But det(Bj1 , . . . , Bjn
) = εj1··· jn

detB (see the discussion following Theorem 3.3)
so we have

detC =
∑

j1

· · ·
∑

jn

a1j1 · · · anjn
εj1··· jn detB

= (detA)(detB).

Corollary. If A ∈Mn(F) is nonsingular, then

detA−1 = (detA)−1.

Proof. If A is nonsingular, then A−1 exists, and hence by the theorem we have

1 = det I = det(AA−1) = (detA)(detA−1)

and therefore
detA−1 = (detA)−1.

Exercises

1. Compute the determinants of the following matrices directly from the def-
inition:

(a)




1 2 3
4 −2 3
2 5 −1


 (b)




2 0 1
3 2 −3
−1 −3 5




2. Consider the following real matrix:

A =




2 1 9 1
4 3 −1 2
1 4 3 2
3 2 1 4




Evaluate detA by reducing A to upper-triangular form and using Theorem
3.4.
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3. Using the definition, show that
∣∣∣∣∣∣∣∣

a1 0 0 0
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

∣∣∣∣∣∣∣∣
= a1

∣∣∣∣∣∣

b2 b3 b4
c2 c3 c4
d2 d3 d4

∣∣∣∣∣∣
.

4. Evaluate the determinant of the following matrix:




0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...

1 0 · · · 0 0




5. If A is nonsingular and A−1 = AT , show detA = ±1 (such a matrix A is
said to be orthogonal).

6. Consider a complex matrix U ∈Mn(C).

(a) If U∗ = (uij
∗), show detU∗ = (detU)∗.

(b) Let U † = U∗T (this is called the adjoint or conjugate transpose

of U , and is not to be confused with the classical adjoint introduced
in the next section). Suppose U is such that U †U = UU † = I (such
a U is said to be unitary). Show that we may write detU = eiφ for
some real φ.

7. (a) If A is a real n× n matrix and k is a positive odd integer, show that
Ak = In implies that detA = 1.

(b) If An = 0 for some positive integer n, show that detA = 0. (A matrix
for which An = 0 is said to be nilpotent.)

8. If the anticommutator [A,B]+ = AB+BA = 0, show that A and/or B
in Mn(F) must be singular if n is odd. What can you say if n is even?

9. Suppose C is a 3 × 3 matrix that can be expressed as the product of a
3 × 2 matrix A and a 2 × 3 matrix B. Show that detC = 0. Generalize
this result to n× n matrices.

10. Recall that A is symmetric if AT = A. If A is symmetric, show that

det(A+B) = det(A+BT ).

11. Recall that a matrix A is said to be antisymmetric if AT = −A, i.e.,
aT

ij = −aji . If A is an antisymmetric square matrix of odd size, prove
that detA = 0.

12. (a) Recall (see Exercise 2.5.7) that if A ∈ Mn(F), then trA =
∑

i aii. If
A is a 2 × 2 matrix, prove that det(I + A) = 1 + detA if and only if
trA = 0. Is this true for any size square matrix?
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(b) If |aij | ≪ 1, show that det(I +A) ∼= 1 + trA.

13. Two matrices A and A′ are said to be similar if there exists a nonsingular
matrix P such that A′ = PAP−1. The operation of transforming A into
A′ in this manner is called a similarity transformation.

(a) Show this defines an equivalence relation on the set of all matrices.
(b) Show that the determinant is invariant under a similarity transforma-

tion.
(c) Show that the trace (Exercise 2.5.7) is also invariant.

14. Consider the matrices

A =




2 0 −1
3 0 2
4 −3 7


 B =




3 2 −4
1 0 −2
−2 3 3




(a) Evaluate detA and detB.
(b) Find AB and BA.
(c) Evaluate detAB and detBA.

15. Show that
∣∣∣∣∣∣

a1 b1 + xa1 c1 + yb1 + za1

a2 b2 + xa2 c2 + yb2 + za2

a3 b3 + xa3 c3 + yb3 + za3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
.

16. Find all values of x for which each of the following determinants is zero:

(a)

∣∣∣∣∣∣

x− 1 1 1
0 x− 4 1
0 0 x− 2

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣

1 x x
x 1 x
x x 1

∣∣∣∣∣∣

(c)

∣∣∣∣∣∣

1 x x2

1 2 4
1 3 9

∣∣∣∣∣∣

17. Given a matrix A, the matrix that remains after any rows and/or columns
of A have been deleted is called a submatrix of A, and the determinant
of a square submatrix is called a subdeterminant. Show that the rank
of a matrix A is the size of the largest nonvanishing subdeterminant of
A. [Hint : Think about Theorem 2.6, Corollary 2 of Theorem 3.2, and
Theorem 3.4.]

18. Show that the following determinant is zero:
∣∣∣∣∣∣∣∣

a2 (a+ 1)2 (a+ 2)2 (a+ 3)2

b2 (b+ 1)2 (b + 2)2 (b+ 3)2

c2 (c+ 1)2 (c+ 2)2 (c+ 3)2

d2 (d+ 1)2 (d+ 2)2 (d+ 3)2

∣∣∣∣∣∣∣∣
.

[Hint : You need not actually evaluate it.]
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19. Show that ∣∣∣∣∣∣∣∣∣∣

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

∣∣∣∣∣∣∣∣∣∣

= 0.

20. (a) If E is an elementary matrix, show (without using Theorem 3.1) that
detET = detE.

(b) Use Theorem 2.23 to show that detAT = detA for any A ∈Mn(F).

21. Use the material of this section to give a proof (independent of Chapter
2) that the product of nonsingular matrices is nonsingular.

3.4 Expansion by Cofactors

We now turn to the method of evaluating determinants known as expansion by

cofactors (or sometimes expansion by minors or the Laplace expansion

formula). This is really more of a theoretical tool than it is practical. The
easiest way in general to evaluate determinants is probably to row reduce to
triangular form and use Theorem 3.5.

Example 3.7. Consider the matrix A given by

A =




2 −1 3
1 2 −1
−3 0 2


 .

Then we have

detA =

∣∣∣∣∣∣

2 −1 3
1 2 −1
−3 0 2

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣

1 −1/2 3/2
1 2 −1
−3 0 2

∣∣∣∣∣∣

← (1/2)A1

= 2

∣∣∣∣∣∣

1 −1/2 3/2
0 5/2 −5/2
0 −3/2 13/2

∣∣∣∣∣∣
←−A1 +A2

← 3A1 +A3

= 2

∣∣∣∣∣∣

1 −1/2 3/2
0 5/2 −5/2
0 0 5

∣∣∣∣∣∣ ← (3/5)A2 +A3

= (2)(1)(5/2)(5) = 25.
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The reader should verify this result by the direct calculation of detA.

However, the cofactor expansion approach gives us a useful formula for the
inverse of a matrix as we shall see. The idea is to reduce a determinant of order
n to a sum of n determinants of order n − 1, and then reduce each of these
to determinants of order n − 2 and so forth down to determinants of order 3
or even 2. We will do this by simply taking a careful look at the definition of
determinant. By way of notation, if A ∈Mn(F), we let Ars ∈Mn−1(F) be the
matrix obtained from A by deleting the rth row and sth column. The matrix
Ars is called the rsth minor matrix of A, and detArs is called the rsth minor

of A. And the number a′rs = (−1)r+s detArs is called the rsth cofactor of A.

Example 3.8. Let A ∈M3(R) be defined by

A =




2 −1 5
0 3 4
1 2 −3


 .

Then the (2, 3) minor matrix is constructed by deleting the 2nd row and 3rd
column and is given by

A23 =

[
2 −1
1 2

]
.

The (2, 3) minor is then detA23 = 4 − (−1) = 5, and the (2, 3) cofactor is
(−1)2+3 detA23 = −5.

Theorem 3.8. Let A ∈Mn(F). Then for any r = 1, . . . , n we have

detA =

n∑

s=1

(−1)r+sars detArs =

n∑

s=1

arsa
′
rs.

Proof. Start from detA = εi1···ir ···ina1i1 · · · arir
· · · anin

. Explicitly writing out
the sum over the particular index ir = 1, . . . , n we have

detA = εi1···1···ina1i1 · · · ar1 · · · anin
+ εi1···2···ina1i1 · · · ar2 · · ·anin

+ · · ·+ εi1···n···ina1in
· · · arn · · · anin

Note that the scalars arj (i.e., ar1, ar2, . . . , arn) are not summed over in any
way, and can be brought outside each ε factor.

In order to help with bookkeeping, we introduce the so-called “magic hat”
̂ that makes things disappear. For example, 123̂4 = 124. Using this as a
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placeholder in our previous expression for detA, we factor out each arj and
write

detA = ar1ε
i1···1··· ina1i1 · · · âr1 · · · anin

+ ar2ε
i1···2···ina1i1 · · · âr2 · · · anin

+ · · ·+ arnε
i1···n···ina1in

· · · ârn · · · anin

(3.12)

Now look at the first ε term in equation (3.12) and write it as

εi1···ir−11ir+1···in = (−1)r−1ε1i1···ir−1
birir+1···in .

Because (−1)2 = 1 we can write (−1)r−1 = (−1)r−1(−1)2 = (−1)r+1 and the
first term becomes

(−1)r+1ar1ε
1i1···ir−1

birir+1···ina1i1 · · · âr1 · · ·anin
.

Now, because of the 1 in the ε superscripts, none of the rest of the ij ’s can take
the value 1. Then a moments thought should make it clear that (except for
the (−1)r+1ar1 factor) this last expression is just the determinant of the matrix
that results by deleting the rth row and 1st column of A.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
ar−1,1 ar−1,2 · · · ar−1,n

ar1 ar2 · · · arn

ar+1,1 ar+1,2 · · · ar+1,n

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

delete rth row−−−−−−−−−−→
and 1st column

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 · · · a1n

...
...

ar−1,2 · · · ar−1,n

ar+1,2 · · · ar+1,n

...
...

an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Indeed, it’s just the sum of all possible products of one element from each row
and column as before, with the appropriate sign. To see that the sign is cor-
rect, note that the first term in equation (3.8) is (i1, i2, . . . , in) = (1, 2, . . . , n)
so that the contribution to the determinant is +a11a22 · · · ann which is the di-
agonal term. Then what we have here with the rth row and 1st column deleted
also has the diagonal term a12a23 · · · ar−1,rar+1,r+1 · · · ann. (Note that in the
determinant on the right above, the entry in the (r − 1)th row and (r − 1)th
column is ar−1,r and the entry in the rth row and rth column is ar+1,r+1.) Fur-
thermore, the column indices on this diagonal term are (2 3 · · · r r + 1 · · ·n) =
(i1i2 · · · ir−1ir+1 · · · in) so the ε term becomes

ε1i1i2···ir−1ir+1···in = ε123···r r+1···n = +1 .

Thus the entire first term becomes simply (−1)r+1ar1 detAr1.
Now look at the second term in equation (3.12) and use (−1)4 = 1 to obtain

εi1···ir−12 ir+1···in = (−1)r−2εi12 i3··· bir ···in = (−1)r+2εi12 i3··· bir ···in
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and therefore

ar2ε
i1···2···ina1i1 · · · âr2 · · · anin

= (−1)r+2ar2ε
i12 i3··· bir ···ina1i1 · · · âr2 · · ·anin

= (−1)r+2ar2 detAr2.

We continue this procedure until the last term which is (note that here the n
superscript is moved to the right because every term with j > r has to go to
the right to keep the correct increasing order in the ε superscripts)

arnε
i1···ir−1nir+1···ina1i1 · · · ârn · · ·anin

= (−1)n−rarnε
i1··· bir ···inna1i1 · · · ârn · · · anin

= (−1)r+narn detArn

where we also used the fact that (−1)n−r = 1/(−1)n−r = (−1)r−n = (−1)r+n.
Putting all of this together we have the desired result

detA =
n∑

s=1

(−1)r+sars detArs =
n∑

s=1

arsa
′
rs.

This theorem gives detA as a sum of cofactors of the rth row. If we apply
the theorem to the matrix AT and then use the fact that detAT = detA, we
have the following corollary.

Corollary 1. Using the same notation as in the theorem, for any s = 1, . . . , n
we have

detA =

n∑

r=1

arsa
′
rs.

Note that in this corollary the sum is over the row index, and hence this is
an expansion in terms of the sth column, whereas in Theorem 3.8 the expansion
is in terms of the rth row.

Corollary 2. Using the same notation as in the theorem we have

n∑

s=1

aksa
′
rs = 0 if k 6= r

n∑

r=1

arka
′
rs = 0 if k 6= s

Proof. Given A ∈Mn(F), define B ∈Mn(F) by Bi = Ai for i 6= r and Br = Ak

(where k 6= r). In other words, replace the rth row of A by the kth row of A
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to obtain B. Since B now has two identical rows it follows that detB = 0.
Next, observe that Brs = Ars since both matrices delete the rth row (so that
the remaining rows are identical), and hence b′rs = a′rs for each s = 1, . . . , n.
Therefore, since Br = Ak we have

0 = detB =

n∑

s=1

brsb
′
rs =

n∑

s=1

brsa
′
rs =

n∑

s=1

aksa
′
rs.

Similarly, the other result follows by replacing the sth column of A by the kth
column so that brs = ark and then using Corollary 1.

As we will shortly see, these corollaries will give us a general equation for
the inverse of a matrix.

Example 3.9. As in Example 3.8, let A ∈M3(R) be defined by

A =




2 −1 5
0 3 4
1 2 −3


 .

To evaluate detA we expand by the second row:

detA = a21a
′
21 + a22a

′
22 + a23a

′
23

= 0 + (−1)2+2(3)

∣∣∣∣
2 5
1 −3

∣∣∣∣+ (−1)2+3(4)

∣∣∣∣
2 −1
1 2

∣∣∣∣

= 3(−6− 5)− 4(4− (−1)) = −53.

The reader should repeat this calculation using other rows and columns to see
that they all yield the same result.

Example 3.10. Let us evaluate detA where

A =




5 4 2 1
2 3 1 −2
−5 −7 −3 9

1 −2 −1 4


 .

Since type γ transformations don’t change the determinant (see Theorem 3.4),
we do the following sequence of elementary row transformations: (i) A1 →
A1 − 2A2 (ii) A3 → A3 + 3A2 (iii) A4 → A4 +A2 and this gives us the matrix

B =




1 −2 0 5
2 3 1 −2
1 2 0 3
3 1 0 2
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with detB = detA.
Now expand by cofactors of the third column (since there is only one term):

detA = (−1)2+3(1)

∣∣∣∣∣∣

1 −2 5
1 2 3
3 1 2

∣∣∣∣∣∣
= 38

where you can either evaluate this 3 × 3 determinant directly or reduce it to a
sum of 2× 2 determinants.

We are now in a position to prove a general formula for the inverse of a
matrix. Combining Theorem 3.8 and its corollaries, we obtain (for k, r, s =
1, . . . , n)

n∑

s=1

aksa
′
rs = δkr detA (3.13a)

n∑

r=1

arka
′
rs = δks detA. (3.13b)

Since each a′ij ∈ F , we may use the them to form a new matrix (a′ij) ∈Mn(F).
The transpose of this new matrix is called the adjoint of A (or sometimes the
classical adjoint to distinguish it from another type of adjoint to be discussed
later) and is denoted by adjA. In other words,

adjA = (a′ij)
T .

Noting that the (i, j)th entry of In is Iij = δij , it is now easy to prove the
following.

Theorem 3.9. For any A ∈ Mn(F) we have A(adjA) = (detA)I = (adjA)A.
In particular, if A is nonsingular, then

A−1 =
adjA

detA
.

Proof. Using (adjA)sr = a′rs, we may write equation (3.13a) in matrix form as

A(adjA) = (detA)I

and equation (3.13b) as
(adjA)A = (detA)I.

Therefore, if A is nonsingular, we have detA 6= 0 (Theorem 3.6) and hence

A(adjA)

detA
= I =

(adjA)A

detA
.
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Thus the uniqueness of the inverse (Theorem 2.20, Corollary 1) implies

A−1 =
(adjA)

detA
.

We remark that it is important to realize that the equations

A(adjA) = (detA)I

and
(adjA)A = (detA)I

are valid even if A is singular.

Example 3.11. Let us use this method to find the inverse of the matrix

A =



−1 2 1

0 3 −2
2 −1 0




used in Example 2.12. Leaving the details to the reader, we evaluate the co-
factors using the formula a′rs = (−1)r+s detArs to obtain a′11 = −2, a′12 = −4,
a′13 = −6, a′21 = −1, a′22 = −2, a′23 = 3, a′31 = −7, a′32 = −2, and a′33 = −3.
Hence we find

adjA =



−2 −1 −7
−4 −2 −2
−6 3 −3


 .

To evaluate detA, we may either calculate directly or by minors to obtain
detA = −12. Alternatively, from equation (3.13a) we have

(detA)I = A(adjA) =



−1 2 1

0 3 −2
2 −1 0





−2 −1 −7
−4 −2 −2
−6 3 −3




=



−12 0 0

0 −12 0
0 0 −12




= −12




1 0 0
0 1 0
0 0 1




so that we again find that detA = −12. In any case, we see that

A−1 =
adjA

−12
=




1/6 1/12 7/12
1/3 1/6 1/6
1/2 −1/4 1/4




which agrees with Example 2.12 as it should.
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If the reader thinks about Theorem 2.6, Corollary 2 of Theorem 3.2, and
Theorem 3.4 (or has already worked Exercise 3.3.17), our next theorem should
come as no real surprise. By way of more terminology, given a matrix A, the
matrix that remains after any rows and/or columns have been deleted is called
a submatrix of A.

Theorem 3.10. Let A be a matrix in Mm×n(F), and let k be the largest integer
such that some submatrix B ∈ Mk(F) of A has a nonzero determinant. Then
rank(A) = k.

Proof. Since B is a k×k submatrix of A with detB 6= 0, it follows from Theorem
3.6 that B is nonsingular and hence rank(B) = k. This means that the k rows
of B are linearly independent, and hence the k rows of A that contain the rows
of B must also be linearly independent. Therefore rank(A) = rr(A) ≥ k. By
definition of k, there can be no r × r submatrix of A with nonzero determinant
if r > k. We will now show that if rank(A) = r, then there necessarily exists an
r × r submatrix with nonzero determinant. This will prove that rank(A) = k.

If rank(A) = r, let A′ be the matrix with r linearly independent rows
Ai1 , . . . , Air

. Clearly rank(A′) = r also. But by definition of rank, we can
also choose r linearly independent columns of A′. This results in a nonsingular
matrix A′′ of size r, and hence detA′′ 6= 0 by Theorem 3.6.

Exercises

1. Verify the result of Example 3.7 by direct calculation.

2. Verify the 3× 3 determinant in Example 3.10.

3. Verify the terms a′ij in Example 3.11.

4. Evaluate the following determinants by expanding by minors of either rows
or columns:

(a)

∣∣∣∣∣∣

2 −1 5
0 3 4
1 2 −3

∣∣∣∣∣∣
(b)

∣∣∣∣∣∣∣∣

2 5 5 3
7 −8 2 3
1 −1 4 −2
−3 9 −1 3

∣∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣

3 2 2 3
1 −4 2 1
4 5 −1 0
−1 −4 2 7

∣∣∣∣∣∣∣∣
(d)

∣∣∣∣∣∣∣∣∣∣∣∣

3 1 0 4 2 1
2 0 1 0 5 1
0 4 −1 1 −1 2
0 0 0 2 0 1
0 0 0 0 1 −1
0 0 0 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣



3.4. EXPANSION BY COFACTORS 137

5. Let A ∈ Mn(F) be a matrix with 0’s down the main diagonal and 1’s
elsewhere. Show that detA = n− 1 if n is odd, and detA = 1− n if n is
even.

6. (a) Show that the determinant of the matrix



1 a a2

1 b b2

1 c c2




is (c− a)(c− b)(b− a).
(b) Define the function f(x) = Aeiαx + Beiβx + Ceiγx and assume that

A,B,C and α, β, γ are all nonzero constants. If f(x) = 0 for all x ∈ R,
show that α = β = γ.

7. Consider the matrix Vn ∈Mn(F) defined by




1 x1 x1
2 · · · x1

n−1

1 x2 x2
2 · · · x2

n−1

...
...

...
...

1 xn xn
2 · · · xn

n−1


 .

Prove that
detVn =

∏

i<j

(xj − xi)

where the product is over all pairs i and j satisfying 1 ≤ i, j ≤ n. This
matrix is called the Vandermonde matrix of order n. [Hint : This
should be done by induction on n. The idea is to show that

detVn = (x2 − x1)(x3 − x1) · · · (xn−1 − x1)(xn − x1) detVn−1.

Perform elementary column operations on Vn to obtain a new matrix V ′
n

with a 1 in the (1, 1) position and 0’s in every other position of the first
row. Now factor out the appropriate term from each of the other rows.]

8. The obvious method for deciding if two quadratic polynomials have a
common root involves the quadratic formula, and hence taking square
roots. This exercise investigates an alternative “root free” approach. (We
assume that the reader knows that x0 is a root of the polynomial p(x) if
and only if p(x0) = 0.)

(a) Show that

detA =

∣∣∣∣∣∣∣∣

1 −(x1 + x2) x1x2 0
0 1 −(x1 + x2) x1x2

1 −(y1 + y2) y1y2 0
0 1 −(y1 + y2) y1y2

∣∣∣∣∣∣∣∣

= (x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2).
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(b) Using this result, show that the polynomials

a0x
2 + a1x+ a2 (a0 6= 0)

b0x
2 + b1x+ b2 (b0 6= 0)

have a common root if and only if
∣∣∣∣∣∣∣∣

a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣
= 0.

[Hint : Note that if x1 and x2 are the roots of the first polynomial,
then

(x − x1)(x − x2) = x2 + (a1/a0)x+ a2/a0

and similarly for the second polynomial.]

9. Show that
∣∣∣∣∣∣∣∣∣∣∣

x 0 0 0 · · · 0 a0

−1 x 0 0 · · · 0 a1

0 −1 x 0 · · · 0 a2

...
...

...
...

...
...

0 0 0 0 · · · −1 x+ an+1

∣∣∣∣∣∣∣∣∣∣∣

= xn + an−1x
n−1 + · · ·+ a0.

Explain why this shows that given any polynomial p(x) of degree n, there
exists a matrix A ∈Mn(F) such that det(xI −A) = p(x).

10. Consider the following real matrix:

A =




a b c d
b −a d −c
c −d −a b
d c −b −a


 .

Show that detA = 0 implies a = b = c = d = 0. [Hint : Find AAT and
use Theorems 3.1 and 3.7.]

11. Let u, v and w be three vectors in R3 with the standard inner product, and
consider the determinant G(u, v, w) (the Gramian of {u, v, w}) defined
by

G(u, v, w) =

∣∣∣∣∣∣∣

〈u, u〉 〈u, v〉 〈u,w〉
〈v, u〉 〈v, v〉 〈v, w〉
〈w, u〉 〈w, v〉 〈w,w〉

∣∣∣∣∣∣∣
.

Show G(u, v, w) = 0 if and only if {u, v, w} are linearly dependent. As
we shall see in Chapter 8, G(u, v, w) represents the volume of the paral-
lelepiped in R3 defined by {u, v, w}.)

12. Find the inverse (if it exists) of the following matrices:
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(a)




1 −1 2
1 2 0
4 1 3


 (b)




1 3 2
2 1 3
3 2 1


 (c)



−2 2 3

4 3 −6
1 −1 2




(d)




8 2 5
−7 3 −4

9 −6 4


 (e)




1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1


 (f)




1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3




13. Find the inverse of [
cos θ − sin θ
− sin θ − cos θ

]
.

14. Suppose that an n-square matrix A is nilpotent (i.e., Ak = 0 for some
integer k > 0). Prove that In + A is nonsingular, and find its inverse.
[Hint : Note that (I +A)(I −A) = I −A2 etc.]

15. Let P ∈ Mn(F) be such that P 2 = P . If λ 6= 1, prove that In − λP is
invertible, and that

(In − λP )−1 = In +
λ

1− λP.

16. If A = (aij) is a symmetric matrix, show (a′ij) = (adjA)T is also symmet-
ric.

17. If a, b, c ∈ R, find the inverse of




1 a b
−a 1 c
−b −c 1


 .

18. (a) Using A−1 = (adjA)/ detA, show that the inverse of an upper (lower)
triangular matrix is upper (lower) triangular.

(b) If a 6= 0, find the inverse of




a b c d
0 a b c
0 0 a b
0 0 0 a


 .

19. Let A ∈Mn(R) have all integer entries. Show the following are equivalent:

(a) detA = ±1.
(b) All entries of A−1 are integers.

20. For each of the following matrices A, find the value(s) of x for which the
characteristic matrix xI −A is invertible.



140 CHAPTER 3. DETERMINANTS

(a)

[
2 0
0 3

]
(b)

[
1 1
1 1

]

(c)




1 0 0
0 0 1
0 1 0


 (d)




0 1 2
0 1 3
0 0 −1




21. Let A ∈ Mn(F) have exactly one nonzero entry in each row and column.
Show that A is invertible, and that its inverse is of the same form.

22. If A ∈Mn(F), show det(adjA) = (detA)n−1.

23. Show that A is nonsingular if and only if adjA is nonsingular.

24. Using determinants, find the rank of each of the following matrices:

(a)

[
1 2 3 4
−1 2 1 0

]
(b)



−1 0 1 2

1 1 3 0
−1 2 4 1




3.5 Determinants and Linear Equations

Suppose that we have a system of n equations in n unknowns which we write
in the usual way as

n∑

j=1

aijxj = yi, i = 1, . . . , n.

We assume that A = (aij) ∈Mn(F) is nonsingular. In matrix form, this system
may be written as AX = Y as we saw earlier. Since A is nonsingular, A−1

exists (Theorem 2.20, Corollary 1) and detA 6= 0 (Theorem 3.6). Therefore the
solution to AX = Y is given by

X = A−1Y =
(adjA)Y

detA
.

But adjA = (a′ij)T so that

xj =

n∑

i=1

(adjA)jiyi

detA
=

n∑

i=1

a′ijyi

detA
.

From Corollary 1 of Theorem 3.8, we see that
∑

i yia
′
ij is just the expansion by

minors of the jth column of the matrix C whose columns are given by Ci = Ai

for i 6= j and Cj = Y . We are thus led to the following result, called Cramer’s

rule.
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Theorem 3.11. If A = (aij) ∈Mn(F) is nonsingular, then the system of linear
equations

n∑

j=1

aijxj = yi, i = 1, . . . , n

has the unique solution

xj =
1

detA
det(A1, . . . , Aj−1, Y, Aj+1, . . . , An).

Proof. This theorem was actually proved in the preceding discussion, where
uniqueness follows from Theorem 2.13. However, it is instructive to give a more
direct proof as follows. We write our system as

∑
Aixi = Y and simply compute

using Corollary 1 of Theorem 3.2 and Corollary 2 of Theorem 3.3:

det(A1, . . . , Aj−1, Y, Aj+1, . . . ,An)

= det(A1, . . . , Aj−1,
∑

i

Aixi, A
j+1, . . . , An)

=
∑

i

xi det(A1, . . . , Aj−1, Ai, Aj+1, . . . , An)

= xj det(A1, . . . , Aj−1, Aj , Aj+1, . . . , An)

= xj detA.

Corollary. A homogeneous system of equations

n∑

j=1

aijxj = 0, i = 1, . . . , n

has a nontrivial solution if and only if detA = 0.

Proof. We see from Cramer’s rule that if detA 6= 0, then the solution of the
homogeneous system is just the zero vector (by Corollary 2 of Theorem 3.2 as
applied to columns instead of rows). This shows that the if the system has a
nontrivial solution, then detA = 0.

On the other hand, if detA = 0 then the columns of A must be linearly
dependent (Theorem 3.6). But the system

∑
j aijxj = 0 may be written as∑

j A
jxj = 0 where Aj is the jth column of A. Hence the linear dependence

of the Aj shows that the xj may be chosen such that they are not all zero,
and therefore a nontrivial solution exists. (We remark that this corollary also
follows directly from Theorems 2.9 and 3.6.)
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Example 3.12. Let us solve the system

5x+ 2y + z = 3
2x− y + 2z = 7
x+ 5y − z = 6

We see that A = (aij) is nonsingular since

∣∣∣∣∣∣

5 2 1
2 −1 2
1 5 −1

∣∣∣∣∣∣
= −26 6= 0.

We then have

x =
−1

26

∣∣∣∣∣∣

3 2 1
7 −1 2
6 5 −1

∣∣∣∣∣∣
= (−1/26)(52) = −2

y =
−1

26

∣∣∣∣∣∣

5 3 1
2 7 2
1 6 −1

∣∣∣∣∣∣
= (−1/26)(−78) = 3

z =
−1

26

∣∣∣∣∣∣

5 2 3
2 −1 7
1 5 6

∣∣∣∣∣∣
= (−1/26)(−182) = 7.

Exercises

1. Using Cramers rule, find a solution (if it exists) of the following systems
of equations:

(a) 3x+ y − z = 0
x− y + 3z = 1

2x+ 2y + z = 7

(b) 2x+ y + 2z = 0
3x− 2y + z = 1
−x+ 2y + 2z =−7

(c) 2x− 3y + z = 10
−x+ 3y + 2z =−2
4x+ 4y + 5z = 4

(d) x+ 2y − 3z + t=−9
2x+ y + 2z − t= 3
−x+ y + 2z − t= 0
3x+ 4y + z + 4t= 3

2. By calculating the inverse of the matrix of coefficients, solve the following
systems:

(a) 2x− 3y + z = a
x+ 2y + 3z = b

3x− y + 2z = c

(b) x+ 2y + 4z = a
−x+ 3y − 2z = b
2x− y + z = c
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(c) 2x+ y + 2z − 3t= a
3x+ 2y + 3z − 5t= b
2x+ 2y + z − t= c
5x+ 5y + 2z − 2t= d

(d) 6x+ y + 4z − 3t= a
2x− y = b
x+ y + z = c

−3x− y − 2z + t= d

3. If detA 6= 0 and AB = AC, show that B = C.

4. Find, if possible, a 2×2 matrixX that satisfies each of the given equations:

(a)

[
2 3
1 2

]
X

[
3 4
2 3

]
=

[
1 2
2 1

]

(b)

[
0 1
1 0

]
X

[
1 1
0 1

]
=

[
2 1
3 2

]

5. Consider the system

ax+ by = α+ βt

cx+ dy = γ + δt

where t is a parameter, β2 + δ2 6= 0 and

∣∣∣∣
a b
c d

∣∣∣∣ 6= 0.

Show that the set of solutions as t varies is a straight line in the direction
of the vector [

a b
c d

]−1 [
β
δ

]
.

6. Let A, B, C and D be 2 × 2 matrices, and let R and S be vectors (i.e.,
2× 1 matrices). Show that the system

AX +BY = R

CX +DY = S

can always be solved for vectors X and Y if

∣∣∣∣∣∣∣∣

a11 a12 b11 b12
a21 a22 b21 b22
c11 c12 d11 d12

c21 c22 d21 d22

∣∣∣∣∣∣∣∣
6= 0.
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Chapter 4

Linear Transformations and

Matrices

In Section 2.1 we defined matrices by systems of linear equations, and in Section
2.5 we showed that the set of all matrices over a field F may be endowed
with certain algebraic properties such as addition and multiplication. In this
chapter we present another approach to defining matrices, and we will see that
it also leads to the same algebraic behavior as well as yielding important new
properties.

4.1 Linear Transformations

Recall that vector space homomorphisms were defined in Section 1.3. We now
repeat that definition using some new terminology. In particular, a mapping
T : U → V of two vector spaces over the same field F is called a linear

transformation if it has the following properties for all x, y ∈ U and a ∈ F :

(LT1) T (x+ y) = T (x) + T (y)
(LT2) T (ax) = aT (x) .

Letting a = 0 and −1 shows
T (0) = 0

and
T (−x) = −T (x).

We also see that

T (x− y) = T (x+ (−y)) = T (x) + T (−y) = T (x)− T (y).

It should also be clear that by induction we have, for any finite sum,

T
(∑

aixi

)
=
∑

T (aixi) =
∑

aiT (xi)

for any vectors xi ∈ U and scalars ai ∈ F .

145
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Example 4.1. Let T : R3 → R2 be the “projection” mapping defined for any
u = (x, y, z) ∈ R3 by

T (u) = T (x, y, z) = (x, y, 0).

Then if v = (x′, y′, z′) we have

T (u+ v) = T (x+ x′, y + y′, z + z′)

= (x+ x′, y + y′, 0)

= (x, y, 0) + (x′, y′, 0)

= T (u) + T (v)

and
T (au) = T (ax, ay, az) = (ax, ay, 0) = a(x, y, 0) = aT (u).

Hence T is a linear transformation.

Example 4.2. Let P ∈ Mn(F) be a fixed invertible matrix. We define a
mapping S : Mn(F) → Mn(F) by S(A) = P−1AP . It is easy to see that this
defines a linear transformation since

S(αA+B) = P−1(αA +B)P = αP−1AP + P−1BP = αS(A) + S(B).

Example 4.3. Let V be a real inner product space, and let W be any subspace
of V . By Theorem 1.22 we have V = W ⊕W⊥, and hence by Theorem 1.12,
any v ∈ V has a unique decomposition v = x + y where x ∈ W and y ∈ W⊥.
Now define the mapping T : V →W by T (v) = x. Then

T (v1 + v2) = x1 + x2 = T (v1) + T (v2)

and
T (av) = ax = aT (v)

so that T is a linear transformation. This mapping is called the orthogonal

projection of V onto W .

Example 4.4. Let A ∈ Mn(F) be a fixed matrix. Then the mapping TA

defined by TA(X) = AX for X ∈ Fn is clearly a linear transformation from
Fn → Fn.
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Let T : U → V be a linear transformation, and let {ei} be a basis for U .
Then for any x ∈ U we have x =

∑
xiei, and hence

T (x) = T
(∑

xiei

)
=
∑

xiT (ei).

Therefore, if we know all of the T (ei), then we know T (x) for any x ∈ U . In
other words, a linear transformation is determined by specifying its values on a
basis. Our first theorem formalizes this fundamental observation.

Theorem 4.1. Let U and V be finite-dimensional vector spaces over F , and
let {e1, . . . , en} be a basis for U . If v1, . . . , vn are any n arbitrary vectors in V ,
then there exists a unique linear transformation T : U → V such that T (ei) = vi

for each i = 1, . . . , n.

Proof. For any x ∈ U we have x =
∑n

i=1 xiei for some unique set of scalars xi

(Theorem 1.4, Corollary 2). We define the mapping T by

T (x) =

n∑

i=1

xivi

for any x ∈ U . Since the xi are unique, this mapping is well-defined (see Exercise
4.1.1). Letting x = ei in the definition of T and noting that for any i = 1, . . . , n
we have ei =

∑
j δijej , it follows that

T (ei) =

n∑

j=1

δijvj = vi.

We show that T so defined is a linear transformation.
If x =

∑
xiei and y =

∑
yiei, then x+ y =

∑
(xi + yi)ei, and hence

T (x+ y) =
∑

(xi + yi)vi =
∑

xivi +
∑

yivi = T (x) + T (y).

Also, if c ∈ F then cx =
∑

(cxi)ei, and thus

T (cx) =
∑

(cxi)vi = c
∑

xivi = cT (x)

which shows that T is indeed a linear transformation.
Now suppose that T ′ : U → V is any other linear transformation defined by

T ′(ei) = vi. Then for any x ∈ U we have

T ′(x) = T ′
(∑

xiei

)
=
∑

xiT
′(ei) =

∑
xivi

=
∑

xiT (ei) = T
(∑

xiei

)
= T (x)

and hence T ′(x) = T (x) for all x ∈ U . This means that T ′ = T which thus
proves uniqueness.
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Example 4.5. Let T : Fm → Fn be a linear transformation, and let
{e1, . . . , em} be the standard basis for Fm. We may uniquely define T by
specifying any m vectors v1, . . . , vm in Fn. In other words, we define T by the
requirement T (ei) = vi for each i = 1, . . . ,m. Since for any x ∈ Fm we have
x =

∑m
i=1 xiei, the linearity of T means

T (x) =

m∑

i=1

xivi.

In terms of the standard basis {f1, . . . , fn} for Fn, each vi has components
{v1i, . . . , vni} defined by vi =

∑n
j=1 fjvji. (Note the order of indices in this

equation.) Now define the matrix A = (aij) ∈ Mn×m(F) with column vectors
given by Ai = vi ∈ Fn. In other words (remember these are columns),

Ai = (a1i, . . . , ani) = (v1i, . . . , vni) = vi.

Writing out T (x) we have

T (x) =

m∑

i=1

xivi = x1



v11
...
vn1


+ · · ·+ xm



v1m

...
vnm


 =



v11x1 + · · ·+ v1mxm

...
vn1x1 + · · ·+ vnmxm




and therefore, in terms of the matrix A, our transformation takes the form

T (x) =



v11 · · · v1m

...
...

vn1 · · · vnm






x1

...
xm


 .

We have therefore constructed an explicit matrix representation of the transfor-
mation T . We shall have much more to say about such matrix representations
shortly.

Given vector spaces U and V , we claim that the set of all linear transforma-
tions from U to V can itself be made into a vector space. To accomplish this
we proceed as follows. If U and V are vector spaces over F and f, g : U → V
are mappings, we naturally define

(f + g)(x) = f(x) + g(x)

and
(cf)(x) = cf(x)

for x ∈ U and c ∈ F . In addition, if h : V → W (where W is another vector
space over F), then we may define the composite mapping h ◦ g : U → W in
the usual way by

(h ◦ g)(x) = h(g(x)).
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Theorem 4.2. Let U , V and W be vector spaces over F , let c ∈ F be any
scalar, and let f, g : U → V and h : V → W be linear transformations. Then
the mappings f + g, cf , and h ◦ g are all linear transformations.

Proof. First, we see that for x, y ∈ U and c ∈ F we have

(f + g)(x+ y) = f(x+ y) + g(x+ y)

= f(x) + f(y) + g(x) + g(y)

= (f + g)(x) + (f + g)(y)

and

(f + g)(cx) = f(cx) + g(cx) = cf(x) + cg(x) = c[f(x) + g(x)]

= c(f + g)(x)

and hence f + g is a linear transformation. The proof that cf is a linear trans-
formation is left to the reader (Exercise 4.1.3). Finally, we see that

(h ◦ g)(x+ y) = h(g(x+ y)) = h(g(x) + g(y)) = h(g(x)) + h(g(y))

= (h ◦ g)(x) + (h ◦ g)(y)

and
(h ◦ g)(cx) = h(g(cx)) = h(cg(x)) = ch(g(x)) = c(h ◦ g)(x)

so that h ◦ g is also a linear transformation.

We define the zero mapping 0 : U → V by 0x = 0 for all x ∈ U . Since

0(x+ y) = 0 = 0x+ 0y

and
0(cx) = 0 = c(0x)

it follows that the zero mapping is a linear transformation. Next, given a map-
ping f : U → V , we define its negative −f : U → V by (−f)(x) = −f(x) for
all x ∈ U . If f is a linear transformation, then −f is also linear because cf is
linear for any c ∈ F and −f = (−1)f . Lastly, we note that

[f + (−f)](x) = f(x) + (−f)(x) = f(x) + [−f(x)] = f(x) + f(−x)
= f(x− x) = f(0)

= 0

for all x ∈ U so that f + (−f) = (−f) + f = 0 for all linear transformations f .
With all of this algebra out of the way, we are now in a position to easily

prove our claim.
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Theorem 4.3. Let U and V be vector spaces over F . Then the set L(U, V )
of all linear transformations of U to V with addition and scalar multiplication
defined as above is a linear vector space over F .

Proof. We leave it to the reader to show that the set of all such linear trans-
formations obeys the properties (VS1)–(VS8) given in Section 1.2 (see Exercise
4.1.4).

We denote the vector space defined in Theorem 4.3 by L(U, V ). (Some
authors denote this space by Hom(U, V ) since a linear transformation is just a
vector space homomorphism). The space L(U, V ) is often called the space of
linear transformations (or mappings). In the particular case that U and V
are finite-dimensional, we have the following important result.

Theorem 4.4. Let dimU = m and dimV = n. Then

dimL(U, V ) = (dimU)(dim V ) = mn.

Proof. We prove the theorem by exhibiting a basis for L(U, V ) that contains
mn elements. Let {e1, . . . , em} be a basis for U , and let {ē1, . . .¸ , ēn} be a basis
for V . Define the mn linear transformations Ei

j ∈ L(U, V ) by

Ei
j(ek) = δi

kēj

where i, k = 1, . . . ,m and j = 1, . . . , n. Theorem 4.1 guarantees that the map-
pings Ei

j are unique. To show that {Ei
j} is a basis, we must show that it is

linearly independent and spans L(U, V ).

If
m∑

i=1

n∑

j=1

aj
iE

i
j = 0

for some set of scalars aj
i, then for any ek we have

0 =
∑

i,j

aj
iE

i
j(ek) =

∑

i,j

aj
iδ

i
kēj =

∑

j

aj
kēj .

But the ēj are a basis and hence linearly independent, and thus we must have
aj

k = 0 for every j = 1, . . . , n and k = 1, . . . ,m. This shows that the Ei
j are

linearly independent.

Now suppose f ∈ L(U, V ) and let x ∈ U . Then x =
∑
xiei and

f(x) = f
(∑

xiei

)
=
∑

xif(ei).
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Since f(ei) ∈ V , we must have f(ei) =
∑

j c
j
iēj for some set of scalars cji, and

hence

f(ei) =
∑

j

cjiēj =
∑

j,k

cjkδ
k

iēj =
∑

j,k

cjkE
k

j(ei).

But this means that f =
∑

j,k c
j
kE

k
j (Theorem 4.1), and therefore {Ek

j} spans

L(U, V ).

Suppose we have a linear mapping φ : V → F of a vector space V to the
field of scalars. By definition, this means that

φ(ax + by) = aφ(x) + bφ(y)

for every x, y ∈ V and a, b ∈ F . The mapping φ is called a linear functional

on V .

Example 4.6. Consider the space Mn(F) of n-square matrices over F . Since
the trace of any A = (aij) ∈Mn(F) is defined by

trA =

n∑

i=1

aii

(see Exercise 2.5.7), it is easy to show that tr defines a linear functional on
Mn(F) (Exercise 4.1.5).

Example 4.7. Let C[a, b] denote the space of all real-valued continuous func-
tions defined on the interval [a, b] (see Exercise 1.2.6). We may define a linear
functional L on C[a, b] by

L(f) =

∫ b

a

f(x) dx

for every f ∈ C[a, b]. It is also left to the reader (Exercise 4.1.5) to show that
this does indeed define a linear functional on C[a, b].

Let V be a vector space over F . Since F is also a vector space over itself,
we may consider the space L(V,F). This vector space is the set of all linear
functionals on V , and is called the dual space of V (or the space of linear

functionals on V ). The dual space is generally denoted by V ∗, and its elements
are frequently denoted by Greek letters. From the proof of Theorem 4.4, we see
that if {ei} is a basis for V , then V ∗ has a unique basis {ωj} defined by

ωj(ei) = δj
i.
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The basis {ωj} is referred to as the dual basis to the basis {ei}. We also see
that Theorem 4.4 shows dimV ∗ = dimV .

(Let us point out that we make no real distinction between subscripts and
superscripts. For our purposes, we use whichever is more convenient from a
notational standpoint. However, in tensor analysis and differential geometry,
subscripts and superscripts are used precisely to distinguish between a vector
space and its dual. We shall follow this convention in Chapter 8.)

Example 4.8. Consider the space V = Fn of all n-tuples of scalars. If we write
any x ∈ V as a column vector, then V ∗ is just the space of row vectors. This is
because if φ ∈ V ∗ we have

φ(x) = φ
(∑

xiei

)
=
∑

xiφ(ei)

where the ei are the standard (column) basis vectors for V = Fn. Thus, since
φ(ei) ∈ F , we see that every φ(x) is the product of some scalar φ(ei) times the
scalar xi, summed over i = 1, . . . , n. If we write φ(ei) = ai, it then follows that
we may write

φ(x) = φ(x1, . . . , xn) = (a1, . . . , an)



x1

...
xn


 (*)

or simply φ(x) =
∑
aixi. This expression is in fact the origin of the term “linear

form.”
Since any row vector in Fn can be expressed in terms of the basis vectors

ω1 = (1, 0, . . . , 0), . . . , ωn = (0, 0, . . . , 1), we see from (*) that the ωj do indeed
form the basis dual to {ei} since they clearly have the property that ωj(ei) = δj

i.
In other words, the row vector ωj is just the transpose of the corresponding
column vector ej.

Since U∗ is a vector space, the reader may wonder whether or not we may
form the space U∗∗ = (U∗)∗. The answer is “yes,” and the space U∗∗ is called
the double dual (or second dual) of U . In fact, for finite-dimensional vector
spaces, it is essentially true that U∗∗ = U (in the sense that U and U∗∗ are
isomorphic). However, we prefer to postpone our discussion of these matters
until a later chapter when we can treat all of this material in the detail that it
warrants.

Exercises

1. Verify that the mapping T of Theorem 4.1 is well-defined.

2. Repeat Example 4.5, except now let the matrix A = (aij) have row vectors
Ai = vi ∈ Fn. What is the matrix representation of the operation T (x)?

3. Show that cf is a linear transformation in the proof of Theorem 4.2.
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4. Prove Theorem 4.3.

5. (a) Show that the function tr defines a linear functional on Mn(F) (see
Example 4.6).

(b) Show that the mapping L defined in Example 4.7 defines a linear
functional.

6. Explain whether or not each of the following mappings f is linear:

(a) f : R2 → R defined by f(x, y) = |x− y|.
(b) f : R2 → R defined by f(x, y) = xy.
(c) f : R2 → R2 defined by f(x, y) = (x+ y, x).
(d) f : R2 → R2 defined by f(x, y) = (sinx, y).
(e) f : R2 → R3 defined by f(x, y) = (x+ 1, 2y, x+ y).
(f) f : R3 → R defined by f(x, y, z) = 2x− 3y + 4z.
(g) f : R3 → R2 defined by f(x, y, z) = (|x| , 0).
(h) f : R3 → R3 defined by f(x, y, z) = (1,−x, y + z).

7. Let T : U → V be a bijective linear transformation. Define T−1 and show
that it is also a linear transformation.

8. Let T : U → V be a linear transformation, and suppose that we have the
set of vectors u1, . . . , un ∈ U with the property that T (u1), . . . , T (un) ∈ V
is linearly independent. Show that {u1, . . . , un} is linearly independent.

9. Let B ∈ Mn(F) be arbitrary. Show that the mapping T : Mn(F) →
Mn(F) defined by T (A) = [A,B]+ = AB+BA is linear. Is the same true
for the mapping T ′(A) = [A,B] = AB −BA?

10. Let T : F2 → F2 be the linear transformation defined by the system

y1 =−3x1 + x2

y2 = x1 − x2

and let S be the linear transformation defined by the system

y1 = x1 + x2

y2 = x1

Find a system of equations that defines each of the following linear trans-
formations:

(a) 2T (b) T − S (c) ST (d) TS

(e) T 2 (f) T 2 + 2S

11. Does there exist a linear transformation T : R3 → R2 with the property
that T (1,−1, 1) = (1, 0) and T (1, 1, 1) = (0, 1)?

12. Suppose u1 = (1,−1), u2 = (2,−1), u3 = (−3, 2) and v1 = (1, 0), v2 =
(0, 1), v3 = (1, 1). Does there exist a linear transformation T : R2 → R2

with the property that Tui = vi for each i = 1, 2, and 3?
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13. Find T (x, y, z) if T : R3 → R is the linear transformation defined by
T (1, 1, 1) = 3, T (0, 1,−2) = 1 and T (0, 0, 1) = −2.

14. Let V be the set of all complex numbers considered as a vector space over
the real field. Find a mapping T : V → V that is a linear transformation
on V , but is not a linear transformation on the space C1 (i.e., the set of
complex numbers considered as a complex vector space).

15. If V is finite-dimensional and x1, x2 ∈ V with x1 6= x2 , prove there exists
a linear functional f ∈ V ∗ such that f(x1) 6= f(x2).

4.2 Further Properties of Linear Transformations

Suppose T ∈ L(U, V ) where U and V are finite-dimensional over F . We define
the image of T to be the set

ImT = {T (x) ∈ V : x ∈ U}

and the kernel of T to be the set

KerT = {x ∈ U : T (x) = 0}.

(Many authors call ImT the range of T , but we use this term to mean the
space V in which T takes its values. Note also that this definition of the kernel
is almost the same as we used for the null space kerA of a matrix A in Section
2.5. In fact, after we have defined the matrix representation of a linear trans-
formation in the next section, we will see that these definitions are exactly the
same.)

Since T (0) = 0 ∈ V , we see that 0 ∈ ImT , and hence ImT 6= ∅. Now
suppose x′, y′ ∈ ImT . Then there exist x, y ∈ U such that T (x) = x′ and
T (y) = y′. Then for any a, b ∈ F we have

ax′ + by′ = aT (x) + bT (y) = T (ax+ by) ∈ ImT

(since ax + by ∈ U), and thus ImT is a subspace of V . Similarly, we see that
0 ∈ KerT , and if x, y ∈ KerT then

T (ax+ by) = aT (x) + bT (y) = 0

so that KerT is also a subspace of U . KerT is frequently called the null space

of T .
We now restate Theorem 1.5 in our current terminology.

Theorem 4.5. A linear transformation T ∈ L(U, V ) is an isomorphism if and
only if KerT = {0}.
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For example, the projection mapping T defined in Example 4.1 is not an
isomorphism because T (0, 0, z) = (0, 0, 0) for all (0, 0, z) ∈ R3. In fact, if x0 and
y0 are fixed, then we have T (x0, y0, z) = (x0, y0, 0) independently of z.

If T ∈ L(U, V ), we define the rank of T to be the number

rankT = dim(Im T )

and the nullity of T to be the number

nulT = dim(KerT ).

We will shortly show that this definition of rank is essentially the same as our
previous definition of the rank of a matrix. The relationship between rankT
and nulT is given in the following important result, sometimes called the rank

theorem (or the dimension theorem).

Theorem 4.6. If U and V are finite-dimensional over F and T ∈ L(U, V ),
then

rankT + nulT = dimU

or, alternatively,
dim(ImT ) + dim(KerT ) = dimU.

Proof. Let {u1, . . . , un}be a basis for U and suppose KerT = {0}. Then for any
x ∈ U we have

T (x) = T
(∑

xiui

)
=
∑

xiT (ui)

for some set of scalars xi, and therefore {T (ui)} spans ImT . If
∑
ciT (ui) = 0,

then
0 =

∑
ciT (ui) =

∑
T (ciui) = T

(∑
ciui

)

which implies
∑
ciui = 0 (since KerT = {0}). But the ui are linearly indepen-

dent so that we must have ci = 0 for every i, and hence {T (ui)} is linearly inde-
pendent. Since nulT = dim(KerT ) = 0 and rankT = dim(ImT ) = n = dimU ,
we see that rankT + nulT = dimU .

Now suppose that KerT 6= {0}, and let {w1, . . . , wk} be a basis for KerT .
By Theorem 1.10, we may extend this to a basis {w1, . . . , wn} for U . Since
T (wi) = 0 for each i = 1, . . . , k it follows that the vectors T (wk+1), . . . , T (wn)
span ImT . If

n∑

j=k+1

cjT (wj) = 0

for some set of scalars cj , then

0 =

n∑

j=k+1

cjT (wj) =

n∑

j=k+1

T (cjwj) = T

(
n∑

j=k+1

cjwj

)
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so that
∑n

j=k+1 cjwj ∈ KerT . This means that

n∑

j=k+1

cjwj =

k∑

j=1

ajwj

for some set of scalars aj . But this is just

k∑

j=1

ajwj −
n∑

j=k+1

cjwj = 0

and hence
a1 = · · · = ak = ck+1 = · · · = cn = 0

since the wj are linearly independent. Therefore T (wk+1), . . . , T (wn) are lin-
early independent and thus form a basis for ImT . We have therefore shown
that

dimU = k + (n− k) = dim(KerT ) + dim(ImT ) = nulT + rankT.

An extremely important special case of the space L(U, V ) is the space L(V, V )
of all linear transformations of V into itself. This space is frequently written
as L(V ), and its elements are usually called linear operators on V , or simply
operators. We will have much more to say about operators in a later chapter.

A linear transformation T ∈ L(U, V ) is said to be invertible if there exists
a linear transformation T−1 ∈ L(V, U) such that TT−1 = T−1T = I. (Note
that technically TT−1 is the identity on V and T−1T is the identity on U ,
but the meaning of this statement should be clear.) This is exactly the same
definition we had in Section 2.6 for matrices. The unique mapping T−1 is called
the inverse of T .

We now show that if a linear transformation is invertible, then it has the
properties that we would expect.

Theorem 4.7. A linear transformation T ∈ L(U, V ) is invertible if and only if
it is a bijection (i.e., one-to-one and onto).

Proof. First suppose that T is invertible. If T (x1) = T (x2) for x1, x2 ∈ U , then
the fact that T−1T = I implies

x1 = T−1T (x1) = T−1T (x2) = x2

and hence T is injective. If y ∈ V , then using TT−1 = I we have

y = I(y) = (TT−1)y = T (T−1(y))

so that y = T (x) where x = T−1(y). This shows that T is also surjective, and
hence a bijection.
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Conversely, let T be a bijection. We must define a linear transformation
T−1 ∈ L(V, U) with the desired properties. Let y ∈ V be arbitrary. Since T is
surjective, there exists a vector x ∈ U such that T (x) = y. The vector x is unique
because T is injective. We may therefore define a mapping T−1 : V → U by the
rule T−1(y) = x where y = T (x). To show that T−1 is linear, let y1, y2 ∈ V be
arbitrary and choose x1, x2 ∈ U such that T (x1) = y1 and T (x2) = y2. Using
the linearity of T we then see that

T (x1 + x2) = T (x1) + T (x2) = y1 + y2

and hence
T−1(y1 + y2) = x1 + x2.

But then
T−1(y1 + y2) = x1 + x2 = T−1(y1) + T−1(y2).

Similarly, if T (x) = y and a ∈ F , then T (ax) = aT (x) = ay so that

T−1(ay) = ax = aT−1(y).

We have thus shown that T−1 ∈ L(V, U). Finally, we note that for any y ∈ V
and x ∈ U such that T (x) = y we have

TT−1(y) = T (x) = y

and
T−1T (x) = T−1(y) = x

so that TT−1 = T−1T = I.

A linear transformation T ∈ L(U, V ) is said to be nonsingular if KerT =
{0}. In other words, T is nonsingular if it is one-to-one (Theorem 4.5). As we
might expect, T is said to be singular if it is not nonsingular. In other words,
T is singular if KerT 6= {0}.

Now suppose U and V are both finite-dimensional and dimU = dimV . If
KerT = {0}, then nulT = 0 and the rank theorem (Theorem 4.6) shows that
dimU = dim(ImT ). In other words, we must have ImT = V , and hence T
is surjective. Conversely, if T is surjective then we are forced to conclude that
nulT = 0, and thus T is also injective. Hence a linear transformation between
two finite-dimensional vector spaces of the same dimension is one-to-one if and
only if it is onto. Combining this discussion with Theorem 4.7, we obtain the
following result and its obvious corollary.

Theorem 4.8. Let U and V be finite-dimensional vector spaces with dimU =
dimV . Then the following statements are equivalent for any linear transforma-
tion T ∈ L(U, V ):

(i) T is invertible.
(ii) T is nonsingular.
(iii) T is surjective.
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Corollary. A linear operator T ∈ L(V ) on a finite-dimensional vector space is
invertible if and only if it is nonsingular.

Example 4.9. Let V = Fn so that any x ∈ V may be written in terms of
components as x = (x1, . . . , xn). Given any matrix A = (aij) ∈ Mm×n(F), we
define a linear transformation T : Fn → Fm by T (x) = y which is again given
in component form by

yi =

n∑

j=1

aijxj , i = 1, . . . ,m.

We claim that T is one-to-one if and only if the homogeneous system

n∑

j=1

aijxj = 0, i = 1, . . . ,m

has only the trivial solution. (Note that if T is one-to-one, this is the same as
requiring that the solution of the nonhomogeneous system be unique. It also
follows from Corollary 5 of Theorem 2.20 that if T is one-to-one, then A is
nonsingular.)

First let T be one-to-one. Clearly T (0) = 0, and if v = (v1, . . . , vn) is a
solution of the homogeneous system, then T (v) = 0. But if T is one-to-one,
then v = 0 is the only solution. Conversely, let the homogeneous system have
only the trivial solution. If T (u) = T (v), then

0 = T (u)− T (v) = T (u− v)

which implies that u− v = 0 or u = v.

Example 4.10. Let T ∈ L(R2) be defined by

T (x, y) = (y, 2x− y).
If T (x, y) = (0, 0), then we must have x = y = 0, and hence KerT = {0}. By
the corollary to Theorem 4.8, T is invertible, and we now show how to find T−1.

Suppose we write (x′, y′) = T (x, y) = (y, 2x−y). Then y = x′ and 2x−y = y′

so that solving for x and y in terms of x′ and y′ we obtain x = (x′ + y′)/2 and
y = x′. We therefore see that

T−1(x′, y′) = (x′/2 + y′/2, x′).

Note this also shows that T is surjective since for any (x′, y′) ∈ R2 we found a
point (x, y) = (x′/2 + y′/2, x′) such that T (x, y) = (x′, y′).
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Our next example shows the importance of finite-dimensionality in Theorem
4.8.

Example 4.11. Let V = F [x], the (infinite-dimensional) space of all polyno-
mials over F (see Example 1.2). For any v ∈ V with v =

∑n
i=0 aix

i we define
T ∈ L(V ) by

T (v) =

n∑

i=0

aix
i+1

(this is just a “multiplication by x” operation). We leave it to the reader to
show that T is linear and nonsingular (see Exercise 4.2.1). However, it is clear
that T can not be surjective (for example, T takes scalars into polynomials of
degree 1), so it can not be invertible. However, it is nevertheless possible to
find a left inverse TL

−1 for T . To see this, we let TL
−1 be the operation of

subtracting the constant term and then dividing by x:

TL
−1(v) =

n∑

i=1

aix
i−1.

We again leave it to the reader (Exercise 4.2.1) to show that this is a linear
transformation, and that TL

−1T = I while TTL
−1 6= I.

Example 4.12. While the operation T defined above is an example of a nonsin-
gular linear transformation that is not surjective, we can also give an example
of a linear transformation on F [x] that is surjective but not nonsingular. To
see this, consider the operation D = d/dx that takes the derivative of every
polynomial in F [x]. It is easy to see that D is a linear transformation, but D
can not possibly be nonsingular since the derivative of any constant polynomial
p(x) = c is zero. Note though, that the image of D is all of F [x], and it is in
fact possible to find a right inverse of D. Indeed, if we let DR

−1(f) =
∫ x

0 f(t) dt
be the (indefinite) integral operator, then

DR
−1

(
n∑

i=0

aix
i

)
=

n∑

i=0

aix
i+1

i+ 1

and hence DDR
−1 = I. However, it is obvious that DR

−1D 6= I because
DR

−1D applied to a constant polynomial yields zero.

Exercises

1. (a) Verify that the mapping T in Example 4.9 is linear.
(b) Verify that the mapping T in Example 4.10 is linear.
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(c) Verify that the mapping T in Example 4.11 is linear and nonsingular.
(d) Verify that TTL

−1 6= I in Example 4.11.

2. Find a linear transformation T : R3 → R4 whose image is generated by
the vectors (1, 2, 0,−4) and (2, 0,−1,−3).

3. For each of the following linear transformations T , find the dimension and
a basis for ImT and KerT :

(a) T : R3 → R3 defined by

T (x, y, z) = (x+ 2y − z, y + z, x+ y − 2z).

(b) T : R4 → R3 defined by

T (x, y, z, t) = (x− y + z + t, x+ 2z − t, x+ y + 3z − 3t).

4. Consider the space M2(R) of real 2× 2 matrices, and define the matrix

B =

[
1 2
0 3

]
.

Find the dimension and exhibit a specific basis for the kernel of the linear
transformation T : M2(R) → M2(R) defined by T (A) = AB − BA =
[A,B].

5. Show that a linear transformation is nonsingular if and only if it takes
linearly independent sets into linearly independent sets.

6. Consider the operator T : R3 → R3 defined by

T (x, y, z) = (2x, 4x− y, 2x+ 3y − z).

(a) Show that T is invertible.
(b) Find a formula for T−1 .

7. Let E be a projection (or idempotent) operator on a space V , i.e.,
E2 = E on V . Define U = ImE and W = KerE. Show that:

(a) E(u) = u for every u ∈ U .
(b) If E 6= I, then E is singular.
(c) V = U ⊕W .

8. If S : U → V and T : V → U are nonsingular linear transformations, show
that ST is nonsingular. What can be said if S and/or T is singular?

9. Let S : U → V and T : V →W be linear transformations.

(a) Show that TS : U →W is linear.
(b) Show that rank(TS) ≤ rankT and rank(TS) ≤ rankS, i.e., rank(TS) ≤

min{rankT, rankS}.



4.3. MATRIX REPRESENTATIONS 161

10. If S, T ∈ L(V ) and S is nonsingular, show that rank(ST ) = rank(TS) =
rankT .

11. If S, T ∈ L(U, V ), show that rank(S + T ) ≤ rankS + rankT . Give an
example of two nonzero linear transformations S, T ∈ L(U, V ) such that
rank(S + T ) = rankS + rankT .

12. Suppose that V = U ⊕W and consider the linear operators E1 and E2

on V defined by E1(v) = u and E2(v) = w where u ∈ U , w ∈ W and
v = u+ w. Show that:

(a) E1 and E2 are projection operators on V (see Exercise 7 above).
(b) E1 + E2 = I.
(c) E1E2 = 0 = E2E1.
(d) V = ImE1 ⊕ ImE2.

13. Prove that the nonsingular elements in L(V ) form a group.

14. Recall that an operator T ∈ L(V ) is said to be nilpotent if T n = 0 for
some positive integer n. Suppose that T is nilpotent and T (x) = αx for
some nonzero x ∈ V and some α ∈ F . Show that α = 0.

15. If dimV = 1, show that L(V ) is isomorphic to F .

16. Let V = C3 have the standard basis {ei}, and let T ∈ L(V ) be defined by
T (e1) = (1, 0, i), T (e2) = (0, 1, 1) and T (e3) = (i, 1, 0). Is T invertible?

17. Let V be finite-dimensional, and suppose T ∈ L(V ) has the property that
rank(T 2) = rankT . Show that (Im T ) ∩ (KerT ) = {0}.

4.3 Matrix Representations

By now it should be apparent that there seems to be a definite similarity be-
tween Theorems 4.6 and 2.10. This is indeed the case, but to formulate this
relationship precisely, we must first describe the representation of a linear trans-
formation by matrices.

Consider a linear transformation T ∈ L(U, V ), and let U and V have bases
{u1, . . . , un} and {v1, . . . , vm} respectively. Since T (ui) ∈ V , it follows from
Corollary 2 of Theorem 1.4 that there exists a unique set of scalars a1i, . . . , ami

such that

T (ui) =
m∑

j=1

vjaji (4.1)

for each i = 1, . . . , n. Thus, the linear transformation T leads in a natural way to
a matrix (aij) defined with respect to the given bases. On the other hand, if we
are given a matrix (aij), then

∑m
j=1 vjaji is a vector in V for each i = 1, . . . , n.

Hence, by Theorem 4.1, there exists a unique linear transformation T defined
by T (ui) =

∑m
j=1 vjaji.
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Now let x be any vector in U . Then x =
∑n

i=1 xiui so that

T (x) = T

(
n∑

i=1

xiui

)
=

n∑

i=1

xiT (ui) =

n∑

i=1

m∑

j=1

vjajixi.

But T (x) ∈ V so we may write

y = T (x) =

m∑

j=1

yjvj .

Since {vi} is a basis for V , comparing these last two equations shows that

yj =

n∑

i=1

ajixi

for each j = 1, . . . ,m. The reader should note which index is summed over in
this expression for yj .

If we write out both of the systems T (ui) =
∑m

j=1 vjaji and yj =
∑n

i=1 ajixi,
we have

T (u1) = a11v1 + · · · + am1vm

...
T (un) = a1nv1 + · · · + amnvm

(4.2)

and
y1 = a11x1 + · · · + a1nxn

...
ym = am1x1 + · · · + amnxn

(4.3)

We thus see that the matrix of coefficients in (4.2) is the transpose of the
matrix of coefficients in (4.3). We shall call the m × n matrix of coefficients
in equations (4.3) the matrix representation of the linear transformation T ,
and we say that T is represented by the matrix A = (aij) with respect to the
given (ordered) bases {ui} and {vi}.

We will sometimes use the notation [A] to denote the matrix corresponding
to an operator A ∈ L(U, V ). This will avoid the confusion that may arise when
the same letter is used to denote both the transformation and its representation
matrix. In addition, if the particular bases chosen are important, then we will
write the matrix representation of the above transformation as [A]vu, and if
A ∈ L(V ), then we write simply [A]v.

In order to make these definitions somewhat more transparent, let us make
the following observation. If x ∈ U has coordinates (x1, . . . , xn) relative to a
basis for U , and y ∈ V has coordinates (y1, . . . , ym) relative to a basis for V ,
then the expression y = A(x) may be written in matrix form as Y = [A]X where
both X and Y are column vectors. In other words, [A]X is the coordinate vector
corresponding to the result of the transformation A acting on the vector x. An
equivalent way of writing this that emphasizes the bases involved is

[y]v = [A(x)]v = [A]vu[x]u.
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If {vj} is a basis for V , then we may clearly write

vi =
∑

j

vjδji

where the δji are now to be interpreted as the components of vi with respect to
the basis {vj}. In other words, v1 has components (1, 0, . . . , 0), v2 has compo-
nents (0, 1, . . . , 0) and so forth. Hence, writing out [A(u1)]v =

∑m
j=1 vjaj1, we

see that

[A(u1)]v =




a11

0
...

0


+




0
a21

...

0


+ · · ·+




0
0
...

am1


 =




a11

a21

...

am1




so that [A(u1)]v is just the first column of [A]vu. Similarly, it is easy to see
that in general, [A(ui)]v is the ith column of [A]vu. In other words, the matrix
representation [A]vu of a linear transformation A ∈ L(U, V ) has columns that
are nothing more than the images under A of the basis vectors of U .

We summarize this very important discussion as a theorem for easy reference.

Theorem 4.9. Let U and V have bases {u1, . . . , un} and {v1, . . . , vm} respec-
tively. Then for any A ∈ L(U, V ) the vector

[A(ui)]v =
m∑

j=1

vjaji

is the ith column of the matrix [A]vu = (aji) that represents A relative to the
given bases.

Example 4.13. Let V have a basis {v1, v2, v3}, and let A ∈ L(V ) be defined
by

A(v1) = 3v1 + v3

A(v2) = v1 − 2v2 − v3
A(v3) = v2 + v3

Then the representation of A (relative to this basis) is

[A]v =




3 1 0
0 −2 1
1 −1 1


 .

The reader may be wondering why we wrote A(ui) =
∑

j vjaji rather than
A(ui) =

∑
j aijvj . The reason is that we want the matrix corresponding to
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a combination of linear transformations to be the product of the individual
matrix representations taken in the same order. (The argument that follows
is based on what we learned in Chapter 2 about matrix multiplication, even
though technically we have not yet defined this operation within the framework
of our current discussion. In fact, our present formulation can be taken as the
definition of matrix multiplication.)

To see what this means, suppose A,B ∈ L(V ). If we had written (note the
order of subscripts) A(vi) =

∑
j aijvj and B(vi) =

∑
j bijvj , then we would

have found that

(AB)(vi) = A(B(vi)) = A

(∑

j

bijvj

)
=
∑

j

bijA(vj)

=
∑

j,k

bijajkvk =
∑

k

cikvk

where cik =
∑

j bijajk. As a matrix product, we would then have [C] = [B][A].
However, if we write (as we did) A(vi) =

∑
j vjaji and B(vi) =

∑
j vjbji, then

we obtain

(AB)(vi) = A(B(vi)) = A

(∑

j

vjbji

)
=
∑

j

A(vj)bji

=
∑

j,k

vkakjbji =
∑

k

vkcki

where now cki =
∑

j akjbji. Since the matrix notation for this is [C] = [A][B],
we see that the order of the matrix representation of transformations is preserved
as desired. We have therefore proven the following result.

Theorem 4.10. For any operators A,B ∈ L(V ) we have [AB] = [A][B].

From equation (4.3) above, we see that any nonhomogeneous system of m
linear equations in n unknowns defines an m×n matrix (aij). According to our
discussion, this matrix should also define a linear transformation in a consistent
manner.

Example 4.14. Consider the space R2 with the standard basis

e1 =

[
1
0

]
e2 =

[
0
1

]

so that any X ∈ R2 may be written as

X =

[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
.
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Suppose we have the system of equations

y1 = 2x1 − x2

y2 = x1 + 3x2

which we may write in matrix form as [A]X = Y where

[A] =

[
2 −1
1 3

]
.

Hence we have a linear transformation A(x) = [A]X . In particular,

A(e1) =

[
2 −1
1 3

] [
1
0

]
=

[
2
1

]
= 2e1 + e2

A(e2) =

[
2 −1
1 3

] [
0
1

]
=

[
−1

3

]
= −e1 + 3e2.

We now see that letting the ith column of [A] be A(ei), we arrive back at the
original form [A] that represents the linear transformation A(e1) = 2e1 +e2 and
A(e2) = −e1 + 3e2.

Example 4.15. Consider the space V = R2 with basis vectors v1 = (1, 1) and
v2 = (−1, 0). Let T be the linear operator on R2 defined by

T (x, y) = (4x− 2y, 2x+ y).

To find the matrix of T relative to the given basis, all we do is compute the
effect of T on each basis vector:

T (v1) = T (1, 1) = (2, 3) = 3v1 + v2

T (v2) = T (−1, 0) = (−4,−2) = −2v1 + 2v2.

Since the matrix of T has columns given by the image of each basis vector, we
must have

[T ] =

[
3 −2
1 2

]
.

Theorem 4.11. Let U and V be vector spaces over F with bases {u1, . . . , un}
and {v1, . . . , vm} respectively. Suppose A ∈ L(U, V ) and let [A] be the matrix
representation of A with respect to the given bases. Then the mapping φ : A→
[A] is an isomorphism of L(U, V ) onto the vector space Mm×n(F) of all m× n
matrices over F .
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Proof. Part of this was proved in the discussion above, but for ease of refer-
ence, we repeat it here. Given any (aij) ∈ Mm×n(F), we define the linear
transformation A ∈ L(U, V ) by

A(ui) =
m∑

j=1

vjaji

for each i = 1, . . . , n. According to Theorem 4.1, the transformation A is
uniquely defined and is in L(U, V ). By definition, [A] = (aij), and hence φ is
surjective. On the other hand, given any A ∈ L(U, V ), it follows from Corollary
2 of Theorem 1.4 that for each i = 1, . . . , n there exists a unique set of scalars
a1i, . . . , ami ∈ F such that A(ui) =

∑m
j=1 vjaji. Therefore, any A ∈ L(U, V ) has

led to a unique matrix (aij) ∈ Mm×n(F). Combined with the previous result
that φ is surjective, this shows that φ is injective and hence a bijection. Another
way to see this is to note that if we also have B ∈ L(U, V ) with [B] = [A], then

(B −A)(ui) = B(ui)−A(ui) =

m∑

j=1

vj(bji − aji) = 0.

Since B−A is linear (Theorem 4.3), it follows that (B−A)x = 0 for all x ∈ U ,
and hence B = A so that φ is one-to-one.

Finally, to show that φ is an isomorphism we must show that it is also a
vector space homomorphism (i.e., a linear transformation). But this is easy if
we simply observe that

(A+B)(ui) = A(ui) +B(ui) =
∑

j

vjaji +
∑

j

vjbji =
∑

j

vj(aji + bji)

and, for any c ∈ F ,

(cA)(ui) = c(A(ui)) = c

(∑

j

vjaji

)
=
∑

j

vj(caji).

Therefore we have shown that

[A+B] = [A] + [B]

and

[cA] = c[A]

so that φ is a homomorphism.

It may be worth recalling that the space Mm×n(F) is clearly of dimension
mn since, for example, we have

[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
.
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Therefore Theorem 4.11 provides another proof that dimL(U, V ) = mn.
We now return to the relationship between Theorems 4.6 and 2.10. In par-

ticular, we would like to know how the rank of a linear transformation is related
to the rank of a matrix. The answer was essentially given in Theorem 4.9.

Theorem 4.12. If A ∈ L(U, V ) is represented by [A] = (aji) ∈Mm×n(F), then
rankA = rank[A].

Proof. Recall that rankA = dim(ImA) and rank[A] = cr[A]. For any x ∈ U we
have

A(x) = A
(∑

xiui

)
=
∑

xiA(ui)

so that the A(ui) span ImA. But [A(ui)] is just the ith column of [A], and
hence the [A(ui)] also span the column space of [A]. Therefore the number
of linearly independent columns of [A] is the same as the number of linearly
independent vectors in the image of A (see Exercise 4.3.1). This means that
rankA = cr[A] = rank[A].

Recall from Section 2.5 that the kernel of a matrix is the subspace ker(A) =
{X ∈ Rn : AX = 0}. In other words, ker(A) is just the matrix version of
the kernel of the linear transformation represented by A. Then Theorem 4.12
shows that the rank theorem (Theorem 4.6) can be directly stated in terms of
matrices, and gives us another way to view Theorem 2.18.

Corollary. Let A ∈Mm×n(F). Then

rankA+ dim(kerA) = n.

Suppose we have a system of n linear equations in n unknowns written
in matrix form as [A]X = Y where [A] is the matrix representation of the
corresponding linear transformation A ∈ L(V ), and dimV = n. If we are to
solve this for a unique X , then [A] must be of rank n (Theorem 2.13). Hence
rankA = n also so that nulA = dim(KerA) = 0 by Theorem 4.6. But this
means that KerA = {0} and thus A is nonsingular. Note also that Theorem
2.10 now says that the dimension of the solution space is zero (which it must
be for the solution to be unique) which agrees with KerA = {0}.

All of this merely shows the various interrelationships between the matrix
nomenclature and the concept of a linear transformation that should be expected
in view of Theorem 4.11. Our discussion is summarized by the following useful
characterization.

Theorem 4.13. A linear transformation A ∈ L(V ) is nonsingular if and only
if det[A] 6= 0.
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Proof. Let dimV = n. If A is nonsingular, then KerA = {0} so that nulA =
0 and hence rank[A] = rankA = n (Theorem 4.6). Therefore [A]−1 exists
(Theorem 2.20) so that det[A] 6= 0 (Theorem 3.6). The converse follows by an
exact reversal of the argument.

Exercises

1. Suppose A ∈ L(U, V ) and let {ui}, {vi} be bases for U and V respec-
tively. Show directly that {A(ui)} is linearly independent if and only if
the columns of [A] are also linearly independent.

2. Let V be the space of all real polynomials of degree less than or equal to 3.
In other words, elements of V are of the form f(x) = a0+a1x+a2x

2+a3x
3

where each ai ∈ R.

(a) Show the derivative mapping D = d/dx is an element of L(V ).
(b) Find the matrix of D relative to the ordered basis {fi} for V defined

by fi(x) = xi−1.

3. Let T : R3 → R2 be defined by T (x, y, z) = (x + y, 2z − x).
(a) Find the matrix of T relative to the standard bases for R3 and R2.
(b) Find the matrix of T relative to the basis {αi} for R3 and {βi} for

R2 where α1 = (1, 0,−1), α2 = (1, 1, 1), α3 = (1, 0, 0), β1 = (0, 1) and
β2 = (1, 0).

4. Relative to the standard basis, let T ∈ L(R3) have the matrix representa-
tion 


1 2 1
0 1 1
−1 3 4


 .

Find a basis for ImT and KerT .

5. Let T ∈ L(R3) be defined by T (x, y, z) = (3x+ z,−2x+ y,−x+ 2y+ 4z).

(a) Find the matrix of T relative to the standard basis for R3.
(b) Find the matrix of T relative to the basis {αi} given by α1 = (1, 0, 1),

α2 = (−1, 2, 1) and α3 = (2, 1, 1).
(c) Show that T is invertible, and give a formula for T−1 similar to that

given in part (a) for T .

6. Let T : Fn → Fm be the linear transformation defined by

T (x1, . . . , xn) =

(
n∑

i=1

a1ixi, . . . ,

n∑

i=1

amixi

)
.
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(a) Show that the matrix of T relative to the standard bases of Fn and
Fm is given by 



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn


 .

(b) Find the matrix representation of T : R4 → R2 defined by

T (x, y, z, t) = (3x− 4y + 2z − 5t, 5x+ 7y − z − 2t)

relative to the standard bases of Rn.

7. Let dimU = m, dim V = n, and suppose that T ∈ L(U, V ) has rank r.
Prove there exists a basis for U and a basis for V relative to which the
matrix of T takes the form [

Ir 0
0 0

]
.

[Hint : Show that KerT has a basis {w1, . . . , wm−r}, and then extend this
to a basis {u1, . . . , ur, w1, . . . , wm−r} for U . Define vi = T (ui), and show
this is a basis for ImT . Now extend this to a basis for V .]

8. Let {ei} be the standard basis for R3, and let {fi} be the standard basis
for R2.

(a) Define T : R3 → R2 by T (e1) = f2, T (e2) = f1 and T (e3) = f1 + f2.
Write down the matrix [T ]fe .

(b) Define S : R2 → R3 by S(f1) = (1, 2, 3) and S(f2) = (2,−1, 4). Write
down [S]ef .

(c) Find ST (ei) for each i = 1, 2, 3 and write down the matrix [ST ]e of
the linear operator ST : R3 → R3. Verify that [ST ] = [S][T ].

9. Suppose T ∈ L(V ) and let W be a subspace of V . We say that W is
invariant under T (or T -invariant) if T (W ) ⊂ W . If dimW = m,
show that T has a “block matrix” representation of the form

[
A B
0 C

]

where A is an m×m matrix.

10. Let T ∈ L(V ), and suppose that V = U ⊕W where both U and W are
T -invariant (see problem 9). If dimU = m and dimW = n, show that T
has a matrix representation of the form

[
A 0
0 C

]

where A is an m×m matrix and C is an n× n matrix.

11. Show that A ∈ L(V ) is nonsingular implies [A−1] = [A]−1.
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4.4 Change of Basis

Suppose we have a linear operator A ∈ L(V ). Then, given a basis for V , we
can write down the corresponding matrix [A]. If we change to a new basis
for V , then we will have a new representation for A. We now investigate the
relationship between the matrix representations of A in each of these bases.

Given a vector space V , let us consider two arbitrary bases {e1, . . . , en}
and {ē1, . . . , ēn} for V . Then any vector x ∈ V may be written as either
x =

∑
xiei or as x =

∑
x̄iēi. (It is important to realize that vectors and linear

transformations exist independently of the coordinate system used to describe
them, and their components may vary from one coordinate system to another.)
Since each ēi is a vector in V , we may write its components in terms of the basis
{ei}. In other words, we define the transition matrix [P ] = (pij) ∈ Mn(F)
by

ēi =

n∑

j=1

ejpji

for each i = 1, . . . , n. There is nothing mysterious here; pji is merely the jth
component of the vector ēi with respect to the basis {e1, . . . , en}. The matrix
[P ] must be unique for the given bases according to Corollary 2 of Theorem 1.4.

Note that [P ] defines a linear transformation P ∈ L(V ) by P (ei) = ēi. Since
{P (ei)} = {ēi} spans ImP and the ēi are linearly independent, it follows that
rank(P ) = n so that P is nonsingular and hence P−1 exists. By Theorem 4.11,
we have I = [I] = [PP−1] = [P ][P−1] and hence we conclude that [P−1] =
[P ]−1. (However, it is also quite simple to show directly that if a linear operator
A is nonsingular, then [A−1] = [A]−1. See Exercise 4.3.11).

Let us emphasize an earlier remark. From Theorem 4.9 we know that [ēi] =
[P (ei)] is just the ith column vector of [P ]. Since relative to the basis {ei}
we have e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) and so on, it follows that the ith
column of [P ] represents the components of ēi relative to the basis {ei}. In
other words, the matrix entry pji is the jth component of the ith basis vector
ēi relative to the basis {ei}. Written out in full, this statement is

ēi =

n∑

j=1

ejpji = e1p1i + e2p2i + · · ·+ enpni

=




1
0
...
0


 p1i +




0
1
...
0


 p2i + · · ·+




0
0
...
1


 pni =




p1i

p2i

...
pni




which is just the ith column of [P ].
The transition matrix enables us to easily relate the components of any

x ∈ V between the two coordinate systems. To see this, we observe that

x =
∑

i

xiei =
∑

j

x̄j ēj =
∑

i,j

x̄jeipij =
∑

i,j

pij x̄jei
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and hence the uniqueness of the expansion implies xi =
∑

j pij x̄j so that

x̄j =
∑

i

p−1
jixi.

This discussion proves the following theorem.

Theorem 4.14. Let [P ] be the transition matrix from a basis {ei} to a basis
{ēi} for a space V . Then for any x ∈ V we have

[x]ē = [P ]−1[x]e

which we sometimes write simply as X = P−1X.

From now on we will omit the brackets on matrix representations unless they
are needed for clarity. Thus we will usually write both a linear transformation
A ∈ L(U, V ) and its representation [A] ∈Mm×n(F) as simply A. Furthermore,
to avoid possible ambiguity, we will sometimes denote a linear transformation
by T , and its corresponding matrix representation by A = (aij).

Using the above results, it is now an easy matter for us to relate the rep-
resentation of a linear operator A ∈ L(V ) in one basis to its representation in
another basis. If A(ei) =

∑
j ejaji and A(ēi) =

∑
j ējāji, then on the one hand

we have
A(ēi) =

∑

j

ējāji =
∑

j,k

ekpkj āji

while on the other hand,

A(ēi) = A

(∑

j

ejpji

)
=
∑

j

A(ej)pji =
∑

j,k

ekakjpji.

Therefore, since {ek} is a basis for V , we may equate each component in these
two equations to obtain

∑
j pkj āji =

∑
j akjpji or

āri =
∑

j,k

p−1
rkakjpji.

In matrix notation this is just (omitting the brackets on P )

[A]ē = P−1[A]eP

which we will usually write in the form Ā = P−1AP for simplicity.
If A,B ∈ Mn(F), then B is said to be similar to A if there exists a non-

singular matrix S such that B = S−1AS, in which case A and B are said to
be related by a similarity transformation. We leave it to the reader to show
that this defines an equivalence relation on Mn(F) (see Exercise 4.4.1).
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We have shown that the matrix representations of an operator with respect to
two different bases are related by a similarity transformation. So a reasonable
question is if we have a representation in one basis, does every other matrix
similar to the first represent the operator in some other basis? Here is the
answer.

Theorem 4.15. If T ∈ L(V ) is represented by A ∈Mn(F) relative to the basis
{ei}, then a matrix Ā ∈Mn(F) represents T relative to some basis {ēi} if and
only if Ā is similar to A. If this is the case, then

Ā = P−1AP

where P is the transition matrix from the basis {ei} to the basis {ēi}.

Proof. The discussion above showed that if A and Ā represent T in two different
bases, then Ā = P−1AP where P is the transition matrix from {ei} to {ēi}.

On the other hand, suppose that T is represented by A = (aij) in the basis
{ei}, and assume that Ā is similar to A. Then Ā = P−1AP for some nonsingular
matrix P = (pij). We define a new basis {ēi} for V by

ēi = P (ei) =
∑

j

ejpji

(where we use the same symbol for both the operator P and its matrix repre-
sentation). Then

T (ēi) = T

(∑

j

ejpji

)
=
∑

j

T (ej)pji =
∑

j,k

ekakjpji

while on the other hand, if T is represented by some matrix C = (cij) in the
basis {ēi}, then

T (ēi) =
∑

j

ējcji =
∑

j,k

ekpkjcji.

Equating the coefficients of ek in both of these expressions yields
∑

j

akjpji =
∑

j

pkjcji

so that
cri =

∑

j,k

p−1
rkakjpji

and hence
C = P−1AP = Ā.

Therefore Ā represents T in the basis {ēi}.
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Example 4.16. Consider the linear transformation T ∈ L(R3) defined by

T (x, y, z) =




9x+ y
9y
7z


 .

Let {ei} be the standard basis for R3, and let {ēi} be the basis defined by

ē1 =




1
0
1


 ē2 =




1
0
−1


 ē3 =




0
1
1


 .

Let us first find the representation Ā = [T ]ē directly from the definition T (ēi) =∑3
j=1 ēj āji. We will go through two ways of doing this to help clarify the various

concepts involved.
We have T (ē1) = T (1, 0, 1) = (9, 0, 7). Then we write (9, 0, 7) = a(1, 0, 1) +

b(1, 0,−1) + c(0, 1, 1) and solve for a, b, c to obtain T (ē1) = 8ē1 + ē2. Similarly,
we find T (ē2) = T (1, 0,−1) = (9, 0,−7) = ē1 + 8ē2 and T (ē3) = T (0, 1, 1) =
(1, 9, 7) = (−1/2)ē1 + (3/2)ē2 + 9ē3. This shows that the representation [T ]ē is
given by

Ā = [T ]ē =




8 1 −1/2
1 8 3/2
0 0 9


 .

Another way is to use the fact that everything is simple with respect to the
standard basis for R3. We see that T (e1) = T (1, 0, 0) = (9, 0, 0) = 9e1, T (e2) =
T (0, 1, 0) = (1, 9, 0) = e1 + 9e2 and T (e3) = T (0, 0, 1) = (0, 0, 7) = 7e3. Note
that this shows

A = [T ]e =




9 1 0
0 9 0
0 0 7




which we will need below when we use the transition matrix to find Ā.
It is easy to see that ē1 = e1 + e3, ē2 = e1 − e3 and ē3 = e2 + e3, so

inverting these equations we have e1 = (1/2)(ē1 + ē2), e3 = (1/2)(ē1 − ē2) and
e2 = ē3 − e3 = −(1/2)(ē1 − ē2) + ē3. Then using the linearity of T we have

T (ē1) = T (e1 + e3) = T (e1) + T (e3) = 9e1 + 7e3

= (9/2)(ē1 + ē2) + (7/2)(ē1 − ē2)
= 8ē1 + ē2

T (ē2) = T (e1 − e3) = T (e1)− T (e3) = 9e1 − 7e3

= (9/2)(ē1 + ē2)− (7/2)(ē1 − ē2)
= ē1 + 8ē2

T (ē3) = T (e2 + e3) = T (e2) + T (e3) = e1 + 9e2 + 7e3

= (1/2)(ē1 + ē2)− (9/2)(ē1 − ē2) + 9ē3 + (7/2)(ē1 − ē2)
= −(1/2)ē1 + (3/2)ē2 + 9ē3
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and, as expected, this gives the same result as we had above for [T ]ē.
Now we will use the transition matrix P to find Ā = [T ]ē. The matrix P is

defined by ēi = Pei =
∑3

j=1 ejpji is just the ith column of P , so we immediately
have

P =




1 1 0
0 0 1
1 −1 1


 .

There are a number of ways to find P−1. We could use the row reduction
method described in Section 2.6, we could use Theorem 3.9, or we could use the
fact that the inverse matrix is defined by ei = P−1ēi and use the expressions
we found above for each ei in terms of the ēi’s. This last approach is the easiest
for us and we can just write down the result

P−1 =
1

2




1 −1 1
1 1 −1
0 2 0


 .

We now see that

[T ]ē = P−1[T ]eP =
1

2




1 −1 1
1 1 −1
0 2 0






9 1 0
0 9 0
0 0 7






1 1 0
0 0 1
1 −1 1




=




8 1 −1/2
1 8 3/2
0 0 9




which agrees with our previous approaches.
Also realize that a vector X = (x, y, z) ∈ R3 has components x, y, z only

with respect to the standard basis {ei} for R3. In other words

X =



x
y
z


 = x




1
0
0


+ y




0
1
0


+ z




0
0
1


 = xe1 + ye2 + ze3.

But with respect to the basis {ēi} we have

X = P−1X =
1

2




1 −1 1
1 1 −1
0 2 0





x
y
z


 =

1

2



x− y + z
x+ y − z

2y




=
1

2
(x− y + z)ē1 +

1

2
(x + y − z)ē2 + yē3

= x̄ē1 + ȳē2 + z̄ē3.
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Note that by Theorem 3.7 and its corollary we have

det Ā = det(P−1AP ) = (detP−1)(detA)(detP ) = detA

and hence all matrices which represent a linear operator T have the same deter-
minant. Another way of stating this is to say that the determinant is invariant

under a similarity transformation. We thus define the determinant of a linear

operator T ∈ L(V ) as detA, where A is any matrix representing T .
Another important quantity associated with a matrix A ∈Mn(F) is the sum∑n

i=1 aii of its diagonal elements. This sum is called the trace, and is denoted
by trA (see Exercise 2.5.7). A simple but useful result is the following.

Theorem 4.16. If A,B ∈Mn(F), then tr(AB) = tr(BA).

Proof. We simply compute

tr(AB) =
∑

i

(AB)ii =
∑

i,j

aijbji =
∑

j

∑

i

bjiaij =
∑

j

(BA)jj

= tr(BA).

From this theorem it is easy to show that the trace is also invariant under
a similarity transformation (see Exercise 3.3.13). Because of this, it also makes
sense to speak of the trace of a linear operator.

Example 4.17. Consider the space V = R2 with its standard basis e1 = (1, 0)
and e2 = (0, 1), and let ē1 = (1, 2), ē2 = (3,−1) be another basis. We then see
that

ē1 = e1 + 2e2
ē2 = 3e1 − e2

and consequently the transition matrix P from {ei} to {ēi} and its inverse P−1

are given by

P =

[
1 3
2 −1

]
and P−1 =

[
1/7 3/7
2/7 −1/7

]
.

Note that P−1 may be found either using Theorem 3.9, or by solving for {ei}
in terms of {ēi} to obtain

e1 = (1/7)ē1 + (2/7)ē2

e2 = (3/7)ē1 − (1/7)ē2

Now let T be the operator defined by

T (e1) = (20/7)e1 − (2/7)e2

T (e2) = (−3/7)e1 + (15/7)e2
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so that relative to the basis {ei} we have

A =

[
20/7 −3/7
−2/7 15/7

]
.

We thus find that

Ā = P−1AP =

[
1/7 3/7
2/7 −1/7

] [
20/7 −3/7
−2/7 15/7

] [
1 3
2 −1

]
=

[
2 0
0 3

]
.

Alternatively, we have

T (ē1) = T (e1 + 2e2) = T (e1) + 2T (e2) = 2e1 + 4e2 = 2ē1

T (ē2) = T (3e1 − e2) = 3T (e1)− T (e2) = 9e1 − 3e2 = 3ē2

so that again we find

Ā =

[
2 0
0 3

]

We now see that
trA = 20/7 + 15/7 = 5 = tr Ā

and also
detA = 6 = det Ā

as they should.
You should also verify that the determinant and trace are invariant in Ex-

ample 4.16.

We point out that in this example, Ā turns out to be a diagonal matrix.
In this case the basis {ēi} is said to diagonalize the operator T . While it is
certainly not true that there always exists a basis in which an operator takes
on a diagonal representation, in the next chapter we will study the conditions
under which we can in fact find such a basis of eigenvectors.

Let us make one related additional comment about our last example. While
it is true that (algebraically speaking) a linear operator is completely determined
once its effect on a basis is known, there is no real geometric interpretation of
this when the matrix representation of an operator is of the same form as A in
Example 4.17. However, if the representation is diagonal as it is with Ā, then
in this basis the operator represents a magnification factor in each direction. In
other words, we see that Ā represents a multiplication of any vector in the ē1
direction by 2, and a multiplication of any vector in the ē2 direction by 3. This
is the physical interpretation that we will attach to eigenvalues as studied in
the next chapter.
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Exercises

1. Show that the set of similar matrices defines an equivalence relation on
Mn(F).

2. Let {ei} be the standard basis for R3, and consider the basis f1 = (1, 1, 1),
f2 = (1, 1, 0) and f3 = (1, 0, 0).

(a) Find the transition matrix P from {ei} to {fi}.
(b) Find the transition matrix Q from {fi} to {ei}.
(c) Verify that Q = P−1.
(d) Show that [v]f = P−1[v]e for any v ∈ R3.

(e) Define T ∈ L(R3) by T (x, y, z) = (2y + z, x − 4y, 3x). Show that
[T ]f = P−1[T ]eP .

3. Let {e1, e2} be a basis for V , and define T ∈ L(V ) by T (e1) = 3e1 − 2e2
and T (e2) = e1 + 4e2. Define the basis {fi} for V by f1 = e1 + e2 and
f2 = 2e1 + 3e2. Find [T ]f .

4. Consider the field C as a vector space over R, and define the linear “con-
jugation operator” T ∈ L(C) by T (z) = z∗ for each z ∈ C.

(a) Find the matrix of T relative to the basis {ej} = {1, i}.
(b) Find the matrix of T relative to the basis {fj} = {1 + i, 1 + 2i}.
(c) Find the transition matrices P and Q that go from {ej} to {fj} and

from {fj} to {ej} respectively.
(d) Verify that Q = P−1.
(e) Show that [T ]f = P−1[T ]eP .
(f) Verify that tr[T ]f = tr[T ]e and det[T ]f = det[T ]e .

5. Let {ei}, {fi} and {gi} be bases for V , and let P and Q be the transition
matrices from {ei} to {fi} and from {fi} to {gi} respectively. Show that
QP is the transition matrix from {ei} to {gi}.

6. Let A be a 2× 2 matrix such that only A is similar to itself. Show that A
has the form [

a 0
0 a

]
.

7. Show that similar matrices have the same rank.

8. (a) Let {ei} be the standard basis for Rn, and let {fi} be any other
orthonormal basis (relative to the standard inner product). Show
that the transition matrix P from {ei} to {fi} is orthogonal, i.e.,
PT = P−1.

(b) Let T ∈ L(R3) have the following matrix relative to the standard
basis: 


2 0 0
0 4 0
0 0 3


 .
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Find the matrix of T relative to the basis f1 = (2/3, 2/3,−1/3), f2 =
(1/3, 2/3,−2/3) and f3 = (2/3,−1/3, 2/3).

9. Let T ∈ L(R2) have the following matrix relative to the standard basis
{ei} for R2:

[T ]e =

[
a b
c d

]
.

(a) Suppose there exist two linearly independent vectors f1 and f2 in
R2 with the property that T (f1) = λ1f1 and T (f2) = λ2f2 (where
λi ∈ R). If P is the transition matrix from the basis {ei} to the basis
{fi}, show

[T ]f = P−1[T ]eP =

[
λ1 0
0 λ2

]
.

(b) Prove there exists a nonzero vector x ∈ R2 with the property that
T (x) = x if and only if

∣∣∣∣
a− 1 b
c d− 1

∣∣∣∣ = 0.

(c) Prove there exists a one-dimensional T -invariant subspace of R2 if and
only if ∣∣∣∣

a− λ b
c d− λ

∣∣∣∣ = 0

for some scalar λ. (Recall that a subspace W is T -invariant if T (W ) ⊂
W .)

(d) Let T ∈ L(C2) be represented by the matrix
[

cos θ − sin θ
sin θ cos θ

]

where θ ∈ R. Show that there exist two one-dimensional (complex)
T -invariant subspaces, and hence show that T and the matrix

[
eiθ 0
0 e−iθ

]

are similar over the complex field.

10. Let V = R2 have basis vectors e1 = (1, 1) and e2 = (1,−1). Suppose
we define another basis for V by ē1 = (2, 4) and ē2 = (3, 1). Define the
transition operator P ∈ L(V ) as usual by ēi = Pei. Write down the
matrix [P ]ēe.

11. Let U have bases {ui} and {ūi} and let V have bases {vi} and {v̄i}.
Define the transition operators P ∈ L(U) and Q ∈ L(V ) by ūi = Pui and
v̄i = Qvi. If T ∈ L(U, V ), express [T ]vu in terms of [T ]v̄ū.

12. Show that the transition matrix defined by the Gram-Schmidt process is
upper-triangular with strictly positive determinant.
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4.5 Orthogonal Transformations

In this last section of the chapter we will take a brief look at one particular kind
of linear transformation that is of great importance in physics and engineering.
For simplicity of notation, we will let x = x1 and y = x2, and follow the
summation convention used in Chapter 3.

To begin with, let r be a vector in R2 and consider a counterclockwise
rotation of the x1x2-plane about the x3-axis as shown below.

θ

θ

φ

x1

x2

x̄1

x̄2

r

e1

e2

ē1

ē2

The vectors ei and ēi are the usual orthonormal basis vectors with ‖ei‖ = ‖ēi‖ =
1. From the geometry of the diagram we see that

ē1 = (cos θ)e1 + (sin θ)e2

ē2 =−(sin θ)e1 + (cos θ)e2

so that ēi = P (ei) = ejp
j
i and the transition matrix (pj

i) is given by

(pj
i) =

[
cos θ − sin θ
sin θ cos θ

]
. (4.4)

Since r = xjej = x̄iēi = x̄iejp
j
i = (pj

ix̄
i)ej we see that xj = pj

ix̄
i or x̄i =

(p−1)i
jx

j as shown in the discussion prior to Theorem 4.14.

You can easily compute the matrix P−1, but it is better to make the general
observation that rotating the coordinate system doesn’t change the length of r.
So using ‖r‖2 = xixi = x̄j x̄j together with xi = pi

j x̄
j this becomes

xixi = pi
j x̄

jpi
kx̄k = (pT )k

ip
i
j x̄

j x̄k := x̄j x̄j

so that we must have

(pT )k
ip

i
j = δk

j .

In matrix notation this is just PTP = I which implies that PT = P−1. This
is the definition of an orthogonal transformation (or orthogonal matrix).
In other words, a matrix A ∈ Mn(F) is said to be orthogonal if and only if
AT = A−1.
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As an important consequence of this definition, note that if A is orthogonal,
then

1 = det I = det(AA−1) = det(AAT ) = (detA)(detAT ) = (detA)2

and hence
detA = ±1. (4.5)

Going back to our example rotation, we therefore have

P−1 = PT =

[
cos θ sin θ
− sin θ cos θ

]

so that x̄i = (p−1)i
jx

j = (pT )i
jx

j or

x̄1 = (cos θ)x1 + (sin θ)x2

x̄2 =−(sin θ)x1 + (cos θ)x2

To check these results, we first verify that P−1 = PT :

PTP =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
1 0
0 1

]
= I.

Next, from the diagram we see that

x1 = r cos(θ + φ) = r cos θ cosφ− r sin θ sinφ

= (cos θ)x̄1 − (sin θ)x̄2

x2 = r sin(θ + φ) = r sin θ cosφ+ r cos θ sinφ

= (sin θ)x̄1 + (cos θ)x̄2

In matrix form this is
[
x1

x2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x̄1

x̄2

]
(4.6)

or, alternatively, [
x̄1

x̄2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x1

x2

]
(4.7)

which is the same as we saw above using (pT )i
j .

To be completely precise, the rotation that we have just described is properly
called a passive transformation because it left the vector alone and rotated
the coordinate system. An alternative approach is to leave the coordinate system
alone and rotate the vector itself. This is called an active transformation.
One must be very careful when reading the literature to be aware of just which
type of rotation is under consideration. Let’s compare the two types of rotation.

With an active transformation we have the following situation:
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x1

x2

r

r̄

θ

φ

Here the vector r is rotated by θ to give the vector r̄ where, of course, ‖r‖ = ‖r̄‖.
In the passive case we defined the transition matrix P by ēi = P (ei). Now, in
the active case we define a linear transformation T by r̄ = T (r). From the
diagram, the components of r̄ are given by

x̄1 = r cos(θ + φ) = r cos θ cosφ− r sin θ sinφ

= (cos θ)x1 − (sin θ)x2

x̄2 = r sin(θ + φ) = r sin θ cosφ+ r cos θ sinφ

= (sin θ)x1 + (cos θ)x2

or [
x̄1

x̄2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
. (4.8)

From equation (4.3) we see that this matrix is just the matrix representation of
T .

Another way to write this is

(x̄1, x̄2) = T (x1, x2) = ((cos θ)x1 − (sin θ)x2, (sin θ)x1 + (cos θ)x2).

Then the first column of [T ] is

T (e1) = T (1, 0) = (cos θ, sin θ)

and the second column is

T (e2) = T (0, 1) = (− sin θ, cos θ)

so that

[T ] =

[
cos θ − sin θ
sin θ cos θ

]
.

as in equation (4.8).
Carefully compare the matrix in equation (4.8) with that in equation (4.7).

The matrix in equation (4.8) is obtained from the matrix in equation (4.7) by
letting θ → −θ. This is the effective difference between active and passive
rotations. If a passive transformation rotates the coordinate system counter-
clockwise by an angle θ, then the corresponding active transformation rotates
the vector by the same angle but in the clockwise direction.
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An interesting application of orthogonal transformations is the following. It
seems intuitively obvious that the most general displacement of a rigid body
(for instance, a rock) is a combination of a translation plus a rotation. While it
is possible to prove this by looking at the eigenvalues of an orthogonal transfor-
mation (see, e.g., Goldstein [20]), we will approach the problem from a different
point of view.

In order to give a mathematical description to the physical displacement of
a rigid body, we want to look at all mathematical transformations that leave
the distance between two points unchanged. Such a transformation is called an
isometry (or rigid motion). We begin with a careful definition of isometry,
reviewing some of what was discussed in Section 1.5.

Let V be a (finite-dimensional) real vector space with a positive definite
inner product. This means that 〈x, x〉 = 0 if and only if x = 0. Given the
associated norm on V defined by ‖x‖ = 〈x, x〉1/2, we may define a distance
function, also called a metric on V , by

d(x, y) := ‖x− y‖ .

Note that a general property of the norm is

‖x− y‖2 = 〈x − y, x− y〉2

= 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= ‖x‖2 − 2〈x, y〉+ ‖y‖2 (4.9)

A function f : V → V is called an isometry (or rigid motion) if

‖f(x)− f(y)‖ = ‖x− y‖ (4.10)

or, equivalently,

d(f(x), f(y)) = d(x, y). (4.11)

Let us consider what happens in the particular case that f(0) = 0. In this
case we have first of all

‖f(x)‖2 = ‖f(x)− 0‖2 = ‖f(x)− f(0)‖2 = ‖x− 0‖2 = ‖x‖2 (4.12)

and thus isometries that leave the origin fixed also preserve the norm (or length)
of vectors in V . It is also true that such isometries preserve inner products. To
see this, first note that on the one hand, from equation (4.9) we have

‖f(x)− f(y)‖2 = ‖f(x)‖2 − 2〈f(x), f(y)〉+ ‖f(y)‖2

while on the other hand, by definition of isometry, we also have ‖f(x)− f(y)‖2 =

‖x− y‖2. Therefore, equating the above equation with equation (4.9) and using
equation (4.12) shows that

〈f(x), f(y)〉 = 〈x, y〉. (4.13)
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Again, this only applies to the special case where f(0) = 0, i.e., to those situa-
tions where the isometry leaves the origin fixed.

For example, it should be clear that the motion of a solid physical object
through space is an isometry, because by definition of solid it follows that the
distance between any two points in the object doesn’t change. It is also obvious
on physical grounds that the composition F ◦ G of two isometries F and G is
another isometry. Mathematically this follows by simply noting that applying
equation (4.11) twice we have

d(F (G(x)), F (G(y))) = d(G(x), G(y)) = d(x, y).

As a specific example, consider translations. A function g : V → V is
called a translation if there exists a vector v0 ∈ V such that g(x) = x + v0.
We will sometimes denote the translation by gv0

if we wish to emphasize the
displacement vector v0. It is easy to see that g(x) is an isometry because

‖g(x)− g(y)‖ = ‖(x+ v0)− (y + v0)‖ = ‖x− y‖ .

Recall that a mapping f : V → V is said to be linear if f(x + ay) =
f(x) + af(y) for all x, y ∈ V and a ∈ R. If T is a linear transformation on V
that preserves inner products, i.e., with the property that

〈T (x), T (y)〉 = 〈x, y〉

then we also say that T is an orthogonal transformation. (We will see
below that this agrees with our previous definition.) It is easy to show that an
orthogonal transformation is an isometry. Indeed, we first note that

‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, x〉 = ‖x‖2

so that ‖T (x)‖ = ‖x‖ and T preserves norms. But then the fact that T is linear
shows that

‖T (x)− T (y)‖ = ‖T (x− y)‖ = ‖x− y‖
and thus T is an isometry.

Now let F be any isometry on V , and define the function T : V → V by

T (x) = F (x)− F (0).

Since T is just the composition of F with translation by −F (0) (i.e., T =
g−F (0) ◦F ) it is also an isometry. In addition, it has the property that T (0) = 0.

We first claim that T is in fact a linear transformation on V . This means
we need to show that T (x + ay) = T (x) + aT (y) where a ∈ R. The proof is
straightforward. Using our previous results we have

‖T (x+ay)− [T (x) + aT (y)]‖2

= ‖[T (x+ ay)− T (x)]− aT (y)‖2

= ‖T (x+ ay)− T (x)‖2 − 2a〈T (x+ ay)− T (x), T (y)〉+ a2 ‖T (y)‖2
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= ‖(x+ ay)− x‖2 − 2a〈T (x+ ay), T (y)〉+ 2a〈T (x), T (y)〉+ a2 ‖y‖2

= a2 ‖y‖2 − 2a〈x+ ay, y〉+ 2a〈x, y〉+ a2 ‖y‖2

= 2a2 ‖y‖2 − 2a〈x, y〉 − 2a2 ‖y‖2 + 2a〈x, y〉
= 0.

Since the inner product is positive definite, it follows that the vector inside the
norm on the left hand side must equal zero, and hence T (x+ay) = T (x)+aT (y)
as claimed.

In summary, we have shown that T is a linear transformation and, addition-
ally, it is an isometry with the property that T (0) = 0 so it also preserves inner
products. This is just the definition of an orthogonal transformation. But now
note that F (x) = T (x) + F (0) so that F is in fact the composition of the or-
thogonal transformation T with a translation by F (0). In other words, we have
proved that in fact any isometry is the composition of an orthogonal transfor-
mation followed by a translation. This result is known as Chasles’ theorem.

Furthermore, this decomposition is unique. To see this, suppose we have
two such decompositions

F (x) = T1(x) + v1 = T2(x) + v2

where T1 and T2 are orthogonal transformations and v1, v2 ∈ V are the transla-
tion vectors. Since Ti(0) = 0, letting x = 0 shows that v1 = v2 so the translation
is unique. But then this leaves T1(x) = T2(x) for all x ∈ V so that T1 = T2 also.

Finally, let us show what our definition of orthogonal transformation means
in terms of matrix representations. Let T ∈ L(U, V ) where U has the basis
{e1, . . . , en} and V has the basis {ē1, . . . , ēm}. Then the matrix representation
A = (ai

j) of T is defined by

T (ei) =
m∑

j=1

ēja
j
i for i = 1, . . . , n. (4.14)

If T is orthogonal, then by definition this means that

〈T (ei), T (ej)〉 = 〈ei, ej〉 (4.15)

and therefore this equation becomes (using the summation convention)

〈ēka
k

i, ēla
l
j〉 = ak

ia
l
j〈ēk, ēl〉 = 〈ei, ej〉.

Now, if both {ei} and {ēj} are orthonormal bases, then the left hand side of
equation (4.15) becomes (note this is just the scalar product Ai · Aj)

ak
ia

l
jδkl = ak

iakj = (aT )i

k
akj (4.16)

and this must equal δij (the right hand side of equation (4.15)). In other words,
ATA = I so that (at least in the finite-dimensional case) AT = A−1, which
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is what we took earlier as the definition of an orthogonal transformation (or
matrix). Note this means that we also have AAT = I.

We emphasize that this result depended on the fact that the bases were
orthonormal. Let us see what this implies for the matrix A. With respect to the
basis {ēi}, we have that ē1 has components (1, 0, 0, . . . , 0), ē2 has components
(0, 1, 0, . . . , 0), and so forth down to ēm = (0, 0, 0, . . . , 1). Keeping in mind that
our vectors are really columns, we see from equation (4.14) that T takes the
ith basis vector ei of U into the ith column of the matrix A = (aj

i). But
then equation (4.15) shows that these columns are orthonormal. Furthermore,
writing out AAT = I in terms of components we have

aij(a
T )

j

k = aijak
j = δik

which is the row version of equation (4.16) and shows that the rows of A are
also orthonormal (i.e., this is just Ai ·Ak = δik). In other words, an orthogonal
matrix has rows and columns that both form orthonormal sets of vectors.

Now, we have defined an orthogonal transformation (matrix) A as one for
which AT = A−1, and we saw that rotations in R2 are examples of this. An
interesting and important question is whether or not all orthogonal transforma-
tions are in fact rotations. Well, consider the linear transformation T ∈ L(R2)
defined by T (x, y) = (−x, y). With respect to the standard basis, T has the
matrix representation

A =

[
−1 0

0 1

]

and it is easy to see that A−1 = AT = A so that A is orthogonal. This is
clearly not a rotation (there is no angle θ in equation (4.4) that satisfies this),
and whereas taking the determinant of equation (4.4) yields +1, here we have
detA = −1. This type of orthogonal transformation is called a reflection.

To be precise, first recall from Theorem 1.22 that if W is a subspace of
a finite-dimensional inner product space V , then we can always write V =
W ⊕W⊥. If W is a one-dimensional subspace of R2, then a linear operator
T ∈ L(R2) is said to be a reflection about W⊥ if T (w) = w for all w ∈ W⊥

and T (w) = −w for all w ∈W . In the example we just gave, the transformation
T is a reflection about the subspace of R2 that is the y-axis.

Example 4.18. Let W be the subspace of R2 that is a line passing through
the origin as shown. Let ē1 be a basis for W⊥ and ē2 be a basis for W .
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W

W⊥

θ

ē1
ē2

(x, y)

(x′, y′)

Relative to the standard basis for R2 we have

ē1 = (cos θ, sin θ) = (cos θ)e1 + (sin θ)e2

and
ē2 = (− sin θ, cos θ) = (− sin θ)e1 + (cos θ)e2.

If T is the reflection about W⊥, then T (ē1) = ē1 and T (ē2) = −ē2 so the matrix
representation of T with respect to the basis {ēi} is

[T ]ē =

[
1 0
0 −1

]
.

The transition matrix from {ei} to {ēi} is

P =

[
cos θ − sin θ
sin θ cos θ

]

which is orthogonal (it’s just a rotation of the coordinates) so that

P−1 = PT =

[
cos θ sin θ
− sin θ cos θ

]
.

Then the matrix representation of T with respect to the standard basis for R2

is

[T ]e = P [T ]ēP
−1 =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

] [
cos θ sin θ
− sin θ cos θ

]

=

[
cos2 θ − sin2 θ 2 sin θ cos θ
2 sin θ cos θ sin2 θ − cos2 θ

]

=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
(4.17)

Now look at what happens to a point r = (x, y) in the plane. Let tanα = y/x
so this point makes an angle α with respect to the x-axis. Then with respect to
the basis {ē1, ē2} this point has coordinates

r = (x̄, ȳ) = (r cos(θ − α),−r sin(θ − α))
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The action of T on (x̄, ȳ) is the point

T (x̄, ȳ) = (x̄,−ȳ) = (r cos(θ − α), r sin(θ − α))

which is the point (x′, y′) shown in the figure above. Thus we see that T indeed
represents a reflection about the line through the origin.

We now claim that any orthogonal transformation T on R2 is either a rota-
tion (so that detT = +1) or a reflection about some line through the origin (so
that detT = −1). To prove this, we first show that any orthogonal transfor-
mation on a finite-dimensional space V takes an orthonormal basis into another
orthonormal basis. But this is easy since by definition T is nonsingular so that
(by the rank theorem) rankT = dim(ImT ) = dimV . Therefore, if {e1, . . . , en}
is an orthonormal basis for V , then {T (e1), . . . , T (en)} must be linearly inde-
pendent, and it is also orthonormal since

〈T (ei), T (ej)〉 = 〈eka
k

i, ela
l
j〉 = ak

ia
l
j〈ek, el〉 = ak

ia
l
jδkl = ak

iakj

= (aT )jka
k

i = δij

where A = (aij) is the matrix representation of T . (We will prove this again in
a slightly different manner in the next chapter.)

Going back to R2, that fact that T (e1) and T (e2) are unit vectors (they
are orthonormal) means that there is an angle θ such that the vector T (e1) has
components (cos θ, sin θ) (just look at the figure at the beginning of this section).
If we think of this as defining a line through the origin with slope sin θ/ cos θ,
then T (e2) must lie on the line perpendicular to this and through the origin,
so it has slope − cos θ/ sin θ. Therefore T (e2) must have components that are
either (− sin θ, cos θ) or (sin θ,− cos θ).

In the first case we have

A =

[
cos θ − sin θ
sin θ cos θ

]

so that detA = detT = +1. Referring to equation (4.4) and the figure above
it, it is clear that this A represents a rotation in the plane.

In the second case we have

A =

[
cos θ sin θ
sin θ − cos θ

]

so that detA = detT = −1. Comparing this with equation (4.17), we see that
this represents a reflection about the line making an angle θ/2 with respect to
the x-axis.

Putting this all together we see that indeed every orthogonal transformation
of R2 is either a rotation or a reflection as claimed. In other words, we have
proved
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Theorem 4.17. Let T ∈ L(R2) be orthogonal. Then T is either a rotation or
a reflection, and in fact is a rotation if and only if det T = +1 and a reflection
if and only if detT = −1.

Exercises

1. Referring to the figure below,

W

W⊥

θ
ē1

ē2 (x, y)

(x′, y′)

the reflection T about W⊥ is defined by its matrix with respect to the
basis {ēi} as

[T ]ē =

[
1 0
0 −1

]

as we saw in Example 4.18. The (orthogonal) transition matrix from the
standard basis {ei} for R2 to the basis {ēi} for W⊥ ⊕W is given by

P =

[
cos θ − sin θ
sin θ cos θ

]

and therefore the matrix of T with respect to the standard basis {ei} is
given by

[T ]e = P [T ]ēP
−1 =

[
cos2 θ − sin2 θ 2 sin θ cos θ
2 sin θ cos θ sin2 θ − cos2 θ

]

=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

With respect to {ei}, the point (x, y) has coordinates
[
x
y

]

e

=

[
r cosα
r sinα

]

where α is defined by tanα = y/x. And with respect to {ēi} this same
point has coordinates

[
x
y

]

ē

=

[
x̄
ȳ

]
=

[
r cos(θ − α)
−r sin(θ − α)

]
.
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(a) Show that [
x̄
ȳ

]
=

[
x
y

]

ē

= P−1

[
x
y

]

e

.

(b) What are the coordinates of the reflected point (x′, y′) with respect
to the bases {ēi} and {ei}?

(c) Show that [
x′

y′

]

e

= P

[
x′

y′

]

ē

.

2. Let A, B and C be linear operators on R2 with the following matrices
relative to the standard basis {ei}:

[A]e =

[
4 6
−2 −3

]
[B]e =

[
1/2 −

√
3/2√

3/2 1/2

]

[C]e =

[
7 3

−10 −4

]
.

(a) If f1 = (2,−1) and f2 = (3,−2), show that A(f1) = f1 and A(f2) = 0.
(b) Find [A]f .
(c) What is the geometric effect of A?
(d) Show that B is a rotation about the origin of the xy-plane, and find

the angle of rotation.
(e) If f1 = (1,−2) and f2 = (3,−5), find C(f1) and C(f2).
(f) Find [C]f .
(g) What is the geometric effect of C?



190 CHAPTER 4. LINEAR TRANSFORMATIONS AND MATRICES



Chapter 5

Eigenvalues and

Eigenvectors

The concept of an eigenvector is one of the most important applications of
linear algebra in all of mathematics, physics and engineering. For example,
all of modern quantum theory is based on the existence of eigenvectors and
eigenvalues of Hermitian operators. In this chapter we will take a careful look at
when such eigenvectors exist and how to find them. However, since eigenvalues
are the roots of polynomials, we first need to review some elementary properties
of polynomials.

5.1 Polynomials

It is not our intention in this book to treat the general theory of polynomials.
However, a brief look at some of their basic properties is useful in examining
the existence of eigenvalues. The reader should feel free to skim this section and
only read the statements of the theorems if desired.

We assume that the reader has a basic familiarity with polynomials, and
knows what it means to add and multiply them. Let us denote the set of all
polynomials in the indeterminant (or variable) x over the field F by F [x]. You
should know that if p ∈ F [x] is of the form p = a0 + a1x + a2x

2 + · · · + anx
n

(where an 6= 0), then the integer n is called the degree of p and is denoted by
deg p.

The first basic result we need is the following formal statement of the process
of long division that you should have learned in high school. Because the proof
is by induction and not very enlightening, we omit it. The polynomials q and
r defined in the theorem are called the quotient and remainder respectively.
Simply put, dividing a polynomial f by a polynomial g gives a quotient q and
remainder r.

191
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Theorem 5.1 (Division Algorithm). Given f, g ∈ F [x] with g 6= 0, there
exist unique polynomials q, r ∈ F [x] such that

f = qg + r

where either r = 0 or deg r < deg g.

Example 5.1. Consider the polynomials

f = 2x4 + x2 − x+ 1

g = 2x− 1.

Define the polynomial

f1 = f − x3g = x3 + x2 − x+ 1.

Now let
f2 = f1 − (1/2)x2g = (3/2)x2 − x+ 1.

Again, we let
f3 = f2 − (3/4)xg = (−1/4)x+ 1

so that
f4 = f3 + (1/8)g = 7/8.

Since deg(7/8) < deg g, we are finished with the division. Combining the above
polynomials we see that

f = [x3 + (1/2)x2 + (3/4)x− (1/8)]g + f4

and therefore

q = x3 + (1/2)x2 + (3/4)x− (1/8)

r = 7/8.

This may also be written out in a more familiar form as

x3 + (1/2)x2 + (3/4)x − (1/8)

2x− 1 2x4 + x2 − x+ 1
)

2x4 − x3

x3 + x2 − x+ 1
x3 − (1/2)x2

(3/2)x2 − x+ 1
(3/2)x2 − (3/4)x

− (1/4)x+ 1
− (1/4)x+ (1/8)

7/8



5.1. POLYNOMIALS 193

It should be noted that at each step in the division, we eliminated the highest
remaining power of f by subtracting the appropriate multiple of g.

Since our goal is to be able to find and discuss the roots of polynomials,
the utility of Theorem 5.1 lies in our next two results. But first we need some
additional terminology.

If f(x) is a polynomial in F [x], then c ∈ F is said to be a zero (or root) of f
if f(c) = 0. We shall also sometimes say that c is a solution of the polynomial
equation f(x) = 0. If f, g ∈ F [x] and g 6= 0, then we say that f is divisible

by g (or g divides f) over F if f = qg for some q ∈ F [x]. In other words, f is
divisible by g if the remainder in the division of f by g is zero. In this case we
also say that g is a factor of f (over F).

Theorem 5.2 (Remainder Theorem). Suppose f ∈ F [x] and c ∈ F . Then
the remainder in the division of f by x− c is f(c). In other words,

f(x) = (x− c)q(x) + f(c).

Proof. We see from the division algorithm that f = (x − c)q + r where either
r = 0 or deg r < deg(x − c) = 1, and hence either r = 0 or deg r = 0 (in which
case r ∈ F). In either case, we may substitute c for x to obtain

f(c) = (c− c)q(c) + r = r.

Corollary (Factor Theorem). If f ∈ F [x] and c ∈ F , then x− c is a factor
of f if and only if f(c) = 0.

Proof. Rephrasing the statement of the corollary as f = q(x− c) if and only if
f(c) = 0, it is clear that this follows directly from the theorem.

Example 5.2. If we divide f = x3 − 5x2 + 7x by g = x − 2, we obtain q =
x2 − 3x+ 1 and r = 2. It is also easy see that f(2) = 8− 5(4) + 7(2) = 2 as it
should according to Theorem 5.2.

Since the only fields we are dealing with are R and C, let us see just what
the difference is between them concerning the roots of polynomials. By way of
terminology, a field F is said to be algebraically closed if every polynomial
f ∈ F [x] with deg f > 0 has at least one zero (or root) in F .

Our next theorem is called the Fundamental Theorem of Algebra. This
is the result on which much of the remainder of this text is based, because it
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states that any polynomial over C always has a root. In particular, we will
always be able to find eigenvalues over a complex space, and this will also
allow us to put any complex matrix into triangular form. Unfortunately, the
proof of this result is based either on the theory of complex variables or on the
compactness of metric spaces, and in either case is far beyond the scope of this
book.

Theorem 5.3 (Fundamental Theorem of Algebra). The complex number
field C is algebraically closed.

As another bit of terminology, a polynomial p = a0 +a1x+a2x
2 + · · ·+anx

n

is said to be monic if an = 1. The fundamental theorem of algebra together
with the factor theorem now gives us the result we need.

Theorem 5.4. Let F be an algebraically closed field. Then every monic poly-
nomial f ∈ F [x] can be factored into the form

f =

n∏

i=1

(x − ai)

where each ai ∈ F .

Proof. Let f ∈ F [x] be of degree n ≥ 1. Since F is algebraically closed there
exists a1 ∈ F such that f(a1) = 0, and hence by the factor theorem,

f = (x− a1)q1

where q1 ∈ F [x] and deg q1 = n− 1. (This is a consequence of the general fact
that if deg p = m and deg q = n, then deg pq = m+ n. Just look at the largest
power of x in the product pq = (a0 +a1x+a2x

2 + · · ·+amx
m)(b0 + b1x+ b2x

2 +
· · ·+ bnx

n).)
Now, by the algebraic closure of F there exists a2 ∈ F such that q1(a2) = 0,

and therefore
q1 = (x− a2)q2

where deg q2 = n− 2. It is clear that we can continue this process a total of n
times, finally arriving at

f = c(x− a1)(x − a2) · · · (x− an)

where c ∈ F is nonzero. In particular, c = 1 if qn−1 is monic.

Observe that Theorem 5.4 shows that any polynomial of degree n over an
algebraically closed field has exactly n roots, but it doesn’t require that these
roots be distinct, and in general they are not.
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Note also that while Theorem 5.3 shows that the field C is algebraically
closed, it is not true that R is algebraically closed. This should be obvious
because any quadratic equation of the form ax2 + bx+ c = 0 has solutions given
by the quadratic formula

−b±
√
b2 − 4ac

2a

and if b2 − 4ac < 0, then there is no solution for x in the real number system.
However, in the case of R[x], we do have the following result.

Theorem 5.5. Suppose f = a0 + a1x+ · · ·+ anx
n ∈ R[x]. If α ∈ C is a root of

f , then so is α∗. Furthermore, if α 6= α∗, then (x−α)(x−α∗) is a factor of f .

Proof. If α ∈ C is a root of f , then a0 + a1α + · · · + anα
n = 0. Taking the

complex conjugate of this equation and remembering that each ai ∈ R, we obtain
a0 + a1α

∗ + · · ·+ anα
∗n = 0 so that α∗ is also a root of f . The second part of

the theorem now follows directly from the factor theorem: If α is a root of f we
can write f = (x− α)g so that 0 = f(α∗) = (α∗ − α)g(α∗). Then g(α∗) = 0 so
that g = (x− α∗)h and hence f = (x− α)(x− α∗)h. Thus (x− α)(x− α∗) is a
factor of f .

Exercises

1. Use the division algorithm (i.e., long division) to find the quotient and
remainder when f = 2x4−x3+x−1 ∈ R[x] is divided by g = 3x3−x2+3 ∈
R[x].

2. Find the remainder when ix9 + 3x7 + x6 − 2ix + 1 ∈ C[x] is divided by
x+ i ∈ C[x].

3. Factor the following polynomials into their prime factors in both R[x] and
Q[x]:

(a) 2x3 − x2 + x+ 1.
(b) 3x3 + 2x2 − 4x+ 1.
(c) x6 + 1.
(d) x4 + 16.

4. Find the greatest common divisor of the following pairs of polynomials
over R[x]. Express your result in the form defined in Theorem ??.

(a) 4x3 + 2x2 − 2x− 1 and 2x3 − x2 + x+ 1.
(b) x3 − x+ 1 and 2x4 + x2 + x− 5.
(c) x4 + 3x2 + 2 and x5 − x.
(d) x3 + x2 − 2x− 2 and x4 − 2x3 + 3x2 − 6x.

5. Use the remainder theorem to find the remainder when 2x5−3x3+2x+1 ∈
R[x] is divided by:
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(a) x− 2 ∈ R[x].
(b) x+ 3 ∈ R[x].

6. (a) Is x− 3 a factor of 3x3 − 9x2 − 7x+ 21 over Q[x]?
(b) Is x+ 2 a factor of x3 + 8x2 + 6x− 8 over R[x]?
(c) For which k ∈ Q is x− 1 a factor of x3 + 2x2 + x+ k over Q[x]?
(d) For which k ∈ C is x+ i a factor of ix9 +3x7 +x6−2ix+k over C[x]?

7. Find the greatest common divisor and least common multiple of the fol-
lowing pairs of polynomials:

(a) (x− 1)(x+ 2)2 and (x+ 2)(x− 4).
(b) (x− 2)2(x− 3)4(x− i) and (x − 1)(x− 2)(x− 3)3.
(c) (x2 + 1)(x2 − 1) and (x + i)3(x3 − 1).

8. Let Vn ⊂ F [x] denote the set of all polynomials of degree ≤ n, and let
a0, a1, . . . , an ∈ F be distinct.

(a) Show Vn is a vector space over F with basis {1, x, x2, . . . , xn}, and
hence that dimVn = n+ 1.

(b) For each i = 0, . . . , n define the mapping Ti : Vn → F by Ti(f) =
f(ai). Show that the Ti are linear functionals on Vn, i.e., that Ti ∈
Vn

∗.
(c) For each k = 0, . . . , n define the polynomial

pk(x) =
(x − a0) · · · (x− ak−1)(x − ak+1) · · · (x− an)

(ak − a0) · · · (ak − ak−1)(ak − ak+1) · · · (ak − an)

=
∏

i6=k

(
x− ai

ak − ai

)
∈ Vn.

Show that Ti(pj) = δij .
(d) Show p0, . . . , pn forms a basis for Vn, and hence that any f ∈ Vn may

be written as

f =
n∑

i=0

f(ai)pi.

(e) Now let b0, b1, . . . , bn ∈ F be arbitrary, and define f =
∑
bipi. Show

f(aj) = bj for 0 ≤ j ≤ n. Thus there exists a polynomial of degree
≤ n that takes on given values at n+ 1 distinct points.

(f) Now assume that f, g ∈ F [x] are of degree ≤ n and satisfy f(aj) =
bj = g(aj) for 0 ≤ j ≤ n. Prove f = g, and hence that the poly-
nomial defined in part (e) is unique. This is called the Lagrange

interpolation formula.

5.2 Eigenvalues and Eigenvectors

We begin with some basic definitions. If T ∈ L(V ), then an element λ ∈ F is
called an eigenvalue (also called a characteristic value or characteristic
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root) of T if there exists a nonzero vector v ∈ V such that T (v) = λv. In this
case, we call the vector v an eigenvector (or characteristic vector) belonging
to the eigenvalue λ. Note that while an eigenvector is nonzero by definition, an
eigenvalue may very well be zero.

Throughout the remainder of this chapter we will frequently leave off the
parentheses around vector operands. In other words, we sometimes write Tv
rather than T (v). This simply serves to keep our notation as uncluttered as
possible.

If T has an eigenvalue λ, then Tv = λv or (T − λ)v = 0. But then v ∈
Ker(T − λ1) and v 6= 0 so that T − λ1 is singular. (Note that here we use 1
as the identity operator, because λ itself is just a scalar. When we deal with
matrices, then instead of writing λ1 we will write λI.) Conversely, if T − λ1 is
singular, then there exists v 6= 0 such that (T −λ1)v = 0 so that Tv = λv. This
proves the following.

Theorem 5.6. A linear operator T ∈ L(V ) has eigenvalue λ ∈ F if and only
if λ1 − T is singular.

Note, in particular, that 0 is an eigenvalue of T if and only if T is singular.
And, as a side remark, observe that there is no essential difference between
writing (T −λ)v = 0 and (λ−T )v = 0. One or the other of these forms may be
more preferable depending on just what calculation we are doing, and we will
freely go back and forth between them.

In an exactly analogous manner, we say that an element λ ∈ F is an eigen-

value of a matrix A ∈Mn(F) if there exists a nonzero (column) vector v ∈ Fn

such that Av = λv, and we call v an eigenvector of A belonging to the eigen-
value λ. Given a basis {ei} for Fn, we can write this matrix eigenvalue equation
in terms of components as ai

jv
j = λvi or, written out as

n∑

j=1

aijvj = λvi, i = 1, . . . , n.

Now suppose T ∈ L(V ) and v ∈ V . If {e1, . . . , en} is a basis for V , then
v =

∑
viei and hence

T (v) = T
(∑

i

viei

)
=
∑

i

viT (ei) =
∑

i,j

ejajivi

where A = (aij) is the matrix representation of T relative to the basis {ei}.
Using this result, we see that if T (v) = λv, then

∑

i,j

ejajivi = λ
∑

j

vjej

and hence equating components shows that
∑

i ajivi = λvj . We thus see that
(as expected) the isomorphism between L(V ) and Mn(F) (see Theorem 4.11)
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shows that λ is an eigenvalue of the linear transformation T if and only if λ
is also an eigenvalue of the corresponding matrix representation A. Using the
notation of Chapter 4, we can say that T (v) = λv if and only if [T ]e[v]e = λ[v]e .

It is important to point out that eigenvectors are only specified up to an
overall constant. This is because if Tv = λv, then for any c ∈ F we have
T (cv) = cT (v) = cλv = λ(cv) so that cv is also an eigenvector with eigenvalue
λ. Because of this, we are always free to normalize the eigenvectors to any
desired value.

Example 5.3. Let us find all of the eigenvectors and associated eigenvalues of
the matrix

A =

[
1 2
3 2

]
.

This means that we must find a vector v = (x, y) such that Av = λv. In matrix
notation, this equation takes the form

[
1 2
3 2

] [
x
y

]
= λ

[
x
y

]

and the equation (T − λI)v = 0 becomes

[
1− λ 2

3 2− λ

] [
x
y

]
= 0 .

This is equivalent to the system

(1− λ)x + 2y = 0

3x+ (2− λ)y = 0
(5.1)

Since this homogeneous system of equations has a nontrivial solution if and only
if the determinant of the coefficient matrix is zero (Corollary to Theorem 3.11),
we must have

∣∣∣∣
1− λ 2

3 2− λ

∣∣∣∣ = λ2 − 3λ− 4 = (λ− 4)(λ+ 1) = 0 .

We thus see that the eigenvalues are λ = 4 and λ = −1. (The roots of this poly-
nomial are found either by inspection, or by applying the elementary quadratic
formula.)

Substituting λ = 4 into equations (5.1) yields

−3x+ 2y = 0
3x− 2y = 0

or y = (3/2)x. This means that every eigenvector corresponding to the eigen-
value λ = 4 has the form v = (x, 3x/2). In other words, every multiple of the
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vector v = (2, 3) is also an eigenvector with eigenvalue equal to 4. If we substi-
tute λ = −1 in equations (5.1), then we similarly find y = −x, and hence every
multiple of the vector v = (1,−1) is an eigenvector with eigenvalue equal to
−1. (Note that both of equations (5.1) give the same information. This is not
surprising because the determinant of the coefficients vanishes so we know that
the rows are linearly dependent, and hence each supplies the same information.)

Recall from the factor theorem (Corollary to Theorem 5.2) that if c ∈ F is a
root of f ∈ F [x], then (x− c) divides f . If c is such that (x− c)m divides f but
no higher power of x− c divides f , then we say that c is a root of multiplicity

m. In counting the number of roots that a polynomial has, we shall always
count a root of multiplicity m as m roots. A root of multiplicity 1 is frequently
called a simple root.

Theorem 5.7. If v1, . . . , vr are eigenvectors belonging to the distinct eigenval-
ues λ1, . . . , λr of T ∈ L(V ), then the set {v1, . . . , vr} is linearly independent.

Proof. We will prove the contrapositive of the statement in the theorem. That
is, we assume that the set {v1, . . . , vr} is linearly dependent and show that this
leads to a contradiction.

If {v1, . . . , vr} is linearly dependent, let vk+1 be the first vector that is depen-
dent on the previous ones. In other words, {v1, . . . , vk} is linearly independent,
but there exist scalars c1, . . . , ck not all equal to 0 such that

vk+1 = c1v1 + · · · ckvk.

Act on this with T and use Tvi = λivi to obtain

λk+1vk+1 = c1λ1v1 + · · · ckλkvk.

On the other hand, we can multiply the first equation by λk+1 and subtract this
from the second equation to yield

0 = c1(λ1 − λk+1)v1 + · · ·+ ck(λk − λk+1)vk.

But v1, . . . , vk is linearly independent which implies that

c1(λ1 − λk+1) = · · · = ck(λk − λk+1)vk = 0.

Since the λi are all distinct by hypothesis, this shows that c1 = · · · = ck = 0
and hence vk+1 = c1v1 + · · ·+ ckvk = 0. But this is impossible since eigenvec-
tors are nonzero by definition. Therefore the set {v1, . . . , vr} must be linearly
independent.
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Corollary 1. Suppose T ∈ L(V ) and dimV = n. Then T can have at most n
distinct eigenvalues in F .

Proof. Since dimV = n, there can be at most n independent vectors in V . Since
n distinct eigenvalues result in n independent eigenvectors, this corollary follows
directly from Theorem 5.7.

Corollary 2. Suppose T ∈ L(V ) and dimV = n. If T has n distinct eigenval-
ues, then there exists a basis for V which consists of eigenvectors of T .

Proof. If T has n distinct eigenvalues, then (by Theorem 5.7) T must have n
linearly independent eigenvectors. But n is the number of elements in any basis
for V , and hence these n linearly independent eigenvectors in fact form a basis
for V .

It should be remarked that one eigenvalue can belong to more than one
linearly independent eigenvector. In fact, if T ∈ L(V ) and λ is an eigenvalue of
T , then the set

Vλ := {v ∈ V : Tv = λv}
of all eigenvectors of T belonging to λ is a subspace of V called the eigenspace

of λ. It is also easy to see that Vλ = Ker(λ1− T ) (see Exercise 5.2.1).

Exercises

1. (a) If T ∈ L(V ) and λ is an eigenvalue of T , show that the set Vλ of all
eigenvectors of T belonging to λ is a T -invariant subspace of V (i.e.,
a subspace with the property that T (v) ∈ Vλ for all v ∈ Vλ).

(b) Show Vλ = Ker(λ1 − T ).

2. An operator T ∈ L(V ) with the property that T n = 0 for some n ∈ Z+

is said to be nilpotent. Show that the only eigenvalue of a nilpotent
operator is 0.

3. If S, T ∈ L(V ), show that ST and TS have the same eigenvalues. [Hint :
First use Theorems 4.13 and 5.6 to show that 0 is an eigenvalue of ST
if and only if 0 is an eigenvalue of TS. Now assume λ 6= 0, and let
ST (v) = λv. Show that Tv is an eigenvector of TS.]

4. (a) Consider the rotation operator R(α) ∈ L(R2) defined in Example ??.
Does R(α) have any eigenvectors? Explain.

(b) Repeat part (a) but now consider rotations in R3.

5. For each of the following matrices, find all eigenvalues and linearly inde-
pendent eigenvectors:
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(a)

[
2 2
1 3

]
(b)

[
4 2
3 3

]
(c)

[
5 −1
1 3

]

6. Consider the spaces D[R] and F [R] defined in Exercise 1.2.6, and let d :
D[R]→ F [R] be the usual derivative operator.

(a) Show the eigenfunctions (i.e., eigenvectors) of d are of the form exp(λx)
where λ is the corresponding eigenvalue.

(b) Suppose λ1, . . . , λr ∈ R are distinct. Show the set

S = {exp(λ1x), . . . , exp(λrx)}

is linearly independent. [Hint : Consider the linear span of S.]

7. Suppose T ∈ L(V ) is invertible. Show that λ is an eigenvalue of T if and
only if λ 6= 0 and λ−1 is an eigenvalue of T−1.

8. Suppose T ∈ L(V ) and dimV = n. If T has n linearly independent
eigenvectors, what can you say about the matrix representation of T ?

9. Let V be a two-dimensional space over R, and let {e1, e2} be a basis for V .
Find the eigenvalues and eigenvectors of the operator T ∈ L(V ) defined
by:

(a) Te1 = e1 + e2 Te2 = e1 − e2.
(b) Te1 = 5e1 + 6e2 Te2 = −7e2.
(c) Te1 = e1 + 2e2 Te2 = 3e1 + 6e2.

10. Suppose A ∈Mn(C) and define Ri =
∑n

j=1 |aij | and Pi = Ri − |aii|.
(a) Show that if Ax = 0 for some nonzero x = (x1, . . . , xn), then for any

r such that xr 6= 0 we have

|arr| |xr | =

∣∣∣∣∣∣
∑

j 6=r

arjxj

∣∣∣∣∣∣
.

(b) Show that part (a) implies that for some r we have |arr| ≤ Pr.
(c) Prove that if |aii| > Pi for all i = 1, . . . , n then all eigenvalues of A

are nonzero (or, equivalently, that detA 6= 0).

11. (a) Suppose A ∈ Mn(C) and let λ be an eigenvalue of A. Using the
previous exercise prove Gershgorin’s Theorem: |λ− arr| ≤ Pr for
some r with 1 ≤ r ≤ n.

(b) Use this result to show that every eigenvalue λ of the matrix

A =




4 1 1 0 1
1 3 1 0 0
1 2 3 1 0
1 1 −1 4 0
1 1 1 1 5




satisfies 1 ≤ |λ| ≤ 9.
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5.3 Characteristic Polynomials

So far our discussion has dealt only theoretically with the existence of eigen-
values of an operator T ∈ L(V ). From a practical standpoint (as we saw in
Example 5.3), it is much more convenient to deal with the matrix represen-
tation of an operator. Recall that the definition of an eigenvalue λ ∈ F and
eigenvector v =

∑
viei of a matrix A = (aij) ∈ Mn(F) is given in terms of

components by
∑

j aijvj = λvi for each i = 1, . . . , n. This may be written in
the form

n∑

j=1

aijvj = λ

n∑

j=1

δijvj

or, alternatively, as
n∑

j=1

(λδij − aij)vj = 0.

In matrix notation, this is

(λI −A)v = 0.

By the corollary to Theorem 3.11, this set of homogeneous equations has a
nontrivial solution if and only if det(λI −A) = 0.

Another way to see this is to note that by Theorem 5.6, λ is an eigenvalue
of the operator T ∈ L(V ) if and only if λ1 − T is singular. But according to
Theorem 4.13, this means det(λ1−T ) = 0 (recall that the determinant of a linear
transformation T is defined to be the determinant of any matrix representation
of T ). In other words, λ is an eigenvalue of T if and only if det(λ1 − T ) = 0.
This proves the following important result.

Theorem 5.8. Suppose T ∈ L(V ) and λ ∈ F . Then λ is an eigenvalue of T if
and only if det(λ1 − T ) = 0.

It is also worth pointing out that there is no real difference between the
statements det(λ1−T ) = 0 and det(T −λ1) = 0, and we will use whichever one
is most appropriate for what we are doing at the time.

Let [T ] be a matrix representation of T . The matrix xI − [T ] is called the
characteristic matrix of [T ], and the expression det(x1 − T ) = 0 is called
the characteristic (or secular) equation of T . The determinant det(x1− T )
is frequently denoted by ∆T (x). Writing out the determinant in a particular
basis, we see that det(x1 − T ) is of the form

∆T (x) =

∣∣∣∣∣∣∣∣∣

x− a11 −a12 · · · −a1n

−a21 x− a22 · · · −a2n

...
...

...
−an1 −an2 · · · x− ann

∣∣∣∣∣∣∣∣∣
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where A = (aij) is the matrix representation of T in the chosen basis. Since
the expansion of a determinant contains exactly one element from each row and
each column, we see that (see Exercise 5.3.1)

det(x1 − T ) = (x− a11)(x− a22) · · · (x− ann)

+ terms containing n− 1 factors of the form x− aii

+ · · ·+ terms with no factors containing x

= xn − (trA)xn−1 + terms of lower degree in x+ (−1)n detA.

This monic polynomial is called the characteristic polynomial of T .
From the discussion following Theorem 4.15, we see that if A′ = P−1AP is

similar to A, then

det(xI −A′) = det(xI − P−1AP ) = det[P−1(xI −A)P ] = det(xI −A)

(since detP−1 = (detP )−1). We thus see that similar matrices have the same
characteristic polynomial (the converse of this statement is not true), and hence
also the same eigenvalues. Therefore the eigenvalues (not eigenvectors) of an
operator T ∈ L(V ) do not depend on the basis chosen for V . Note also that
according to Section 4.4 (or Exercise 3.3.13), we may as well write trT and
detT (rather than trA and detA) since these are independent of the particular
basis chosen.

Using this terminology, we may rephrase Theorem 5.8 in the following form
which we state as a corollary.

Corollary. A scalar λ ∈ F is an eigenvalue of T ∈ L(V ) if and only if λ is a
root of the characteristic polynomial ∆T (x).

Since the characteristic polynomial is of degree n in x, it follows from The-
orem 5.4 that if we are in an algebraically closed field (such as C), then there
must exist n roots. In this case, the characteristic polynomial may be factored
into the form

det(x1 − T ) = (x− λ1)(x − λ2) · · · (x− λn)

where the eigenvalues λi are not necessarily distinct. Expanding this expression
we have

det(x1 − T ) = xn −
( n∑

i=1

λi

)
xn−1 + · · ·+ (−1)nλ1λ2 · · ·λn.

Comparing this with the above general expression for the characteristic polyno-
mial, we see that

trT =

n∑

i=1

λi
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and

detT =

n∏

i=1

λi.

It should be remembered that this result only applies to an algebraically closed
field (or to any other field F as long as all n roots of the characteristic polynomial
lie in F).

Example 5.4. Let us find the eigenvalues and eigenvectors of the matrix

A =

[
1 4
2 3

]
.

The characteristic polynomial of A is given by

∆A(x) =

∣∣∣∣
x− 1 −4
−2 x− 3

∣∣∣∣ = x2 − 4x− 5 = (x− 5)(x+ 1)

and hence the eigenvalues of A are λ = 5,−1. To find the eigenvectors corre-
sponding to each eigenvalue, we must solve Av = λv or (λI −A)v = 0. Written
out for λ = 5 this is [

4 −4
−2 2

] [
x
y

]
=

[
0
0

]
.

We must therefore solve the set of homogeneous linear equations

4x− 4y = 0
−2x+ 2y = 0

which is clearly equivalent to the single equation x−y = 0, or x = y. This means
that every eigenvector corresponding to the eigenvalue λ = 5 is a multiple of
the vector (1, 1), and thus the corresponding eigenspace is one-dimensional.

For λ = −1 we have
[
−2 −4
−2 −4

] [
x
y

]
=

[
0
0

]
.

and the equation to be solved is (since both are the same) −2x− 4y = 0. The
solution is thus −x = 2y so the eigenvector is a multiple of (2,−1).

We now note that

trA = 1 + 3 = 4 =
2∑

i=1

λi

and

detA = 3− 8 = −5 =

2∏

i=1

λi.

It is also easy to see these relationships hold for the matrix given in Example
5.3.
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It is worth remarking that the existence of eigenvalues of a given operator
(or matrix) depends on the particular field we are working with. For example,
the matrix

A =

[
0 −1
1 0

]

has characteristic polynomial x2 + 1 which has no real roots, but does have the
complex roots ±i. In other words, A has no eigenvalues in R, but does have the
eigenvalues ±i in C (see Exercise 5.3.3).

Let us now take a careful look at what happens if a space V has a basis
of eigenvectors of an operator T . Suppose that T ∈ L(V ) with dimV = n. If
V has a basis {v1, . . . , vn} that consists entirely of eigenvectors of T , then the
matrix representation of T in this basis is defined by

T (vi) =

n∑

j=1

vjaji = λivi =

n∑

j=1

δjiλjvj

and therefore aji = δjiλj . In other words, T is represented by a diagonal matrix
in a basis of eigenvectors. Conversely, if T is represented by a diagonal matrix
aji = δjiλj relative to some basis {vi}, then reversing the argument shows that
each vi is an eigenvector of T . This proves the following theorem.

Theorem 5.9. A linear operator T ∈ L(V ) can be represented by a diagonal
matrix if and only if V has a basis consisting of eigenvectors of T . If this is the
case, then the diagonal elements of the matrix representation are precisely the
eigenvalues of T . (Note however, that the eigenvalues need not necessarily be
distinct.)

If T ∈ L(V ) is represented in some basis {ei} by a matrix A, and in the basis
of eigenvectors {vi} by a diagonal matrix D, then Theorem 4.15 tells us that A
and D must be similar matrices. This proves the following version of Theorem
5.9, which we state as a corollary.

Corollary 1. A matrix A ∈ Mn(F) is similar to a diagonal matrix D if and
only if A has n linearly independent eigenvectors.

Corollary 2. A linear operator T ∈ L(V ) can be represented by a diagonal
matrix if T has n = dimV distinct eigenvalues.

Proof. This follows from Corollary 2 of Theorem 5.7.
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Note that the existence of n = dimV distinct eigenvalues of T ∈ L(V ) is a
sufficient but not necessary condition for T to have a diagonal representation.
For example, the identity operator has the usual diagonal representation, but
its only eigenvalues are λ = 1. In general, if any eigenvalue has multiplicity
greater than 1, then there will be fewer distinct eigenvalues than the dimension
of V . However, in this case we may be able to choose an appropriate linear
combination of eigenvectors in each eigenspace so the matrix of T will still be
diagonal. We shall have more to say about this in Section 5.6.

We say that a matrix A is diagonalizable if it is similar to a diagonal matrix
D. If P is a nonsingular matrix such that D = P−1AP , then we say that P
diagonalizes A. It should be noted that if λ is an eigenvalue of a matrix A
with eigenvector v (i.e., Av = λv), then for any nonsingular matrix P we have

(P−1AP )(P−1v) = P−1Av = P−1λv = λ(P−1v).

In other words, P−1v is an eigenvector of P−1AP . Similarly, we say that T ∈
L(V ) is diagonalizable if there exists a basis for V that consists entirely of
eigenvectors of T .

While all of this sounds well and good, the reader might wonder exactly how
the transition matrix P is to be constructed. Actually, the method has already
been given in Section 4.4. If T ∈ L(V ) and A is the matrix representation of T
in a basis {ei}, then P is defined to be the transformation that takes the basis
{ei} into the basis {vi} of eigenvectors. In other words, vi = Pei =

∑
j ejpji.

This means that the ith column of (pji) is just the ith eigenvector of A. The
fact that P must be nonsingular coincides with the requirement that T (or A)
have n linearly independent eigenvectors vi.

Example 5.5. Referring to Example 5.4, we found the eigenvectors v1 = (1, 1)
and v2 = (2,−1) belonging to the matrix

A =

[
1 4
2 3

]
.

Then P and P−1 are given by

P =

[
1 2
1 −1

]

and

P−1 =
adjP

detP
=

[
1/3 2/3
1/3 −1/3

]

and therefore

D = P−1AP =

[
1/3 2/3
1/3 −1/3

] [
1 4
2 3

] [
1 2
1 −1

]
=

[
5 0
0 −1

]
.
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We see that D is a diagonal matrix, and that the diagonal elements are just the
eigenvalues of A. Note also that

D(P−1v1) =

[
5 0
0 −1

] [
1/3 2/3
1/3 −1/3

] [
1
1

]

=

[
5 0
0 −1

] [
1
0

]
= 5

[
1
0

]

= λ1(P
−1v1)

with a similar result holding for P−1v2. Observe that since P−1vi = ei, this is
just Dei = λiei.

Example 5.6. Let us show that the matrix

A =

[
1 2
0 1

]

is not diagonalizable. The characteristic equation is ∆A(x) = (x − 1)2 = 0,
and hence there are two identical roots λ = 1. If there existed an eigenvector
v = (x, y), it would have to satisfy the equation (λI −A)v = 0 or

[
0 −2
0 0

] [
x
y

]
=

[
0
0

]
.

Since this yields −2y = 0, the eigenvectors must be of the form (x, 0), and hence
it is impossible to find two linearly independent such eigenvectors.

Exercises

1. Suppose T ∈ L(V ) has matrix representation A = (aij), and dimV = n.
Prove

det(x1 − T )

= xn − (trA)xn−1 + terms of lower degree in x+ (−1)n detA.

[Hint : Use the definition of determinant.]

2. If T ∈ L(V ) and ∆T (x) is a product of distinct linear factors, prove that
T is diagonalizable.

3. Consider the following matrices:

A =

[
2 −1
1 4

]
B =

[
3 −1

13 −3

]
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(a) Find all eigenvalues and linearly independent eigenvectors over R.
(b) Find all eigenvalues and linearly independent eigenvectors over C.

4. For each of the following matrices, find all eigenvalues, a basis for each
eigenspace, and determine whether or not the matrix is diagonalizable:

(a)




1 −3 3
3 −5 3
6 −6 4


 (b)



−3 1 −1
−7 5 −1
−6 6 −2




5. Consider the operator T ∈ L(R3) defined by

T (x, y, z) = (2x+ y, y − z, 2y + 4z).

Find all eigenvalues and a basis for each eigenspace.

6. Let A = (aij) be a triangular matrix, and assume that all of the diagonal
entries of A are distinct. Is A diagonalizable? Explain.

7. Suppose A ∈ M3(R). Show that A can not be a zero of the polynomial
f = x2 + 1.

8. If A ∈Mn(F), show that A and AT have the same eigenvalues.

9. Suppose A is a block triangular matrix with square matrices Aii on the
diagonal. Show that the characteristic polynomial of A is the product of
the characteristic polynomials of the Aii.

10. For each of the following matrices A, find a nonsingular matrix P (if it
exists) such that P−1AP is diagonal:

(a)




3 1 1
2 4 2
1 1 3


 (b)




1 2 2
1 2 −1
−1 1 4


 (c)




1 1 0
0 1 0
0 0 1




11. Consider the following real matrix:

A =

[
a b
c d

]
.

Find necessary and sufficient conditions on a, b, c and d so that A is
diagonalizable.

12. Let A be an idempotent matrix (i.e., A2 = A) of rank r. Show that A
is similar to the matrix

B =

[
Ir 0
0 0

]
.

13. Let V be the space of all real polynomials f ∈ R[x] of degree at most 2,
and define T ∈ L(V ) by Tf = f + f ′ + xf ′ where f ′ denotes the usual
derivative with respect to x.
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(a) Write down the most obvious basis {e1, e2, e3} for V you can think of,
and then write down [T ]e .

(b) Find all eigenvalues of T , and then find a nonsingular matrix P such
that P−1[T ]eP is diagonal.

14. Prove that any real symmetric 2× 2 matrix is diagonalizable.

5.4 Block Matrices

Before proceeding, there is another definition that will greatly facilitate our
description of invariant subspaces. (See Exercise 4.3.9.) In particular, suppose
we are given a matrix A = (aij) ∈ Mm×n(F). Then, by partitioning the rows
and columns of A in some manner, we obtain what is called a block matrix.
To illustrate, suppose A ∈M3×5(R) is given by

A =




7 5 5 4 −1
2 1 −3 0 5
0 8 2 1 −9


 .

Then we may partition A into blocks to obtain (for example) the matrix

A =

[
A11 A12

A21 A22

]

where

A11 =
[
7 5 5

]
A12 =

[
4 −1

]

A21 =

[
2 1 −3
0 8 2

]
A22 =

[
0 5
1 −9

]
.

(Do not confuse these Aij with minor matrices or the entry aij of A.)
If A and B are block matrices that are partitioned into the same number of

blocks such that each of the corresponding blocks is of the same size, then it is
clear that (in an obvious notation)

A+B =



A11 +B11 · · · A1n +B1n

...
...

Am1 +Bm1 · · · Amn +Bmn


 .

In addition, if C and D are block matrices such that the number of columns in
each Cij is equal to the number of rows in each Djk, then the product of C and
D is also a block matrix CD where (CD)ik =

∑
j CijDjk. Thus block matrices

are multiplied as if each block were just a single element of each matrix in the
product. In other words, each (CD)ik is a matrix that is the sum of a product
of matrices. The proof of this fact is an exercise in matrix multiplication, and
is left to the reader (see Exercise 5.4.1).
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Theorem 5.10. If A ∈Mn(F) is a block triangular matrix of the form




A11 A12 A13 · · · A1k

0 A22 A23 · · · A2k

...
...

...
...

0 0 0 · · · Akk




where each Aii is a square matrix and the 0’s are zero matrices of appropriate
size, then

detA =

k∏

i=1

detAii.

Proof. What is probably the simplest proof of this theorem is outlined in Ex-
ercise 5.4.3. However, the proof that follows serves as a good illustration of the
meaning of the terms in the definition of the determinant. It is actually a lot
easier to understand than it is to explain.

We first note that only the diagonal matrices are required to be square
matrices. Because each Aii is square, we can simply prove the theorem for the
case k = 2, and the general case will then follow by induction. (For example,
consider the case where k = 3:



A11 A12 A13

0 A22 A23

0 0 A33




Because each Aii is square, this is a 2×2 block triangular matrix where the two
diagonal matrices are square.)

We thus let A = (aij) ∈Mn(F) be of the form

A =

[
B C
0 D

]

where B = (bij) ∈ Mr(F), D = (dij) ∈ Ms(F), C = (cij) ∈ Mr×s(F) and
r + s = n. Note that for 1 ≤ i, j ≤ r we have aij = bij , for 1 ≤ i, j ≤ s we have
ai+r,j+r = dij , and if i > r and j ≤ r then aij = 0.

From the definition of determinant we have

detA = εi1···irir+1···ir+sa1i1 · · · arir
ar+1 ir+1

· · · ar+s ir+s
.

Now observe that for rows r + j where r + 1 ≤ r + j ≤ r + s we must have the
column index ir+j > r or else ar+j ir+j

= 0, and for this range of indices we are
summing over the D block. But if the indices ir+1, . . . , ir+s only cover the range
r + 1, . . . r + s then the rest of the indices i1, . . . , ir can only take the values
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1, . . . , r and for this range of columns the elements a1i1 , . . . , arir
are precisely

the elements of B.

For a fixed set of indices i1, . . . , ir each of which takes a value between 1
and r, the ε symbol still sums over all possible ir+1, . . . , ir+s where each index
ranges between r + 1 and r + s, with the correct sign of the permutation of
those indices. In other words, for each set i1, . . . , ir the rest of the sum gives
detD. Then this factor of detD just multiplies each of the sums over all possible
combinations of i1, . . . , ir where each index now ranges between 1 and r, again
with the proper sign of the permutation. In other words, it just gives the term
detB, and the final result is indeed detA = (detB)(detD).

Example 5.7. Consider the matrix

A =




1 −1 2 3
2 2 0 2
4 1 −1 −1
1 2 3 0


 .

Subtract multiples of row 1 from rows 2, 3 and 4 to obtain the matrix




1 −1 2 3
0 4 −4 −4
0 5 −9 −13
0 3 1 −3


 .

Now subtract 5/4 times row 2 from row 3, and 3/4 times row 2 from row 4.
This yields the matrix

B =




1 −1 2 3
0 4 −4 −4
0 0 −4 −8
0 0 4 0




with detB = detA (by Theorem 3.4). Since B is in block triangular form we
have

detA = detB =

∣∣∣∣
1 −1
0 4

∣∣∣∣
∣∣∣∣
−4 −8

4 0

∣∣∣∣ = 4(32) = 128.

Exercises

1. Prove the multiplication formula given in the text (just prior to Theorem
5.10) for block matrices.

2. Suppose A ∈ Mn(F), D ∈ Mm(F), U ∈ Mn×m(F) and V ∈ Mm×n(F),
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and consider the (n+m)× (n+m) matrix

M =

[
A U
V D

]
.

If A−1 exists, show that

[
A−1 0
−V A−1 Im

] [
A U
V D

]
=

[
In A−1U
0 −V A−1U +D

]

and hence that
∣∣∣∣
A U
V D

∣∣∣∣ = (detA) det(D − V A−1U).

3. Let A be a block triangular matrix of the form

A =

[
B C
0 D

]

where B and D are square matrices. Prove that detA = (detB)(detD) by
using elementary row operations on A to create a block triangular matrix

Ã =

[
B̃ C̃

0 D̃

]

where B̃ and D̃ are upper-triangular.

4. Show that [
A B
C D

]T
=

[
AT CT

BT DT

]
.

5.5 Invariant Subspaces

Suppose T ∈ L(V ) and let W be a subspace of V . Then W is said to be in-

variant under T (or simply T -invariant) if T (w) ∈ W for every w ∈ W . For
example, if V = R3 then the xy-plane is invariant under the linear transforma-
tion that rotates every vector in R3 about the z-axis. As another example, note
that if v ∈ V is an eigenvector of T , then T (v) = λv for some λ ∈ F , and hence
v generates a one-dimensional subspace of V that is invariant under T (this is
not necessarily the same as the eigenspace of λ).

Another way to describe the invariance of W under T is to say that T (W ) ⊂
W . Then clearly T 2(W ) = T (T (W )) ⊂ W , and in general T n(W ) ⊂ W for
every n ∈ Z+. Since W is a subspace of V , this means f(T )(W ) ⊂ W for any
f(x) ∈ F [x]. In other words, if W is invariant under T , then W is also invariant
under any polynomial in T (over the same field as W ).

If W ⊂ V is T -invariant, we may focus our attention on the effect of T on
W alone. To do this, we define the restriction of T to W as that operator
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T |W : W →W defined by (T |W )(w) = T (w) for every w ∈ W . In other words,
the restriction is an operator T |W that acts only on the subspace W , and gives
the same result as the full operator T gives when it acts on those vectors in V
that happen to be in W . We will frequently write TW instead of T |W .

Now suppose T ∈ L(V ) and let W ⊂ V be a T -invariant subspace. Further-
more let {v1, . . . , vn} be a basis for V , where the first m < n vectors form a
basis for W . If A = (aij) is the matrix representation of T relative to this basis
for V , then a little thought should convince you that A must be of the block
matrix form

A =

[
B C
0 D

]

where aij = 0 for j ≤ m and i > m. This is because T (w) ∈ W and any
w ∈ W has components (w1, . . . , wm, 0, . . . , 0) relative to the above basis for V .
It should also be reasonably clear that B is just the matrix representation of
TW . The formal proof of this fact is given in our next theorem.

Theorem 5.11. Let W be a subspace of V and suppose T ∈ L(V ). Then W is
T -invariant if and only if T can be represented in the block matrix form

A =

[
B C
0 D

]

where B is a matrix representation of TW .

Proof. First suppose that W is T -invariant. Choose a basis {v1, . . . , vm} for W ,
and extend this to a basis {v1, . . . , vm, vm+1, . . . , vn} for V (see Theorem 1.10).
Then, since T (vi) ∈ W for each i = 1, . . . ,m there exist scalars bij such that

TW (vi) = T (vi) = v1b1i + · · ·+ vmbmi

for each i = 1, . . . ,m. In addition, since T (vi) ∈ V for each i = m + 1, . . . , n
there also exist scalars cij and dij such that

T (vi) = v1c1i + · · ·+ vmcmi + vm+1dm+1,i + · · ·+ vndni

for each i = m+ 1, . . . , n.
Because T takes the ith basis vector into the ith column of the matrix

representation of T (Theorem 4.9), we see that this representation is given by
an n× n matrix A of the form

A =




b11 · · · b1m c1 m+1 · · · c1n

b21 · · · b2m c2 m+1 · · · c2n

...
...

...
...

bm1 · · · bmm cm m+1 · · · cmn

0 0 dm+1 m+1 · · · dm+1 n

...
...

...
...

0 · · · 0 dn m+1 · · · dnn
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or, in block matrix form as

A =

[
B C
0 D

]

where B is an m×m matrix that represents TW , C is an m× (n−m) matrix,
and D is an (n−m)× (n−m) matrix.

Conversely, if A has the stated form and {v1, . . . , vn} is a basis for V , then
the subspace W of V defined by vectors of the form

w =

m∑

i=1

αivi

where each αi ∈ F will be invariant under T . Indeed, for each i = 1, . . . ,m we
have

T (vi) =

n∑

j=1

vjaji = v1b1i + · · ·+ vmbmi ∈W

and hence T (w) =
∑m

i=1 αiT (vi) ∈ W .

Corollary. Suppose T ∈ L(V ) and W is a T -invariant subspace of V . Then
the characteristic polynomial of TW divides the characteristic polynomial of T .

Proof. This is Exercise 5.5.2.

Recall from Theorem 1.18 that the orthogonal complement W⊥ of a set
W ⊂ V is a subspace of V . If W is a subspace of V and both W and W⊥ are
T -invariant then, since V = W ⊕W⊥ (Theorem 1.22), a little more thought
should convince you that the matrix representation of T will now be of the block
diagonal form

A =

[
B 0
0 D

]
.

We now proceed to discuss a variation of Theorem 5.11 in which we take into
account the case where V can be decomposed into a direct sum of subspaces.

Let us assume that V = W1 ⊕ · · · ⊕ Wr where each Wi is a T -invariant
subspace of V . Then we define the restriction of T to Wi to be the operator
Ti = TWi

= T |Wi. In other words, Ti(wi) = T (wi) ∈ Wi for any wi ∈ Wi.
Given any v ∈ V we have v = v1 + · · ·+ vr where vi ∈ Wi for each i = 1, . . . , r
and hence

T (v) =

r∑

i=1

T (vi) =

r∑

i=1

Ti(vi).

This shows that T is completely determined by the effect of each Ti on Wi. In
this case we call T the direct sum of the Ti and we write

T = T1 ⊕ · · · ⊕ Tr.
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We also say that T is reducible (or decomposable) into the operators Ti,
and the spaces Wi are said to reduce T , or to form a T -invariant direct sum

decomposition of V . In other words, T is reducible if there exists a basis for
V such that V = W1 ⊕ · · · ⊕Wr and each Wi is T -invariant.

For each i = 1, . . . , r we let Bi = {w(i)1, . . . , w(i)ni
} be a basis for Wi so

that B =
⋃r

i=1 Bi is a basis for V = W1 ⊕ · · · ⊕Wr (Theorem 1.15). Using a
somewhat cluttered notation, we let Ai = (a(i)

kj) be the matrix representation
of Ti with respect to the basis Bi (where k and j label the rows and columns
respectively of the matrix Ai). Therefore we see that

T (w(i)j) = Ti(w(i)j) =

ni∑

k=1

w(i)ka
(i)

kj

where i = 1, . . . , r and j = 1, . . . , ni. If A is the matrix representation of T with
respect to the basis B = {w(1)1, . . . , w(1)n1

, . . . , w(r)1, . . . , w(r)nr
} for V , then

since the ith column of A is just the image of the ith basis vector under T , we
see that A must be of the block diagonal form




A1 0 · · · 0
0 A2 · · · 0
...

...
...

0 0 · · · Ar


 .

If this is not immediately clear, then a minute’s thought should help, keeping
in mind that each Ai is an ni × ni matrix, and A is an n × n matrix where
n =

∑r
i=1 ni. It is also helpful to think of the elements of B as being numbered

from 1 to n rather than by the confusing double subscripts (also refer to the
proof of Theorem 5.11).

The matrix A is called the direct sum of the matrices A1, . . . , Ar and we
write

A = A1 ⊕ · · · ⊕Ar.

In this case we also say that the matrix A is reducible. Thus a representation
[T ] of T is reducible if there exists a basis for V in which [T ] is block diagonal.
(Some authors say that a representation is reducible if there exists a basis for
V in which the matrix of T is triangular. In this case, if there exists a basis for
V in which the matrix is block diagonal, then the representation is said to be
completely reducible. We shall not follow this convention.) This discussion
proves the following theorem.

Theorem 5.12. Suppose T ∈ L(V ) and assume V = W1⊕· · ·⊕Wr where each
Wi is T -invariant. If Ai is the matrix representation of Ti = T |Wi, then the
matrix representation of T is given by the matrix A = A1 ⊕ · · · ⊕Ar.
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Corollary. Suppose T ∈ L(V ) and V = W1 ⊕ · · · ⊕Wr where each Wi is T -
invariant. If ∆T (x) is the characteristic polynomial for T and ∆i(x) is the
characteristic polynomial for Ti = T |Wi, then ∆T (x) = ∆1(x) · · ·∆r(x).

Proof. See Exercise 5.5.3.

Example 5.8. Referring to Example 1.8, consider the space V = R3. We write
V = W1 ⊕W2 where W1 = R2 (the xy-plane) and W2 = R1 (the z-axis). Note
that W1 has basis vectors w(1)1 = (1, 0, 0) and w(1)2 = (0, 1, 0), and W2 has
basis vector w(2)1 = (0, 0, 1).

Now let T ∈ L(V ) be the linear operator that rotates any v ∈ V counter-
clockwise by an angle θ about the z-axis. Then clearly both W1 and W2 are T
invariant. Letting {ei} be the standard basis for R3, we have Ti = T |Wi and
consequently (see Section 4.5),

T1(e1) = T (e1) = (cos θ)e1 + (sin θ)e2

T1(e2) = T (e2) = −(sin θ)e1 + (cos θ)e2

T2(e3) = T (e3) = e3

Thus V = W1 ⊕W2 is a T -invariant direct sum decomposition of V , and T is
the direct sum of T1 and T2. It should be clear that the matrix representation
of T is given by 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1




which is just the direct sum of the matrix representations of T1 and T2.

Exercises

1. Suppose V = W1 ⊕W2 and let T1 : W1 → V and T2 : W2 → V be linear.
Show that T = T1 ⊕ T2 is linear.

2. Prove the corollary to Theorem 5.11.

3. Prove the corollary to Theorem 5.12.

4. A group (G, ⋄) is a nonempty set G together with a binary operation
called multiplication and denoted by ⋄ that obeys the following axioms:

(G1) a, b ∈ G implies a ⋄ b ∈ G (closure);
(G2) a, b, c ∈ G implies (a ⋄ b) ⋄ c = a ⋄ (b ⋄ c) (associativity);
(G3) There exists e ∈ G such that a ⋄ e = e ⋄ a = a for all a ∈ G

(identity);
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(G4) For each a ∈ G, there exists a−1 ∈ G such that a⋄a−1 = a−1⋄a = e
(inverse).

(As a side remark, a group is said to be abelian if it also has the property
that

(G5) a ⋄ b = b ⋄ a for all a, b ∈ G (commutativity).

In the case of abelian groups, the group multiplication operation is fre-
quently denoted by + and called addition. Also, there is no standard
notation for the group multiplication symbol, and our choice of ⋄ is com-
pletely arbitrary.)

If the number of elements in G is finite, then G is said to be a finite group.

We will simplify the notation by leaving out the group multiplication sym-
bol and assuming that it is understood for the particular group under
discussion.

Let V be a finite-dimensional inner product space over C, and let G be a
finite group. If for each g ∈ G there is a linear operator U(g) ∈ L(V ) such
that

U(g1)U(g2) = U(g1g2)

then the collection U(G) = {U(g)} is said to form a representation

of G. If W is a subspace of V with the property that U(g)(W ) ⊂ W
for all g ∈ G, then we say W is U(G)-invariant (or simply invariant).
Furthermore, we say that the representation U(G) is irreducible if there
is no nontrivial U(G)-invariant subspace (i.e., the only invariant subspaces
are {0} and V itself).

(a) Prove Schur’s lemma 1: Let U(G) be an irreducible representation
of G on V . If A ∈ L(V ) is such that AU(g) = U(g)A for all g ∈ G,
then A = λ1 where λ ∈ C. [Hint : Let λ be an eigenvalue of A with
corresponding eigenspace Vλ. Show that Vλ is U(G)-invariant.]

(b) If S ∈ L(V ) is nonsingular, show that U ′(G) = S−1U(G)S is also a
representation of G on V . (Two representations of G related by such
a similarity transformation are said to be equivalent.)

(c) Prove Schur’s lemma 2: Let U(G) and U ′(G) be two irreducible rep-
resentations of G on V and V ′ respectively, and suppose A ∈ L(V ′, V )
is such that AU ′(g) = U(g)A for all g ∈ G. Then either A = 0, or
else A is an isomorphism of V ′ onto V so that A−1 exists and U(G) is
equivalent to U ′(G). [Hint : Show that ImA is invariant under U(G),
and that KerA is invariant under U ′(G).]

5. Relative to the standard basis for R2, let T ∈ L(R2) be represented by

A =

[
1 −1
2 2

]
.

(a) Prove that the only T -invariant subspaces of R2 are {0} and R2 itself.
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(b) Suppose U ∈ L(C2) is also represented by A. Show that there exist
one-dimensional U -invariant subspaces.

6. Find all invariant subspaces over R of the operator represented by

A =

[
2 −5
1 −2

]
.

5.6 More on Diagonalization

If an operator T ∈ L(V ) is diagonalizable, then in a (suitably numbered) basis
of eigenvectors, its matrix representation A will take the form

A =




λ1Im1
0 0 · · · 0 0

0 λ2Im2
0 · · · 0 0

...
...

...
...

...

0 0 0 · · · 0 λrImr




where each λi is repeated mi times and Imi
is the mi×mi identity matrix. Note

that m1 + · · ·+mr = dimV = n. Thus the characteristic polynomial for T has
the form

∆T (x) = det(xI −A) = (x − λ1)
m1 · · · (x − λr)

mr

which is a product of (possibly repeated) linear factors. However, we stress
that just because the characteristic polynomial factors into a product of linear
terms does not mean that the operator is diagonalizable. We now investigate
the conditions that determine just when an operator will be diagonalizable.

Let us assume that T is diagonalizable, and hence that the characteristic
polynomial factors into linear terms (so that

∑r
i=1mi = dimV = n). For each

distinct eigenvalue λi, we have seen that the corresponding eigenspace Vλi
is just

Ker(T−λi1). Relative to a basis of eigenvectors, the matrix [T−λi1] is diagonal
with precisely mi zeros along its main diagonal (just look at the matrix A shown
above and subtract off λiI). From Theorem 4.12 we know that the rank of a
linear transformation is the same as the rank of its matrix representation, and
hence rank(T − λi1) is just the number of remaining nonzero rows in [T − λi1]
which is dimV −mi (see Theorem 2.6). But from the rank theorem (Theorem
4.6) we then see that

dimVλi
= dimKer(T − λi1) = dimV − rank(T − λi1) = n− (n−mi)

= mi.

In other words, if T is diagonalizable, then the dimension of each eigenspace Vλi

is just the multiplicity of the eigenvalue λi. Let us clarify this in terms of some
common terminology. In so doing, we will also repeat this conclusion from a
slightly different viewpoint.

Given a linear operator T ∈ L(V ), what we have called the multiplicity of
an eigenvalue λ is the largest positive integer m such that (x − λ)m divides
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the characteristic polynomial ∆T (x). This is properly called the algebraic

multiplicity of λ, in contrast to the geometric multiplicity which is the
number of linearly independent eigenvectors belonging to that eigenvalue. In
other words, the geometric multiplicity of λ is the dimension of Vλ. In general,
we will use the word “multiplicity” to mean the algebraic multiplicity. The set
of all eigenvalues of a linear operator T ∈ L(V ) is called the spectrum of T . If
some eigenvalue in the spectrum of T is of algebraic multiplicity > 1, then the
spectrum is said to be degenerate.

What we have just shown then is that if T is diagonalizable, then the al-
gebraic and geometric multiplicities of each eigenvalue must be the same. In
fact, we can arrive at this conclusion from a slightly different viewpoint that
also illustrates much of what we have already covered and, in addition, proves
the converse. First we prove a preliminary result.

If T ∈ L(V ) has an eigenvalue λ of algebraic multiplicity m, then it is not
hard for us to show that the dimension of the eigenspace Vλ must be less than
or equal to m. Note that since every element of Vλ is an eigenvector of T with
eigenvalue λ, the space Vλ must be a T -invariant subspace of V . Furthermore,
every basis for Vλ will obviously consist of eigenvectors corresponding to λ.

Theorem 5.13. Let T ∈ L(V ) have eigenvalue λ. Then the geometric multi-
plicity of λ is always less than or equal to its algebraic multiplicity. In other
words, if λ has algebraic multiplicity m, then dimVλ ≤ m.

Proof. Suppose dimVλ = r and let {v1, . . . , vr} be a basis for Vλ. By Theorem
1.10, we extend this to a basis {v1, . . . , vn} for V . Relative to this basis, T must
have the matrix representation (see Theorem 5.11)

[
λIr C
0 D

]
.

Applying Theorem 5.10 and the fact that the determinant of a diagonal matrix
is just the product of its (diagonal) elements, we see that the characteristic
polynomial ∆T (x) of T is given by

∆T (x) =

∣∣∣∣∣
(x− λ)Ir −C

0 xIn−r −D

∣∣∣∣∣

= det[(x− λ)Ir ] det(xIn−r −D)

= (x− λ)r det(xIn−r −D)

which shows that (x − λ)r divides ∆T (x). Since by definition m is the largest
positive integer such that (x− λ)m | ∆T (x), it follows that r ≤ m.

Note that a special case of this theorem arises when an eigenvalue is of
(algebraic) multiplicity 1. In this case, it then follows that the geometric and
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algebraic multiplicities are necessarily equal. We now proceed to show just when
this will be true in general. Recall that any polynomial over an algebraically
closed field will factor into linear terms (Theorem 5.4).

Theorem 5.14. Assume that T ∈ L(V ) has a characteristic polynomial that
factors into (not necessarily distinct) linear terms. Let T have distinct eigen-
values λ1, . . . , λr with (algebraic) multiplicities m1, . . . ,mr respectively, and let
dimVλi

= di. Then T is diagonalizable if and only if mi = di for each
i = 1, . . . , r.

Proof. Let dimV = n. We note that since the characteristic polynomial of T is
of degree n and factors into linear terms, it follows that m1 + · · ·+mr = n. We
first assume that T is diagonalizable. By definition, this means that V has a
basis consisting of n linearly independent eigenvectors of T . Since each of these
basis eigenvectors must belong to at least one of the eigenspaces Vλi

, it follows
that V = Vλ1

+ · · · + Vλr
and consequently n ≤ d1 + · · · + dr. From Theorem

5.13 we know that di ≤ mi for each i = 1, . . . , r and hence

n ≤ d1 + · · ·+ dr ≤ m1 + · · ·+mr = n

which implies d1 + · · ·+ dr = m1 + · · ·+mr or

(m1 − d1) + · · ·+ (mr − dr) = 0.

But each term in this equation is nonnegative (by Theorem 5.13), and hence we
must have mi = di for each i.

Conversely, suppose di = mi for each i = 1, . . . , r. For each i, we know that
any basis for Vλi

consists of linearly independent eigenvectors corresponding to
the eigenvalue λi, while by Theorem 5.7, we know that eigenvectors correspond-
ing to distinct eigenvalues are linearly independent. Therefore the union B of
the bases of {Vλi

} forms a linearly independent set of d1+· · ·+dr = m1+· · ·+mr

vectors. But m1 + · · · + mr = n = dim V , and hence B forms a basis for V .
Since this shows that V has a basis of eigenvectors of T , it follows by definition
that T must be diagonalizable.

Corollary 1. An operator T ∈ L(V ) is diagonalizable if and only if

V = W1 ⊕ · · · ⊕Wr

where W1, . . . ,Wr are the eigenspaces corresponding to the distinct eigenvalues
of T .

Proof. This is Exercise 5.6.1.
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Using Theorem 4.6, we see that the geometric multiplicity of an eigenvalue
λ is given by

dimVλ = dim(Ker(T − λ1)) = nul(T − λ1) = dimV − rank(T − λ1).

This observation together with Theorem 5.14 proves the next corollary.

Corollary 2. An operator T ∈ L(V ) whose characteristic polynomial factors
into linear terms is diagonalizable if and only if the algebraic multiplicity of λ
is equal to dim V − rank(T − λ1) for each eigenvalue λ.

Example 5.9. Consider the operator T ∈ L(R3) defined by

T (x, y, z) = (9x+ y, 9y, 7z).

Relative to the standard basis for R3, the matrix representation of T is given
by

A =




9 1 0
0 9 0
0 0 7




and hence the characteristic polynomial is

∆A(x) = det(A− λI) = (9− λ)2(7− λ)

which is a product of linear factors. However,

A− 9I =




0 1 0
0 0 0
0 0 −2




which clearly has rank equal to 2, and hence nul(A − 9I) = 3 − 2 = 1 which is
not the same as the algebraic multiplicity of λ = 9 (which is 2). Thus T is not
diagonalizable.

Example 5.10. Consider the operator on R3 defined by the following matrix:

A =




5 −6 −6
−1 4 2

3 −6 −4


 .

In order to avoid factoring a cubic polynomial, we compute the characteristic
polynomial ∆A(x) = det(xI−A) by applying Theorem 3.4 as follows (the reader
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should be able to see exactly what elementary row operations were performed
in each step).

∣∣∣∣∣∣

x− 5 6 6
1 x− 4 −2
−3 6 x+ 4

∣∣∣∣∣∣
=

∣∣∣∣∣∣

x− 2 0 −x+ 2
1 x− 4 −2
−3 6 x+ 4

∣∣∣∣∣∣

= (x − 2)

∣∣∣∣∣∣

1 0 −1
1 x− 4 −2
−3 6 x+ 4

∣∣∣∣∣∣

= (x − 2)

∣∣∣∣∣∣

1 0 −1
0 x− 4 −1
0 6 x+ 1

∣∣∣∣∣∣

= (x − 2)

∣∣∣∣
x− 4 −1

6 x+ 1

∣∣∣∣

= (x − 2)2(x− 1).

We now see that A has eigenvalue λ1 = 1 with (algebraic) multiplicity 1,
and eigenvalue λ2 = 2 with (algebraic) multiplicity 2. From Theorem 5.13 we
know that the algebraic and geometric multiplicities of λ1 are necessarily the
same and equal to 1, so we need only consider λ2. Observing that

A− 2I =




3 −6 −6
−1 2 2

3 −6 −6




it is obvious that rank(A − 2I) = 1, and hence nul(A − 2I) = 3 − 1 = 2. This
shows that A is indeed diagonalizable.

Let us now construct bases for the eigenspaces Wi = Vλi
. This means we

seek vectors v = (x, y, z) ∈ R3 such that (A − λiI)v = 0. This is easily solved
by the usual row reduction techniques as follows. For λ1 = 1 we have

A− I =




4 −6 −6
−1 3 2

3 −6 −5


→




1 0 −1
−1 3 2

3 −6 −5


→




1 0 −1
0 3 1
0 −6 −2




→




1 0 −1
0 3 1
0 0 0




which has the solutions x = z and y = −z/3 = −x/3. Therefore W1 is spanned
by the single eigenvector v1 = (3,−1, 3). As to λ2 = 2, we proceed in a similar
manner to obtain

A− 2I =




3 −6 −6
−1 2 2

3 −6 −6


→




1 −2 −2
0 0 0
0 0 0
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which implies that any vector (x, y, z) with x = 2y+2z will work. For example,
we can let x = 0 and y = 1 to obtain z = −1, and hence one basis vector for
W2 is given by v2 = (0, 1,−1). If we let x = 1 and y = 0, then we have z = 1/2
so that another independent basis vector for W2 is given by v3 = (2, 0, 1).

In terms of these eigenvectors, the transformation matrix P that diagonalizes
A is given by

P =




3 0 2
−1 1 0

3 −1 1




and we leave it to the reader to verify that AP = PD (i.e., P−1AP = D) where
D is the diagonal matrix with diagonal elements d11 = 1 and d22 = d33 = 2.

Exercises

1. Prove Corollary 1 of Theorem 5.14.

2. Show that two similar matrices A and B have the same eigenvalues, and
these eigenvalues have the same geometric multiplicities.

3. Let λ1, . . . , λr ∈ F be distinct, and let D ∈ Mn(F) be diagonal with a
characteristic polynomial of the form

∆D(x) = (x− λ1)
d1 · · · (x− λr)

dr .

Let V be the space of all n×n matrices B that commute with D, i.e., the
set of all B such that BD = DB. Prove dimV = d1

2 + · · ·+ dr
2.

4. Relative to the standard basis, let T ∈ L(R4) be represented by

A =




0 0 0 0
a 0 0 0
0 b 0 0
0 0 c 0


 .

Find conditions on a, b and c such that T is diagonalizable.

5. Determine whether or not each of the following matrices is diagonalizable.
If it is, find a nonsingular matrix P and a diagonal matrix D such that
P−1AP = D.

(a)




1 1 0
0 2 2
0 0 3


 (b)




7 −4 0
8 −5 0
6 −6 3


 (c)




0 0 1
1 0 −1
0 1 1




(d)



−1 −3 −9

0 5 18
0 −2 −7


 (e)




3 −1 −2
2 0 −2
2 −1 −1


 (f)



−1 1 0

0 5 0
4 −2 5
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(g)




3 1 1
2 4 2
−1 −1 1




6. Determine whether or not each of the following operators T ∈ L(R3) is
diagonalizable. If it is, find an eigenvector basis for R3 such that [T ] is
diagonal.

(a) T (x, y, z) = (−y, x, 3z).
(b) T (x, y, z) = (8x+ 2y − 2z, 3x+ 3y − z, 24x+ 8y − 6z).
(c) T (x, y, z) = (4x+ z, 2x+ 3y + 2z, x+ 4z).
(d) T (x, y, z) = (−2y − 3z, x+ 3y + 3z, z).

7. Suppose a matrix A is diagonalizable. Prove that Am is diagonalizable for
any positive integer m.

8. Summarize several of our results by proving the following theorem:

Let V be finite-dimensional, suppose T ∈ L(V ) has distinct eigenvalues
λ1, . . . , λr, and let Wi = Ker(T −λi1). Then the following are equivalent:

(a) T is diagonalizable.
(b) ∆T (x) = (x−λ1)

m1 · · · (x−λr)
mr and Wi is of dimension mi for each

i = 1, . . . , r.
(c) dimW1 + · · ·+ dimWr = dimV .

9. Let V3 be the space of real polynomials of degree at most 3, and let f ′ and
f ′′ denote the first and second derivatives of f ∈ V . Define T ∈ L(V3) by
T (f) = f ′ + f ′′. Decide whether or not T is diagonalizable and, if it is,
find a basis for V3 such that [T ] is diagonal.

10. (a) Let V2 be the space of real polynomials of degree at most 2, and define
T ∈ L(V2) by T (ax2 + bx+ c) = cx2 + bx+ a. Decide whether or not
T is diagonalizable and, if it is, find a basis for V2 such that [T ] is
diagonal.

(b) Repeat part (a) with T = (x+ 1)(d/dx). (See Exercise 5.3.13.)

5.7 Diagonalizing Normal Matrices

This section presents a simple and direct method of treating two important
results: the triangular form for complex matrices and the diagonalization of
normal matrices. To begin with, suppose we have a matrix A ∈ Mn(C). We
define the adjoint (or Hermitian adjoint) of A to be the matrix A† = A∗T . In
other words, the adjoint of A is its complex conjugate transpose. From Theorem
2.15(iv), it is easy to see that

(AB)† = B†A†.

If it so happens that A† = A, then A is said to be a Hermitian matrix.
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If a matrix U ∈ Mn(C) has the property that U † = U−1, then we say
U is unitary. Thus a matrix U is unitary if UU † = U †U = I. (Note that
by Theorem 2.20, it is only necessary to require either UU † = I or U †U =
I. However, the full definition is necessary in the case of infinite-dimensional
spaces.) We also see that the product of two unitary matrices U and V is unitary
since (UV )†UV = V †U †UV = V †IV = V †V = I. If a matrix N ∈ Mn(C) has
the property that it commutes with its adjoint, i.e., NN † = N †N , then N is
said to be a normal matrix. Note that Hermitian and unitary matrices are
automatically normal.

Example 5.11. Consider the matrix A ∈M2(C) given by

A =
1√
2

[
1 −1
i i

]
.

Then the adjoint of A is given by

A† =
1√
2

[
1 −i
−1 −i

]

and we leave it to the reader to verify that AA† = A†A = I, and hence show
that A is unitary.

A convenient property of the adjoint is this. If A ∈ Mn(C) and x, y ∈ Cn,
then Ax ∈ Cn also, so we may use the standard inner product on Cn (see
Example 1.9) to write (using A† = A∗T )

〈Ax, y〉 =

n∑

i=1

(Ax)∗i yi =

n∑

i=1

a∗ijx
∗
jyi =

n∑

i=1

x∗ja
†
jiyi

= 〈x,A†y〉. (5.2)

In the particular case of a unitary matrix, we see that

〈Ux,Uy〉 = 〈x, U †Uy〉 = 〈x, y〉

so that unitary transformations also preserve the angle between two vectors
(and hence maintains orthogonality as well). Choosing y = x we also see that

‖Ux‖2 = 〈Ux,Ux〉 = 〈x, U †Ux〉 = 〈x, Ix〉 = 〈x, x〉 = ‖x‖2

so that unitary transformations preserve lengths of vectors, i.e., they are really
just rotations in Cn.

It is well worth pointing out that in the case of a real matrix A ∈ Mn(F),
instead of the adjoint A† we have the transpose AT and equation (5.2) becomes

〈Ax, y〉 = 〈x,AT y〉
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or equivalently
〈ATx, y〉 = 〈x,Ay〉. (5.3)

We will use this below when we prove that a real symmetric matrix has all real
eigenvalues.

Note that since U ∈Mn(C), the rows Ui and columns U i of U are just vectors
in Cn. This means we can take their inner product relative to the standard inner
product on Cn. Writing out the relation UU † = I in terms of components, we
have

(UU †)ij =
n∑

k=1

uiku
†
kj =

n∑

k=1

uiku
∗
jk =

n∑

k=1

u∗jkuik = 〈Uj , Ui〉 = δij

and from U †U = I we see that

(U †U)ij =

n∑

k=1

u†ikukj =

n∑

k=1

u∗kiukj = 〈U i, U j〉 = δij .

In other words, a matrix is unitary if and only if its rows (or columns) each
form an orthonormal set. Note we have shown that if the rows (columns) of
U ∈Mn(C) form an orthonormal set, then so do the columns (rows), and either
of these is a sufficient condition for U to be unitary. For example, the reader
can easily verify that the matrix A in Example 5.11 satisfies these conditions.

It is also worth pointing out that Hermitian and unitary matrices have im-
portant analogues over the real number system. If A ∈ Mn(R) is Hermitian,
then A = A† = AT , and we say A is symmetric. If U ∈ Mn(R) is unitary,
then U−1 = U † = UT , and we say U is orthogonal. Repeating the above
calculations over R, it is easy to see that a real matrix is orthogonal if and only
if its rows (or columns) form an orthonormal set.

Let us summarize what we have shown so far in this section.

Theorem 5.15. The following conditions on a matrix U ∈Mn(C) are equiva-
lent:

(i) U is unitary.
(ii) The rows Ui of U form an orthonormal set.
(iii) The columns U i of U form an orthonormal set.

Note that the equivalence of (ii) and (iii) in this theorem means that the
rows of U form an orthonormal set if and only if the columns of U form an
orthonormal set. But the rows of U are just the columns of UT , and hence U
is unitary if and only if UT is unitary.

Corollary. The following conditions on a matrix A ∈Mn(R) are equivalent:
(i) A is orthogonal.
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(ii) The rows Ai of A form an orthonormal set.
(iii) The columns Ai of A form an orthonormal set.

Our next theorem details several useful properties of orthogonal and unitary
matrices.

Theorem 5.16. (i) If A is an orthogonal matrix, then detA = ±1.
(ii) If U is a unitary matrix, then |detU | = 1. Alternatively, detU = eiφ

for some real number φ.

Proof. (i) We have AAT = I, and hence (from Theorems 3.7 and 3.1)

1 = det I = det(AAT ) = (detA)(detAT ) = (detA)2

so that detA = ±1.

(ii) If UU † = I then, as above, we have

1 = det I = det(UU †) = (detU)(detU †) = (detU)(detUT )∗

= (detU)(detU)∗ = |detU |2 .

Since the absolute value is defined to be positive, this shows |detU | = 1 and
hence detU = eiφ for some real φ.

Example 5.12. Let us take another look at rotations in R2 as shown, for
example, in the figure below (see Section 4.5). Recall that if we have two bases
{ei} and {ēi}, then they are related by a transition matrix A = (aij) defined
by ēi =

∑
j ejaji. In addition, if X =

∑
xiei =

∑
x̄iēi, then xi =

∑
j aij x̄

j . If
both {ei} and {ēi} are orthonormal bases, then

〈ei, ēj〉 =
〈
ei,
∑

k

ekakj

〉
=
∑

k

akj〈ei, ek〉 =
∑

k

akjδik = aij .

Using the usual dot product on R2 as our inner product (see Section 1.5, Lemma
1.3) and referring to the figure below, we see that the elements aij are given by
(also see Section A.6 for the trigonometric identities)

a11 = e1 · ē1 = |e1| |ē1| cos θ = cos θ

a12 = e1 · ē2 = |e1| |ē2| cos(π/2 + θ) = − sin θ

a21 = e2 · ē1 = |e2| |ē1| cos(π/2− θ) = sin θ

a22 = e2 · ē2 = |e2| |ē2| cos θ = cos θ
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x1

x2

x̄1

x̄2

θ

θ X

Thus the matrix A is given by

(aij) =

[
cos θ − sin θ
sin θ cos θ

]
.

We leave it to the reader to compute directly and show ATA = AAT = I and
detA = +1.

Example 5.13. Referring to Example 5.12, we can show that any (real) 2× 2
orthogonal matrix with detA = +1 has the form

(aij) =

[
cos θ − sin θ
sin θ cos θ

]

for some θ ∈ R. To see this, suppose A has the form

[
a b
c d

]

where a, b, c, d ∈ R. Since A is orthogonal, its rows form an orthonormal set,
and hence we have

a2 + b2 = 1, c2 + d2 = 1, ac+ bd = 0, ad− bc = 1

where the last equation follows from detA = 1.
If a = 0, then the first of these equations yields b = ±1, the third then yields

d = 0, and the last yields −c = 1/b = ±1 which is equivalent to c = −b. In
other words, if a = 0, then A has either of the forms

[
0 1
−1 0

]
or

[
0 −1
1 0

]
.

The first of these is of the required form if we choose θ = −90◦ = −π/2, and
the second is of the required form if we choose θ = +90◦ = +π/2.

Now suppose that a 6= 0. From the third equation we have c = −bd/a, and
substituting this into the second equation, we find (a2 + b2)d2 = a2. Using the
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first equation, this becomes a2 = d2 or a = ±d. If a = −d, then the third
equation yields b = c, and hence the last equation yields −a2 − b2 = 1 which is
impossible. Therefore a = +d, the third equation then yields c = −b, and we
are left with [

a −c
c a

]

Since detA = a2 + c2 = 1, there exists a real number θ such that a = cos θ and
c = sin θ which gives us the desired form for A.

One of the most important and useful properties of matrices over C is that
they can always be put into triangular form by an appropriate transformation.
To show this, it will be helpful to recall from Section 2.5 that if A and B are
two matrices for which the product AB is defined, then the ith row of AB is
given by (AB)i = AiB and the ith column of AB is given by (AB)i = ABi.

Theorem 5.17 (Schur Canonical Form). If A ∈Mn(C), then there exists a
unitary matrix U ∈ Mn(C) such that U †AU is upper-triangular. Furthermore,
the diagonal entries of U †AU are just the eigenvalues of A.

Proof. The proof is by induction. If n = 1 there is nothing to prove, so we
assume the theorem holds for any square matrix of size n− 1 ≥ 1, and suppose
A is of size n. Since we are dealing with the algebraically closed field C, we know
that A has n (not necessarily distinct) eigenvalues (see Section 5.3). Let λ be

one of these eigenvalues, and denote the corresponding eigenvector by Ũ1. By
Theorem 1.10 we extend Ũ1 to a basis for Cn, and by the Gram-Schmidt process
(Theorem 1.21) we assume this basis is orthonormal. From our discussion above,

we see that this basis may be used as the columns of a unitary matrix Ũ with
Ũ1 as its first column. We then see that

(Ũ †AŨ)1 = Ũ †(AŨ)1 = Ũ †(AŨ1) = Ũ †(λŨ1) = λ(Ũ †Ũ1)

= λ(Ũ †Ũ)1 = λI1

and hence Ũ †AŨ has the form

Ũ †AŨ =




λ ∗ · · · ∗
0
...

0

B




where B ∈Mn−1(C) and the *’s are (in general) nonzero scalars.
By our induction hypothesis, we may choose a unitary matrixW ∈Mn−1(C)

such that W †BW is upper-triangular. Let V ∈ Mn(C) be a unitary matrix of
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the form

V =




1 0 · · · 0
0
...

0

W




and define the unitary matrix U = ŨV ∈Mn(C). Then

U †AU = (ŨV )†A(ŨV ) = V †(Ũ †AŨ)V

is upper-triangular since (in an obvious shorthand notation)

V †(Ũ †AŨ)V =

[
1 0
0 W †

] [
λ ∗
0 B

] [
1 0
0 W

]
=

[
1 0
0 W †

] [
λ ∗
0 BW

]

=

[
λ ∗
0 W †BW

]

and W †BW is upper-triangular by the induction hypothesis.
It is easy to see (using Theorem 3.5) that the roots of det(λI − U †AU) are

just the diagonal entries of U †AU because λI−U †AU is of the upper triangular
form 



λ− (U †AU)11 ∗ ∗
0 λ− (U †AU)22 ∗
...

...
. . . ∗

0 0 λ− (U †AU)nn




where the *’s are just some in general nonzero entries. But

det(λI − U †AU) = det[U †(λI −A)U ] = det(λI −A)

so that A and U †AU have the same eigenvalues.

Corollary. If A ∈Mn(R) has all its eigenvalues in R, then the matrix U defined
in Theorem 5.17 may be chosen to have all real entries.

Proof. If λ ∈ R is an eigenvalue of A, then A− λI is a real matrix with deter-
minant det(A − λI) = 0, and therefore the homogeneous system of equations

(A − λI)X = 0 has a real solution. Defining Ũ1 = X , we may now proceed as
in Theorem 5.17. The details are left to the reader (see Exercise 5.7.1).

We say that two matrices A, B ∈ Mn(C) are unitarily similar if there
exists a unitary matrix U such that B = U †AU = U−1AU . Since this defines
an equivalence relation on the set of all matrices in Mn(C), it is also common
to say that A and B are unitarily equivalent.



5.7. DIAGONALIZING NORMAL MATRICES 231

We leave it to the reader to show that if A and B are unitarily similar and A
is normal, then B is also normal (see Exercise 5.7.2). In particular, suppose U is
unitary and N is such that U †NU = D is diagonal. Since any diagonal matrix
is automatically normal, it follows that N must be normal also. In other words,
any matrix unitarily similar to a diagonal matrix is normal. We now show that
the converse is also true, i.e., that any normal matrix is unitarily similar to a
diagonal matrix. This extremely important result is the basis for many physical
applications in both classical and quantum physics.

To see this, suppose N is normal, and let U †NU = D be the Schur canonical
form of N . Then D is both upper-triangular and normal (since it is unitarily
similar to a normal matrix). We claim that the only such matrices are diagonal.
For, consider the (1, 1) elements ofDD† and D†D. From what we showed above,
we have

(DD†)11 = 〈D1, D1〉 = |d11|2 + |d12|2 + · · ·+ |d1n|2

and
(D†D)11 = 〈D1, D1〉 = |d11|2 + |d21|2 + · · ·+ |dn1|2 .

But D is upper-triangular so that d21 = · · · = dn1 = 0. By normality we must
have (DD†)11 = (D†D)11, and therefore d12 = · · · = d1n = 0 also. In other
words, with the possible exception of the (1, 1) entry, all entries in the first row
and column of D must be zero. In the same manner, we see that

(DD†)22 = 〈D2, D2〉 = |d21|2 + |d22|2 + · · ·+ |d2n|2

and
(D†D)22 = 〈D2, D2〉 = |d12|2 + |d22|2 + · · ·+ |dn2|2 .

Since the fact that D is upper-triangular means d32 = · · · = dn2 = 0 and we just
showed that d21 = d12 = 0, it again follows by normality that d23 = · · · = d2n =
0. Thus all entries in the second row and column with the possible exception of
the (2, 2) entry must be zero.

Continuing this procedure, it is clear that D must be diagonal as claimed.
In other words, an upper-triangular normal matrix is necessarily diagonal. This
discussion proves the following very important theorem.

Theorem 5.18. A matrix N ∈ Mn(C) is normal if and only if there exists a
unitary matrix U such that U †NU is diagonal.

Corollary. If A = (aij) ∈ Mn(R) is symmetric, then its eigenvalues are real
and there exists an orthogonal matrix S such that STAS is diagonal.

Proof. If the eigenvalues are real, then the rest of this corollary follows from the
corollary to Theorem 5.17 and the real analogue of the proof of Theorem 5.18.
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Now suppose A = AT so that aij = aji. If λ is an eigenvalue of A, then there
exists a (nonzero and not necessarily real) vector x ∈ Cn such that Ax = λx
and hence

〈x,Ax〉 = λ〈x, x〉 = λ ‖x‖2 .
On the other hand, using equation (5.3) we see that

〈x,Ax〉 = 〈ATx, x〉 = 〈x,AT x〉∗ = 〈x,Ax〉∗ = λ∗〈x, x〉∗ = λ∗ ‖x‖2 .

Subtracting these last two equations yields (λ− λ∗) ‖x‖2 = 0 and hence λ = λ∗

since ‖x‖ 6= 0 by definition.

Let us make some observations. Note that any basis relative to which a nor-
mal matrix N is diagonal is by definition a basis of eigenvectors. The unitary
transition matrix U that diagonalizes N has columns that are precisely these
eigenvectors, and since the columns of a unitary matrix are orthonormal, it fol-
lows that the eigenvector basis is in fact orthonormal. Of course, the analogous
result holds for a real symmetric matrix also.

In fact, in the next chapter we will show directly that the eigenvectors be-
longing to distinct eigenvalues of a normal operator are orthogonal.

Exercises

1. Finish the proof of the corollary to Theorem 5.17.

2. Show that if A,B ∈Mn(F) are unitarily similar and A is normal, then B
is also normal.

3. Suppose A, B ∈Mn(C) commute (i.e., AB = BA).

(a) Prove there exists a unitary matrix U such that U †AU and U †BU
are both upper-triangular. [Hint : Let Vλ ⊂ Cn be the eigenspace of
B corresponding to the eigenvalue λ. Show Vλ is invariant under A,
and hence show that A and B have a common eigenvector Ũ1. Now
proceed as in the proof of Theorem 5.17.]

(b) Show that if A and B are also normal, then there exists a unitary
matrix U such that U †AU and U †BU are diagonal.

4. Can every matrix A ∈ Mn(F) be written as a product of two unitary
matrices? Explain.

5. (a) Prove that if H is Hermitian, then detH is real.
(b) Is it the case that every square matrix A can be written as the product

of finitely many Hermitian matrices? Explain.

6. A matrix M is skew-Hermitian if M † = −M .

(a) Show skew-Hermitian matrices are normal.
(b) Show any square matrixA can be written as a sum of a skew-Hermitian

matrix and a Hermitian matrix.
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7. Describe all diagonal unitary matrices. Prove any n× n diagonal matrix
can be written as a finite sum of unitary diagonal matrices. [Hint : Do the
cases n = 1 and n = 2 to get the idea.]

8. Using the previous exercise, show any n×n normal matrix can be written
as the sum of finitely many unitary matrices.

9. If A is unitary, does this imply detAk = 1 for some integer k? What if A
is a real, unitary matrix (i.e., orthogonal)?

10. (a) Is an n × n matrix A that is similar (but not necessarily unitarily
similar) to a Hermitian matrix necessarily Hermitian?

(b) If A is similar to a normal matrix, is A necessarily normal?

11. If N is normal and Nx = λx, prove N †x = λ∗x. [Hint : First treat the
case where N is diagonal.]

12. Does the fact that A is similar to a diagonal matrix imply A is normal?

13. Discuss the following conjecture: If N1 and N2 are normal, then N1 +N2

is normal if and only if N1N
†
2 = N †

2N1 .

14. (a) If A ∈ Mn(R) is nonzero and skew-symmetric, show A can not have
any real eigenvalues.

(b) What can you say about the eigenvalues of such a matrix?
(c) What can you say about the rank of A?

5.8 The Singular Value Decomposition*

Throughout this section it will be very convenient for us to view a matrix as a
function of its rows or columns. For example, consider a matrix C ∈Mm×n(F)
given by

C =




c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...
cm1 cm2 · · · cmn


 .

This matrix has columns

Ci =




c1i

c2i

...
cmi




and we can write C as a row vector where each entry is a column:

C =
[
C1 C2 · · · Cn

]
.
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We also have the transpose

CT =




c11 c21 · · · cm1

c12 c22 · · · cm2

...
...

...
c1n c2n · · · cmn




which we can write as a column vector with entries that are rows, each of which
is the transpose of the corresponding column of C:

CT =




(C1)
T

(C2)
T

...

(Cn)
T



.

With this notation out of the way, let us turn to the problem at hand. We
know that not every matrix can be diagonalized, but we have seen (Theorem
5.18) that a normal matrix A ∈ Mn(C) can be diagonalized by finding its
eigenvalues and eigenvectors. But if A is not square, then it can’t even have
any eigenvectors (because it takes a vector of one dimension and maps it into
a vector of a different dimension). However, if A ∈ Mm×n(F), then A†A is a
Hermitan n×n matrix (i.e., (A†A)† = A†A so it’s normal) and it can therefore
be diagonalized. Note that A : Fn → Fm and A†A : Fn → Fn.

What can we say about the eigenvalues of A†A? Well, if A†Ax = λx then

〈x,A†Ax〉 = 〈Ax,Ax〉 = ‖Ax‖2 ≥ 0

so that
0 ≤ 〈x,A†Ax〉 = 〈x, λx〉 = λ〈x, x〉 = λ ‖x‖2 .

Since ‖x‖2 ≥ 0, it follows that λ ≥ 0, and hence the eigenvalues of A†A are not
only real, but are in fact also nonnegative.

Because of this, we can take the square roots of the eigenvalues λi, and we
define the singular values of A to be the numbers σi =

√
λi. (Some authors

define the singular values to be the square root of the nonzero eigenvalues only.)
It is conventional to list the singular values in decreasing order σ1 ≥ σ2 ≥ · · · ≥
σn where repeated roots are listed separately. The orthonormal eigenvectors of
A†A are called the singular vectors, and they form an orthonormal basis for
Fn.

Let the orthonormal eigenvectors of A†A be denoted by {v1, . . . , vn} so that
A†Avi = λivi. Then

〈Avi, Avj〉 = 〈vi, A
†Avj〉 = 〈vi, λjvj〉 = λj〈vi, vj〉 = λjδij

so the vectors Avi ∈ Fm are orthogonal and ‖Avi‖ = 〈Avi, Avi〉1/2 =
√
λi = σi.

If we let λ1, . . . , λr be the nonzero eigenvalues, then for i = 1, . . . , r we may
normalize the Avi by defining the vectors ui ∈ Fm as

ui =
1

σi
Avi, i = 1, . . . , r
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where now 〈ui, uj〉 = δij .
If r < m then the {ui} will not be a basis for Fm, and in this case we assume

that they are somehow extended to form a complete orthonormal basis for Fm.
However this is accomplished, we then define the matrix U ∈ Mm(F) to have
ui as its ith column. By Theorem 5.15 we know that U is unitary. We also use
the orthonormal eigenvectors vi ∈ Fn as the columns of another unitary matrix
V ∈Mn(F).

By construction, we have Avi = σiui for i = 1, . . . , r and Avi = 0 for
i = r + 1, . . . , n. Let us write the matrix AV as a function of its columns.
Recalling that the ith column of AV is given by AV i = Avi we have

AV = [ (AV )1 (AV )2 · · · (AV )n ] = [ Av1 Av2 · · · Avn ]

= [ σ1u1 σ2u2 · · · σrur 0 · · · 0 ].

Defining the block diagonal matrix Σ ∈Mm×n(F) by

Σ =




σ1 · · · 0 0
...

. . .
...

...
0 · · · σr 0
0 · · · 0 0


 (5.4)

where the 0’s are of the appropriate size, we may write the right side of the
equation for AV as (remember the ui are column vectors)

[ σ1u1 σ2u2 · · · σrur 0 · · · 0 ] = [ u1 u2 · · · um ]




σ1 · · · 0 0
...

. . .
...

...
0 · · · σr 0
0 · · · 0 0




or simply AV = UΣ. Finally, using the fact that V is unitary (so V −1 = V †),
we have proved the following important theorem, called the singular value

decomposition (abbreviated SVD).

Theorem 5.19. Let A ∈ Mm×n(F) have singular values σ1, . . . , σr > 0 and
σr+1, . . . , σn = 0. Then there exists a unitary matrix U ∈ Mm(F), a unitary
matrix V ∈Mn(F) and a matrix Σ ∈Mm×n(F) of the form shown in equation
(5.4) such that

A = UΣV †.

Corollary. Let A ∈ Mm×n(R) have singular values σ1, . . . , σr > 0 and
σr+1, . . . , σn = 0. Then there exists an orthogonal matrix U ∈ Mm(R), an
orthogonal matrix V ∈ Mn(R) and a matrix Σ ∈ Mm×n(R) of the form shown
in equation (5.4) such that

A = UΣV T .
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Proof. This follows exactly as in the theorem by using the corollaries to Theo-
rems 5.15 and 5.18.

Example 5.14. Let us find the SVD of the matrix

A =

[
1 1 0
0 0 1

]
.

In this case A ∈Mm×n(R), so we use the corollary to Theorem 5.19.
We have

ATA =




1 0
1 0
0 1



[

1 1 0
0 0 1

]
=




1 1 0
1 1 0
0 0 1


 .

To find the eigenvalues of ATA we solve

det(ATA− λI) =

∣∣∣∣∣∣

1− λ 1 0
1 1− λ 0
0 0 1− λ

∣∣∣∣∣∣
= (1 − λ)[(1 − λ)2 − 1]

= (λ− 2)(λ− 1)λ = 0

and therefore λ1 = 2, λ2 = 1 and λ3 = 0.
Now we find the corresponding eigenvectors x by solving (ATA−λiI)x = 0.

For λ1 = 2 we have


−1 1 0

1 −1 0
0 0 −1





x
y
z


 =




0
0
0




or x = y, z = 0 so that the normalized singular vector is

v1 =
1√
2




1
1
0


 .

For λ2 = 1 we have 


0 1 0
1 0 0
0 0 0





x
y
z


 =




0
0
0




or x = y = 0 with no restriction on z, so the normalized singular vector is

v2 =




0
0
1


 .

Finally, for λ3 = 0 we have



1 1 0
1 1 0
0 0 1





x
y
z


 =




0
0
0
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so that x = −y and z = 0 and the normalized singular vector is

v3 =
1√
2




1
−1

0


 .

Note that {v1, v2, v3} are orthonormal. The singular values are σ1 =√
2, σ2 = 1 and σ3 = 0 and the matrices V ∈ M3(R) and Σ ∈ M2×3(R) are

given by

V =




1/
√

2 0 1/
√

2

1/
√

2 0 −1/
√

2
0 1 0


 Σ =

[√
2 0 0

0 1 0

]
.

To find the matrix U ∈M2(R) we compute

u1 =
1

σ1
Av1 =

1√
2

[
1 1 0
0 0 1

]


1/
√

2

1/
√

2
0


 =

[
1
0

]

u2 =
1

σ2
Av2 =

1

1

[
1 1 0
0 0 1

]


0
0
1


 =

[
0
1

]

which are already an orthonormal basis for R2, and hence

U =

[
1 0
0 1

]
.

Putting this all together we have the SVD

A = UΣV T =

[
1 0
0 1

] [√
2 0 0

0 1 0

]


1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0




=

[
1 1 0
0 0 1

]
.

Example 5.15. Let us find the SVD of the matrix

A =




1 1
1 0
0 1


 .

We form

ATA =

[
1 1 0
1 0 1

]


1 1
1 0
0 1


 =

[
2 1
1 2

]
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and find the eigenvalues from

∣∣∣∣
2− λ 1

1 2− λ

∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0

so that λ1 = 3 and λ2 = 1. Therefore the singular values of A are σ1 =
√

3 and
σ2 = 1.

We next find the corresponding eigenvectors from (ATA − λiI)x = 0. For
λ1 = 3 we solve [

−1 1
1 −1

] [
x
y

]
=

[
0
0

]

so that x = y and the normalized singular vector is

v1 =
1√
2

[
1
1

]
.

For λ2 = 1 we have [
1 1
1 1

] [
x
y

]
=

[
0
0

]

so that x = −y and

v2 =
1√
2

[
1
−1

]
.

This gives us the matrices

V =
1√
2

[
1 1
1 −1

]
Σ =



√

3 0
0 1
0 0


 .

To find U we first calculate

u1 =
1

σ1
Av1 =

1√
6




1 1
1 0
0 1



[

1
1

]
=

1√
6




2
1
1




u2 =
1

σ2
Av2 =

1√
2




1 1
1 0
0 1



[

1
−1

]
=

1√
2




0
1
−1


 .

However, in this case we need another linearly independent vector u3 so that
we have a basis for R3. The easiest way is to simply note that by inspection
the standard basis vector e3 of R3 is fairly obviously independent of u1 and u2,
so we need only apply the Gram-Schmidt process to orthogonalize the three
vectors. Since u1 and u2 are already orthonormal to each other, we subtract off
the component of e3 in the direction of both of these and then normalize the
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result. In other words, using the standard inner product on R3 we have

e3 − 〈u1, e3〉u1 − 〈u2, e3〉u2 = e3 −
1√
6
u1 −

(−1)√
2
u2

=




0
0
1


− 1

6




2
1
1


+

1

2




0
1
−1


 =

1

3



−1

1
1




so normalizing this we obtain

u3 =
1√
3



−1

1
1


 .

The matrix U is now given by

U =




2/
√

6 0 −1/
√

3

1/
√

6 1/
√

2 1/
√

3

1/
√

6 −1/
√

2 1/
√

3




and the SVD is

A = UΣV T =
1√
2




2/
√

6 0 −1/
√

3

1/
√

6 1/
√

2 1/
√

3

1/
√

6 −1/
√

2 1/
√

3







√
3 0

0 1

0 0



[

1 1

1 −1

]

=




1 1
1 0
0 1


 .

One very interesting consequence of the SVD is that it helps visualize the
geometric effect of a linear transformation. (We will have more to say about
geometry and the determinant of a linear transformation in Section 8.7.) First
we need some basic results dealing with the rank of a matrix.

Theorem 5.20. Let A ∈ Mm×n(F) and let P ∈ Mm(F) and Q ∈ Mn(F) be
nonsingular. Then rank(PA) = rank(A) and rank(AQ) = rank(A).

Proof. If P is nonsingular, then from the corollary to Theorem 2.17 we have

rank(PA) ≤ min{rankA, rankP} = rank(A).

But P−1 is also nonsingular so the same corollary shows that

rank(A) = rank(P−1(PA)) ≤ rank(PA) ≤ rank(A)
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and this implies that rank(PA) = rank(A).
An exactly analogous argument using A = (AQ)Q−1 shows that rank(AQ) =

rank(A).

As an important application of this theorem, suppose we have a linear trans-
formation T with matrix representation A = [T ]e with respect to some basis
{ei}. If Ā = [T ]ē is its representation with respect to another basis {ēi}, then
we know that Ā = P−1AP where P is the nonsingular transition matrix from
the basis {ei} to the basis {ēi} (Theorem 4.15). Then from Theorem 5.20 we
see that

rank(P−1AP ) = rank(AP ) = rankA

and hence the rank of a linear transformation is independent of its representation
(which is to be expected).

In particular, if A is diagonalizable, then its diagonal form consists of its
eigenvalues along the diagonal, and hence the rank of A is just the number of
nonzero eigenvalues (which is the number of nonzero rows in what is the row
echelon form). This proves the next theorem.

Theorem 5.21. Let A ∈ Mn(F) be diagonalizable. Then rank(A) is just the
number of nonzero eigenvalues of A.

Before proving our next theorem, let us point out that given vectors X,Y ∈
Cn, their inner product can be written in the equivalent forms

〈X,Y 〉 =
n∑

i=1

x∗i yi = X∗TY = X†Y

where X∗TY = X†Y is the matrix product of a 1×n matrix X∗T with an n×1
matrix Y . In particular, we have

‖X‖2 = 〈X,X〉 = X†X.

Theorem 5.22. Let A ∈Mm×n(F). Then rank(A†A) = rank(A).

Proof. Since both A ∈ Mm×n(F) and A†A ∈ Mn(F) have the same number n
of columns, the rank theorem for matrices (Theorem 2.18) shows that

rankA+ dim(kerA) = n = rank(A†A) + dim(ker(A†A)).

Because of this, we need only show that dim(kerA) = dim(ker(A†A)).
So, if X ∈ kerA, then AX = 0 so that (A†A)X = A†(AX) = 0 and

therefore X ∈ ker(A†A), i.e., kerA ⊂ ker(A†A). On the other hand, suppose
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X ∈ ker(A†A) so that (A†A)X = 0. Since X,AX and (A†A)X are all vectors
in Fn, we can use the standard inner product on Cn to write

0 = 〈X, (A†A)X〉 = X†(A†A)X = (AX)
†
(AX) = ‖AX‖2 .

Therefore, the fact that the norm is positive definite (property (N1) in Theorem
1.17) implies AX = 0 so that X ∈ kerA, i.e., ker(A†A) ⊂ kerA. Therefore
kerA = ker(A†A) and it follows that dim(kerA) = dim(ker(A†A)) as required.

The following corollary is immediate.

Corollary. Let A ∈Mm×n(R). Then rank(ATA) = rank(A).

We are now ready to prove a number of propertiesof the SVD in the special
case of a matrix A ∈ Mm×n(R). Recall that the row space of A is denoted
by row(A), and the row rank by rr(A); the column space by col(A) with rank
cr(A); and the kernel (or null space) of A by ker(A).

Theorem 5.23. Let A ∈ Mm×n(R) have nonzero singular values σ1, . . . , σr

and singular value decomposition UΣV T . In other words, ATA has eigenvalues
σ2

1 ≥ · · · ≥ σ2
n and corresponding orthonormal eigenvectors v1, . . . , vn; and for

i = 1, . . . , r we have the orthonormal vectors ui = (1/σi)Avi which (if r < m)
are extended to form an orthonormal basis {u1, . . . , um} for Rm. Then

(i) rank(A) = r.
(ii) {u1, . . . , ur} is an orthonormal basis for col(A).
(iii) {ur+1, . . . , um} is an orthonormal basis for ker(AT ).
(iv) {vr+1, . . . , vn} is an orthonormal basis for ker(A).
(v) {v1, . . . , vr} is an orthonormal basis for row(A).

Proof. (i) It follows from Theorem 5.21 that rank(ATA) = r, and from Theorem
5.22 that rank(A) = rank(ATA).

Alternatively, since U and V are orthogonal (and hence nonsingular), we can
use Theorem 5.20 directly to see that rank(A) = rank(UΣV T ) = rank(UΣ) =
rank(Σ) = r.

(ii) As we have seen in Example 2.10, if A ∈ Mm×n(R) and X ∈ Rn, then
AX =

∑n
i=1 A

ixi is a linear combination of the columns ofA. In particular, each
Avi is a linear combination of the columns of A, so that for each i = 1, . . . , r
we see that ui = (1/σi)Avi is a linear combination of the columns of A and
hence is in the column space of A. Since {u1, . . . , ur} are orthonormal, they
are linearly independent (Theorem 1.19), and there are r = rank(A) = cr(A) of
them. Hence they form a basis for col(A).

(iii) By Theorem 1.22 we can write Rm = col(A)⊕(col(A))⊥. But {u1, . . . , um}
is an orthonormal basis for Rm while by part (ii) {u1, . . . , ur} is a basis for
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col(A). Therefore it must be that {ur+1, . . . , um} is a basis for (col(A))⊥, which
is just ker(AT ) by Theorem 2.19.

(iv) By construction of the SVD, we know that Avi = 0 for i = r+ 1, . . . , n.
Therefore vr+1, . . . , vn are all in ker(A). Furthermore, these n − r vectors are
linearly independent because they are orthonormal. By the rank theorem for
matrices (Theorem 2.18) we know that dim(kerA) = n− rank(A) = n− r, and
hence {vr+1, . . . , vn} must form an orthonormal basis for ker(A).

(v) By Theorem 1.22 again we can write Rn = ker(A) ⊕ (ker(A))⊥ where
{v1, . . . , vn} is an orthonormal basis for Rn and {vr+1, . . . , vn} is an orthonormal
basis for ker(A). But then {v1, . . . , vr} are all in (ker(A))⊥ which is of dimension
n− dim(ker(A)) = n− (n− r) = r. Since {v1, . . . , vr} are linearly independent
(they are orthonormal), they must be a basis for (ker(A))⊥, which is the same
as row(A) by Theorem 2.19 and the corollary to Theorem 1.22.

Now suppose we have a unit vector X ∈ Rn, and let us look at the effect
of A ∈ Mm×n(R) acting on X . Write the SVD of A in the usual manner as
A = UΣV T where r is the number of nonzero singular values of A. Expressing
U as a function of its columns and V T as a function of its rows, we have

AX = UΣV TX

=
[
u1 · · · um

]




σ1 · · · 0 0
...

. . .
...

...
0 · · · σr 0
0 · · · 0 0






vT
1
...
vT

n


X.

But each vT
i is a (row) vector in Rn and X is a column vector in Rn, so

V TX =



vT
1
...
vT

n


X =



vT
1 X
...

vT
nX




where now each vT
i X is just a scalar. In fact, since ‖X‖ = 1 and V is orthogonal,

we see that
∥∥V TX

∥∥2
= 〈V TX,V TX〉 = 〈X,V V TX〉 = 〈X,X〉 = 1

so that V TX is also a unit vector. Written out this says

(vT
1 X)2 + · · ·+ (vT

nX)2 = 1. (5.5)

Next we have

ΣV TX =




σ1 · · · 0 0
...

. . .
...

...
0 · · · σr 0
0 · · · 0 0







vT
1 X
...

vT
r X

vT
r+1X

...
vT

nX




=




σ1v
T
1 X
...

σrv
T
r X
0
...
0
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where again each σiv
T
i X is a scalar. Finally, we have

AX = UΣV TX =
[
u1 · · · ur ur+1 · · · um

]




σ1v
T
1 X
...

σrv
T
r X
0
...
0




or

AX = (σ1v
T
1 X)u1 + · · ·+ (σrv

T
r X)ur. (5.6)

Now we are ready to see how the linear transformation A acts on the unit
sphere in Rn.

Theorem 5.24. Let A ∈ Mm×n(R) have singular value decomposition UΣV T

as in the corollary to Theorem 5.19. Then {AX : X ∈ Rn, ‖X‖ = 1} is either
the surface of an ellipsoid in Rm if rank(A) = r = n, or a solid ellipsoid in Rm

if rank(A) = r < n.

Proof. Observe that A : Rn → Rm, and that rank(A) is the dimension of the
image of A. By Theorem 5.23(i), we know that rank(A) = r is the number of
nonzero singular values of A.

First, if rank(A) = r = n, then necessarily n ≤ m. And from equation (5.6)
we see that

AX = (σ1v
T
1 X)u1 + · · ·+ (σnv

T
nX)un := y1u1 + · · ·+ ynun ∈ Rm

where we have defined the scalars yi = σiv
T
i X . Since n ≤ m, let us define the

vector Y ∈ Rm by

Y =




y1
...
yn

0
...
0




.

Then we can write this last equation in the form AX = UY , and using the fact
that U is orthogonal we see that

‖AX‖2 = ‖UY ‖2 = ‖Y ‖2 = y1
2 + · · ·+ yn

2

= (σ1v
T
1 X)2 + · · ·+ (σnv

T
nX)2.
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But then using equation (5.5) we have

y1
2

σ1
2

+ · · ·+ yn
2

σn
2

= (vT
1 X)2 + · · ·+ (vT

nX)2 = 1

which is the equation of an ellipsoid in Rm. In other words, A takes a vector
X on the unit sphere in Rn and maps it to the vector UY in Rm, where the
vectors UY describe an ellipsoid (i.e., a surface in Rm).

Now suppose that rank(A) = r < n. From equation (5.6) again we now have

AX = y1u1 + · · ·+ yrur

so we define

Y =




y1
...
yr

0
...
0




and AX = UY with ‖AX‖2 = ‖Y ‖2 = y1
2 + · · ·+ yr

2 as in the first case. But
now, since r < n we have

y1
2

σ1
2

+ · · ·+ yr
2

σr
2

= (vT
1 X)2 + · · ·+ (vT

r X)2 ≤ (vT
1 X)2 + · · ·+ (vT

nX)2 = 1.

In other words,
y1

2

σ1
2

+ · · ·+ yr
2

σr
2
≤ 1

which is the equation of a solid ellipsoid in Rm.

Exercises

1. Find the SVD of each of the following matrices.

(a)

[
3
4

]
(b)

[
3 4

]
(c)




0 0
0 3
−2 0


 (d)




1 0
0 1
−2 2




(e)

[
2 0 1
0 2 0

]
(f)

[
2 1 0 −1
0 −1 1 1

]
(g)




1 −1 0
−1 2 −1

0 −1 1




2. Prove that if A ∈ Mn(F) is nonsingular, then the singular values of A−1

are the inverses of the singular values of A.



Chapter 6

Operators and

Diagonalization

6.1 The Adjoint Operator

Let V be finite-dimensional over C, and assume that V has an inner product
〈· , ·〉 defined on it. Thus for any X,Y ∈ V we have 〈X,Y 〉 ∈ C. For example,
with respect to the standard basis {ei} for Cn (which is the same as the standard
basis for Rn), we have X =

∑
xiei and hence

〈X,Y 〉 =
〈∑

i

xiei,
∑

j

yjej

〉
=
∑

i,j

xi∗yj〈ei, ej〉 =
∑

i,j

xi∗yjδij

=
∑

i

xi∗yi = X∗TY.

In particular, for any T ∈ L(V ) and X ∈ V we have the vector TX ∈ V , and
hence it is meaningful to write expressions of the form 〈TX, Y 〉 and 〈X,TY 〉.

Since we are dealing with finite-dimensional vector spaces, the Gram-Schmidt
process (Theorem 1.21) guarantees we can always work with an orthonormal ba-
sis. Hence, let us consider a complex inner product space V with basis {ei} such
that 〈ei, ej〉 = δij . Then we see that for any u =

∑
ujej ∈ V we have

〈ei, u〉 =
〈
ei,
∑

j

ujej

〉
=
∑

j

uj〈ei, ej〉 =
∑

j

ujδij = ui

and therefore
u =

∑

i

〈ei, u〉ei.

Now consider the vector Tej. Applying this last equation to the vector
u = Tej we have

Tej =
∑

i

〈ei, T ej〉ei.

245
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But this is precisely the definition of the matrix A = (aij) that represents T
relative to the basis {ei}. In other words, this extremely important result shows
that the matrix elements aij of the operator T ∈ L(V ) are given by

aij = 〈ei, T ej〉.

It is important to note however, that this definition depended on the use of
an orthonormal basis for V . To see the self-consistency of this definition, we go
back to our original definition of (aij) as Tej =

∑
k ekakj . Taking the scalar

product of both sides of this equation with ei yields (using the orthonormality
of the ei)

〈ei, T ej〉 =
〈
ei,
∑

k

ekakj

〉
=
∑

k

akj〈ei, ek〉 =
∑

k

akjδik = aij .

Recall from Section 4.1 that the dual vector space V ∗ = L(V,F) : V → F
is defined to be the space of linear functionals on V . In other words, if φ ∈ V ∗,
then for every u, v ∈ V and a, b ∈ F we have

φ(au+ bv) = aφ(u) + bφ(v) ∈ F .

We now prove a very important result that is the basis for the definition of the
operator adjoint.

Theorem 6.1. Let V be a finite-dimensional inner product space over C. Then,
given any linear functional L on V , there exists a unique u ∈ V such that
Lv = 〈u, v〉 for all v ∈ V .

Proof. Let {ei} be an orthonormal basis for V and define u =
∑

i(Lei)
∗ei. Now

define the linear functional Lu on V by Luv = 〈u, v〉 for every v ∈ V . Then, in
particular, we have

Luei = 〈u, ei〉 =
〈∑

j

(Lej)
∗ej , ei

〉
=
∑

j

Lej〈ej , ei〉 =
∑

j

Lejδji = Lei.

Since L and Lu agree on a basis for V , they must agree on any v ∈ V , and
hence L = Lu = 〈u, ·〉.

As to the uniqueness of the vector u, suppose u′ ∈ V has the property that
Lv = 〈u′, v〉 for every v ∈ V . Then Lv = 〈u, v〉 = 〈u′, v〉 so that 〈u− u′, v〉 = 0.
Since v was arbitrary we may choose v = u−u′. Then 〈u−u′, u−u′〉 = 0 which
implies (since the inner product is positive definite) u− u′ = 0 or u = u′.

The importance of finite-dimensionality in this theorem is shown by the
following example.
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Example 6.1. Let V = R[x] be the (infinite-dimensional) space of all polyno-
mials over R, and define an inner product on V by

〈f, g〉 =

∫ 1

0

f(x)g(x) dx

for every f, g ∈ V . We will give an example of a linear functional L on V
for which there does not exist a polynomial h ∈ V with the property that
Lf = 〈h, f〉 for all f ∈ V .

To show this, define the nonzero linear functional L by

Lf = f(0).

(L is nonzero since, e.g., L(a+ x) = a.) Now suppose there exists a polynomial
h ∈ V such that Lf = f(0) = 〈h, f〉 for every f ∈ V . Then, in particular, we
have

L(xf) = 0f(0) = 0 = 〈h, xf〉
for every f ∈ V . Choosing f = xh we see that

0 = 〈h, x2h〉 =
∫ 1

0

x2h2 dx.

Since the integrand is strictly positive, this forces h to be the zero polynomial.
Thus we are left with Lf = 〈h, f〉 = 〈0, f〉 = 0 for every f ∈ V , and hence
L = 0. But this contradicts the fact that L 6= 0, and hence no such polynomial
h can exist.

Note the fact that V is infinite-dimensional is required when we choose
f = xh. The reason for this is that if V consisted of all polynomials of degree
less than or equal to some positive integer N , then f = xh could have degree
greater than N .

Now consider an operator T ∈ L(V ), and let u be an arbitrary element of
V . Then the mapping Lu : V → C defined by Luv = 〈u, T v〉 for every v ∈ V is
a linear functional on V . Applying Theorem 6.1, we see there exists a unique
u′ ∈ V such that 〈u, T v〉 = Luv = 〈u′, v〉 for every v ∈ V . We now define the
mapping T † : V → V by T †u = u′. In other words, we define the adjoint T † of
an operator T ∈ L(V ) by

〈T †u, v〉 = 〈u, T v〉
for all u, v ∈ V . The mapping T † is unique because u′ is unique for a given
u. Thus, if T̃ †u = u′ = T †u, then (T̃ † − T †)u = 0 for every u ∈ V , and hence

T̃ † − T † = 0 or T̃ † = T †.
Note further that

〈Tu, v〉 = 〈v, Tu〉∗ = 〈T †v, u〉∗ = 〈u, T †v〉.
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However, it follows from the definition that 〈u, T †v〉 = 〈T ††u, v〉. Therefore the
uniqueness of the adjoint implies T †† = T .

Let us show the map T † is linear. For all u1, u2, v ∈ V and a, b ∈ C we have

〈T †(au1 + bu2), v〉 = 〈au1 + bu2, T v〉
= a∗〈u1, T v〉+ b∗〈u2, T v〉
= a∗〈T †u1, v〉+ b∗〈T †u2, v〉
= 〈aT †u1, v〉+ 〈bT †u2, v〉
= 〈aT †u1 + bT †u2, v〉.

Since this is true for every v ∈ V , we must have

T †(au1 + bu2) = aT †u1 + bT †u2.

Thus T † is linear and T † ∈ L(V ).
If {ei} is an orthonormal basis for V , then the matrix elements of T are

given by aij = 〈ei, T ej〉. Similarly, the matrix elements bij of T † are related to
those of T because

bij = 〈ei, T
†ej〉 = 〈Tei, ej〉 = 〈ej , T ei〉∗ = a∗ji.

In other words, if A is the matrix representation of T relative to the orthonormal
basis {ei}, then A∗T is the matrix representation of T †. This explains the symbol
and terminology used for the Hermitian adjoint. Note that if V is a real vector
space, then the matrix representation of T † is simply AT , and we may denote
the corresponding operator by T T .

We summarize this discussion in the following theorem, which is valid only in
finite-dimensional vector spaces. (It is also worth pointing out that T † depends
on the particular inner product defined on V .)

Theorem 6.2. Let T be a linear operator on a finite-dimensional complex inner
product space V . Then there exists a unique linear operator T † on V defined by
〈T †u, v〉 = 〈u, T v〉 for all u, v ∈ V . Furthermore, if A is the matrix represen-
tation of T relative to an orthonormal basis {ei}, then A† = A∗T is the matrix
representation of T † relative to this same basis. If V is a real space, then the
matrix representation of T † is simply AT .

Example 6.2. Let us give an example that shows the importance of finite-
dimensionality in defining an adjoint operator. Consider the space V = R[x] of
all polynomials over R, and let the inner product be as in Example 6.1. Define
the differentiation operator D ∈ L(V ) by Df = df/dx. We show there exists
no adjoint operator D† that satisfies 〈Df, g〉 = 〈f,D†g〉.
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Using 〈Df, g〉 = 〈f,D†g〉, we integrate by parts to obtain

〈f,D†g〉 = 〈Df, g〉 =
∫ 1

0

(Df)g dx =

∫ 1

0

[D(fg)− fDg] dx

= (fg)(1)− (fg)(0)− 〈f,Dg〉.

Rearranging, this general result may be written as

〈f, (D +D†)g〉 = (fg)(1)− (fg)(0).

We now let f = x2(1− x)2p for any p ∈ V . Then f(1) = f(0) = 0 so we are left
with

0 = 〈f, (D +D†)g〉 =
∫ 1

0

x2(1− x2)p(D +D†)g dx

= 〈x2(1 − x)2(D +D†)g, p〉.

Since this is true for every p ∈ V , it follows that x2(1− x)2(D+D†)g = 0. But
x2(1−x)2 > 0 except at the endpoints, and hence we must have (D+D†)g = 0
for all g ∈ V , and thus D + D† = 0. However, the above general result then
yields

0 = 〈f, (D +D†)g〉 = (fg)(1)− (fg)(0)

which is certainly not true for every f, g ∈ V . Hence D† must not exist.
We leave it to the reader to find where the infinite-dimensionality of V = R[x]

enters into this example.

While this example shows that not every operator on an infinite-dimensional
space has an adjoint, there are in fact some operators on some infinite-dimensional
spaces that do indeed have an adjoint. A particular example of this is given in
Exercise 6.2.3. In fact, the famous Riesz representation theorem asserts that
any continuous linear functional on a Hilbert space does indeed have an ad-
joint. While this fact should be well known to anyone who has studied quantum
mechanics, its development is beyond the scope of this text.

An operator T ∈ L(V ) is said to be Hermitian (or self-adjoint) if T † = T .
The elementary properties of the adjoint operator T † are given in the following
theorem. Note that if V is a real vector space, then the properties of the matrix
representing an adjoint operator simply reduce to those of the transpose. Hence,
a real Hermitian operator is represented by a (real) symmetric matrix.

Theorem 6.3. Suppose S, T ∈ L(V ) and c ∈ C. Then
(i) (S + T )† = S† + T †.
(ii) (cT )† = c∗T †.
(iii) (ST )† = T †S†.
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(iv) T †† = (T †)† = T .
(v) I† = I and 0† = 0.
(vi) (T †)−1 = (T−1)†.

Proof. Let u, v ∈ V be arbitrary. Then, from the definitions, we have

(i) 〈(S + T )†u, v〉 = 〈u, (S + T )v〉 = 〈u, Sv + Tv〉 = 〈u, Sv〉+ 〈u, T v〉
= 〈S†u, v〉+ 〈T †u, v〉 = 〈(S† + T †)u, v〉 .

(ii) 〈(cT )†u, v〉 = 〈u, cT v〉 = c〈u, T v〉 = c〈T †u, v〉 = 〈c∗T †u, v〉 .

(iii) 〈(ST )†u, v〉 = 〈u, (ST )v〉 = 〈u, S(Tv)〉 = 〈S†u, T v〉
= 〈T †(S†u), v〉 = 〈(T †S†)u, v〉 .

(iv) This was shown in the discussion preceding Theorem 6.2.

(v) 〈Iu, v〉 = 〈u, v〉 = 〈u, Iv〉 = 〈I†u, v〉.
〈0u, v〉 = 〈0, v〉 = 0 = 〈u, 0v〉 = 〈0†u, v〉.

(vi) I = I† = (TT−1)† = (T−1)†T † so that (T−1)† = (T †)−1.

The proof is completed by noting that the adjoint and inverse operators are
unique.

Corollary. If T ∈ L(V ) is nonsingular, then so is T †.

Proof. This follows from Theorems 6.3(vi) and 4.8.

We now group together several other useful properties of operators for easy
reference.

Theorem 6.4. (i) Let V be an inner product space over either R or C, let
T ∈ L(V ), and suppose 〈u, T v〉 = 0 for all u, v ∈ V . Then T = 0.

(ii) Let V be an inner product space over C, let T ∈ L(V ), and suppose
〈u, Tu〉 = 0 for all u ∈ V . Then T = 0.

(iii) Let V be a real inner product space, let T ∈ L(V ) be Hermitian, and
suppose 〈u, Tu〉 = 0 for all u ∈ V . Then T = 0.

Proof. (i) Let u = Tv. Then, by definition of the inner product, we see that
〈Tv, T v〉 = 0 implies Tv = 0 for all v ∈ V which implies T = 0.

(ii) For any u, v ∈ V we have (by hypothesis)

0 = 〈u + v, T (u+ v)〉
= 〈u, Tu〉+ 〈u, T v〉+ 〈v, Tu〉+ 〈v, T v〉
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= 0 + 〈u, T v〉+ 〈v, Tu〉+ 0

= 〈u, T v〉+ 〈v, Tu〉 (*)

Since v is arbitrary, we may replace it with iv to obtain

0 = i〈u, T v〉 − i〈v, Tu〉.

Dividing this by i and adding to (*) results in 0 = 〈u, T v〉 for any u, v ∈ V . By
(i) this implies T = 0.

(iii) For any u, v ∈ V we have 〈u + v, T (u + v)〉 = 0 which also yields (*).
Therefore, using (*), the fact that T † = T , and the fact that V is real, we obtain

0 = 〈T †u, v〉+ 〈v, Tu〉 = 〈Tu, v〉+ 〈v, Tu〉 = 〈v, Tu〉+ 〈v, Tu〉
= 2〈v, Tu〉.

Since this holds for any u, v ∈ V we have T = 0 by (i). (Note that in this
particular case, T † = T T .)

Exercises

1. Suppose S, T ∈ L(V ).

(a) If S and T are Hermitian, show ST and TS are Hermitian if and only
if [S, T ] = ST − TS = 0.

(b) If T is Hermitian, show S†TS is Hermitian for all S.
(c) If S is nonsingular and S†TS is Hermitian, show T is Hermitian.

2. Consider V = Mn(C) with the inner product 〈A,B〉 = tr(B†A). For
each M ∈ V , define the operator TM ∈ L(V ) by TM (A) = MA. Show
(TM )† = TM† .

3. Consider the space V = C[x]. If f =
∑
aix

i ∈ V , we define the complex
conjugate of f to be the polynomial f∗ =

∑
a∗i x

i ∈ V . In other words, if
t ∈ R, then f∗(t) = (f(t))∗. We define an inner product on V by

〈f, g〉 =
∫ 1

0

f(t)∗g(t) dt.

For each f ∈ V , define the operator Tf ∈ L(V ) by Tf(g) = fg. Show
(Tf )† = Tf∗ .

4. Let V be the space of all real polynomials of degree ≤ 3, and define an
inner product on V by

〈f, g〉 =
∫ 1

0

f(x)g(x) dx.

For any t ∈ R, find a polynomial ht ∈ V such that 〈ht, f〉 = f(t) for all
f ∈ V .
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5. If V is as in the previous exercise and D is the usual differentiation oper-
ator on V , find D†.

6. Let V = C2 with the standard inner product.

(a) Define T ∈ L(V ) by Te1 = (1,−2), Te2 = (i,−1). If v = (z1, z2), find
T †v.

(b) Define T ∈ L(V ) by Te1 = (1 + i, 2), Te2 = (i, i). Find the matrix
representation of T † relative to the usual basis for V . Is it true that
[T, T †] = 0?

7. Let V be a finite-dimensional inner product space and suppose T ∈ L(V ).
Show ImT † = (KerT )⊥.

8. Let V be a finite-dimensional inner product space, and suppose E ∈ L(V )
is idempotent, i.e., E2 = E. Prove E† = E if and only if [E,E†] = 0.

9. For each of the following inner product spaces V and L ∈ V ∗, find a vector
u ∈ V such that Lv = 〈u, v〉 for all v ∈ V :

(a) V = R3 and L(x, y, z) = x− 2y + 4z.
(b) V = C2 and L(z1, z2) = z1 − z2.
(c) V is the space of all real polynomials of degree ≤ 2 with inner product

as in Exercise 6.2.4, and Lf = f(0) + Df(1). (Here D is the usual
differentiation operator.)

10. (a) Let V = R2 and define T ∈ L(V ) by T (x, y) = (2x+ y, x− 3y). Find
T †(3, 5).

(b) Let V = C2 and define T ∈ L(V ) by T (z1, z2) = (2z1 + iz2, (1− i)z1).
Find T †(3− i, 1 + i2).

(c) Let V be as in Exercise 6.2.9(c), and define T ∈ L(V ) by Tf =
3f +Df . Find T †f where f = 3x2 − x+ 4.

6.2 Normal Operators

Let V be a complex inner product space with the induced norm. Another
important class of operators U ∈ L(V ) is that for which ‖Uv‖ = ‖v‖ for all
v ∈ V . Such operators are called isometric because they preserve the length
of the vector v. Furthermore, for any v, w ∈ V we see that

‖Uv − Uw‖ = ‖U(v − w)‖ = ‖v − w‖

so that U preserves distances as well. This is sometimes described by saying
that U is an isometry. (Note that in Section 4.5 when we discussed isometries,
there was no requirement that the function be linear.)

If we write out the norm as an inner product and assume that the adjoint
operator exists, we see that an isometric operator satisfies

〈v, v〉 = 〈Uv, Uv〉 = 〈v, (U †U)v〉
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and hence 〈v, (U †U − 1)v〉 = 0 for any v ∈ V . But then from Theorem 6.4(ii))
it follows that

U †U = 1.

In fact, this is sometimes taken as the definition of an isometric operator. Note
this applies equally well to an infinite-dimensional space.

If V is finite-dimensional, then (by Theorems 2.20 and 4.11) it follows that
U † = U−1, and hence

U †U = UU † = 1.

Any operator that satisfies either U †U = UU † = 1 or U † = U−1 is said to be
unitary. It is clear that a unitary operator is necessarily isometric. If V is
simply a real space, then unitary operators are called orthogonal.

Because of the importance of isometric and unitary operators in both math-
ematics and physics, it is worth arriving at both of these definitions from a
slightly different viewpoint that also aids in our understanding of these opera-
tors.

Let V be a complex vector space with an inner product defined on it. We
say that an operator U is unitary if ‖Uv‖ = ‖v‖ for all v ∈ V and, in addition,
it is a mapping of V onto itself. Since ‖Uv‖ = ‖v‖, we see that Uv = 0 if and
only if v = 0, and hence KerU = {0}. Therefore U is one-to-one and U−1 exists
(Theorem 4.5). Since U is surjective, the inverse is defined on all of V also.
Note there has been no mention of finite-dimensionality. This was avoided by
requiring that the mapping be surjective.

Starting from ‖Uv‖ = ‖v‖, we may write 〈v, (U †U)v〉 = 〈v, v〉. As we
did in the proof of Theorem 6.4, if we first substitute v = v1 + v2 and then
v = v1 + iv2, divide the second of these equations by i, add to the first, and use
〈vi, (U

†U)vi〉 = 〈vi, vi〉, we find 〈v1, (U †U)v2〉 = 〈v1, v2〉 or 〈v1, (U †U−1)v2〉 = 0.
Since this holds for all v1, v2 ∈ V , it follows from Theorem 6.4(i) that U †U = 1.
If we now multiply this equation from the left by U we have UU †U = U , and
hence (UU †)(Uv) = Uv for all v ∈ V . But as v varies over all of V , so does
Uv since U is surjective. We then define v′ = Uv so that (UU †)v′ = v′ for all
v′ ∈ V . This shows U †U = 1 implies UU † = 1. What we have just done then,
is show that a surjective norm-preserving operator U has the property that
U †U = UU † = 1. It is important to emphasize that this approach is equally
valid in infinite-dimensional spaces.

We now define an isometric operator Ω to be an operator defined on all
of V with the property that ‖Ωv‖ = ‖v‖ for all v ∈ V . This differs from a
unitary operator in that we do not require that Ω also be surjective. Again, the
requirement that Ω preserve the norm tells us that Ω has an inverse (since it
must be one-to-one), but this inverse is not necessarily defined on the whole of
V . For example, let {ei} be an orthonormal basis for V , and define the “shift
operator” Ω by

Ω(ei) = ei+1.

This Ω is clearly defined on all of V , but the image of Ω is not all of V since it
does not include the vector e1. Therefore Ω−1 is not defined on e1.
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Exactly as we did for unitary operators, we can show Ω†Ω = 1 for an isomet-
ric operator Ω. If V happens to be finite-dimensional, then obviously ΩΩ† = 1.
Thus, on a finite-dimensional space, an isometric operator is also unitary.

Finally, let us show an interesting relationship between the inverse Ω−1 of an
isometric operator and its adjoint Ω†. From Ω†Ω = 1, we may write Ω†(Ωv) = v
for every v ∈ V . If we define Ωv = v′, then for every v′ ∈ ImΩ we have
v = Ω−1v′, and hence

Ω†v′ = Ω−1v′ for v′ ∈ ImΩ.

On the other hand, if w′ ∈ (Im Ω)⊥, then automatically 〈w′,Ωv〉 = 0 for every
v ∈ V . Therefore this may be written as 〈Ω†w′, v〉 = 0 for every v ∈ V , and
hence (choose v = Ω†w′)

Ω†w′ = 0 for w′ ∈ (ImΩ)⊥.

In other words, we have

Ω† =

{
Ω−1 on ImΩ

0 on (ImΩ)⊥
.

For instance, using our earlier example of the shift operator, we see that
〈e1, ei〉 = 0 for i 6= 1, and hence e1 ∈ (ImΩ)⊥. Therefore Ω†(e1) = 0 so we
clearly can not have ΩΩ† = 1.

Our next theorem contains the operator versions of what was shown for
matrices in Section 5.7.

Theorem 6.5. Let V be a complex finite-dimensional inner product space. Then
the following conditions on an operator U ∈ L(V ) are equivalent:

(i) U † = U−1.
(ii) 〈Uv, Uw〉 = 〈v, w〉 for all v, w ∈ V .
(iii) ‖Uv‖ = ‖v‖ .

Proof. (i) ⇒ (ii): 〈Uv, Uw〉 = 〈v, (U †U)w〉 = 〈v, Iw〉 = 〈v, w〉.
(ii) ⇒ (iii): ‖Uv‖ = 〈Uv, Uv〉1/2 = 〈v, v〉1/2 = ‖v‖.
(iii)⇒ (i): 〈v, (U †U)v〉 = 〈Uv, Uv〉 = 〈v, v〉 = 〈v, Iv〉, and therefore 〈v, (U †U−

I)v〉 = 0. Hence (by Theorem 6.4(ii)) we must have U †U = I, and therefore
U † = U−1 (since V is finite-dimensional).

From part (iii) of this theorem we see U preserves the length of any vector.
In particular, U preserves the length of a unit vector, hence the designation
“unitary.” Note also that if v and w are orthogonal, then 〈v, w〉 = 0 and hence
〈Uv, Uw〉 = 〈v, w〉 = 0. Thus U maintains orthogonality as well.

Condition (ii) of this theorem is sometimes described by saying that a unitary
transformation preserves inner products. In general, we say that a linear
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transformation (i.e., a vector space homomorphism) T of an inner product space
V onto an inner product space W (over the same field) is an inner product

space isomorphism of V ontoW if it also preserves inner products. Therefore,
one may define a unitary operator as an inner product space isomorphism.

It is also worth commenting on the case of unitary operators defined on a
real vector space. Since in this case the adjoint reduces to the transpose, we
have U † = UT = U−1. If V is a real vector space, then an operator T = L(V )
that satisfies T T = T−1 is said to be an orthogonal transformation. It should
be clear that Theorem 6.5 also applies to real vector spaces if we replace the
adjoint by the transpose.

From Theorem 6.2 we see that a complex matrix A represents a unitary
operator relative to an orthonormal basis if and only if A† = A−1. We therefore
say that a complex matrix A is a unitary matrix if A† = A−1. In the special
case that A is a real matrix with the property that AT = A−1, then we say A
is an orthogonal matrix. These definitions agree with what was discussed in
Section 5.7.

Example 6.3. Suppose V = Rn and X ∈ V . In terms of an orthonormal
basis {ei} for V we may write X =

∑
i x

iei. Now suppose we are given another
orthonormal basis {ēi} related to the first basis by ēi = A(ei) =

∑
j ejaji for

some real matrix (aij). Relative to this new basis we have A(X) = X =
∑

i x̄
iēi

where xi =
∑

j aij x̄
j (see Section 4.4). Then

‖X‖2 =
〈∑

i

xiei,
∑

j

xjej

〉
=
∑

i,j

xixj〈ei, ej〉 =
∑

i,j

xixjδij

=
∑

i

(xi)2 =
∑

i,j,k

aijaikx̄
j x̄k =

∑

i,j,k

aT
jiaikx̄

j x̄k

=
∑

j,k

(ATA)jkx̄
j x̄k.

If A is orthogonal, then AT = A−1 so that (ATA)jk = δjk and we are left with

‖X‖2 =
∑

i

(xi)2 =
∑

j

(x̄j)2 =
∥∥X
∥∥2

so the length of X is unchanged under an orthogonal transformation. An equiv-
alent way to see this is to assume that A simply represents a rotation so the
length of a vector remains unchanged by definition. This then forces A to be
an orthogonal transformation (see Exercise 6.2.1).

Another way to think of orthogonal transformations is the following. We
saw in Section 1.5 that the angle θ between two vectors X,Y ∈ Rn is defined
by

cos θ =
〈X,Y 〉
‖X‖ ‖Y ‖ .
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Under the orthogonal transformation A, we then have X = A(X) and also

cos θ̄ =
〈X,Y 〉∥∥X
∥∥∥∥Y

∥∥ .

But
∥∥X
∥∥ = ‖X‖ and

∥∥Y
∥∥ = ‖Y ‖, and in addition,

〈X,Y 〉 =
〈∑

i

xiei,
∑

j

yjej

〉
=
∑

i

xiyi =
∑

i,j,k

aij x̄
jaikȳ

k

=
∑

j,k

δjkx̄
j ȳj =

∑

j

x̄j ȳj

= 〈X,Y 〉

so that θ = θ̄ (this also follows from the real vector space version of Theorem
6.5). Therefore an orthogonal transformation also preserves the angle between
two vectors, and hence is nothing more than a rotation in Rn.

Since a unitary operator is an inner product space isomorphism, our next
theorem should come as no surprise.

Theorem 6.6. Let V be finite-dimensional over C (resp. R). A linear trans-
formation U ∈ L(V ) is unitary (resp. orthogonal) if and only if it takes an
orthonormal basis for V into an orthonormal basis for V .

Proof. We consider the case where V is complex, leaving the real case to the
reader. Let {ei} be an orthonormal basis for V , and assume U is unitary. Then
from Theorem 6.5(ii) we have

〈Uei, Uej〉 = 〈ei, ej〉 = δij

so that {Uei} is also an orthonormal set. But any orthonormal set is linearly
independent (Theorem 1.19), and hence {Uei} forms a basis for V (since there
are as many of the Uei as there are ei).

Conversely, suppose both {ei} and {Uei} are orthonormal bases for V and
let v, w ∈ V be arbitrary. Then

〈v, w〉 =
〈∑

i

viei,
∑

j

wjej

〉
=
∑

i,j

vi∗wj〈ei, ej〉 =
∑

i,j

vi∗wjδij

=
∑

i

vi∗wi.

However, we also have

〈Uv, Uw〉 =
〈
U
(∑

i

viei

)
, U
(∑

j

wjej

)〉
=
∑

i,j

vi∗wj〈Uei, Uej〉
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=
∑

i,j

vi∗wjδij =
∑

i

vi∗wi = 〈v, w〉.

This shows that U is unitary (Theorem 6.5).

Recall also that Uei is the ith column of [U ]. Therefore, if {Uei} is an or-
thonormal set, then the columns of [U ] are orthonormal and hence (by Theorem
5.15) [U ] must be a unitary matrix.

Corollary. Let V and W be finite-dimensional inner product spaces over C.
Then there exists an inner product space isomorphism of V onto W if and only
if dimV = dimW .

Proof. Clearly dimV = dimW if V and W are isomorphic. On the other
hand, let {e1, . . . , en} be an orthonormal basis for V , and let {ē1, . . . , ēn} be
an orthonormal basis for W . (These bases exist by Theorem 1.21.) We define
the (surjective) linear transformation U by the requirement Uei = ēi. U is
unique by Theorem 4.1. Since 〈Uei, Uej〉 = 〈ēi, ēj〉 = δij = 〈ei, ej〉, the proof
of Theorem 6.6 shows that U preserves inner products. In particular, we see
that ‖Uv‖ = ‖v‖ for every v ∈ V , and hence KerU = {0} (by property (N1) of
Theorem 1.17). Thus U is also one-to-one (Theorem 4.5).

Let us now take a look at some rather basic properties of the eigenvalues and
eigenvectors of the operators we have been discussing. To simplify our termi-
nology, we remark that a complex inner product space is also called a unitary

space, while a real inner product space is sometimes called a Euclidean space.
If H is an operator such that H† = −H , then H is said to be anti-Hermitian

(or skew-Hermitian). Furthermore, if P is an operator such that P = S†S for
some operator S, then we say that P is positive (or positive semidefinite

or nonnegative). If S also happens to be nonsingular (and hence P is also
nonsingular), then we say that P is positive definite. Note that a positive
operator is necessarily Hermitian since (S†S)† = S†S. The reason P is called
positive is shown in part (iv) of the following theorem.

Theorem 6.7. (i) The eigenvalues of a Hermitian operator are real.
(ii) The eigenvalues of an isometry (and hence also of a unitary transfor-

mation) have absolute value one.
(iii) The eigenvalues of an anti-Hermitian operator are pure imaginary.
(iv) A positive (positive definite) operator has eigenvalues that are real and

nonnegative (positive).

Proof. (i) If H is Hermitian, v 6= 0, and Hv = λv, we have

λ〈v, v〉 = 〈v, λv〉 = 〈v,Hv〉 = 〈H†v, v〉 = 〈Hv, v〉
= 〈λv, v〉 = λ∗〈v, v〉.
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But 〈v, v〉 6= 0, and hence λ = λ∗.
(ii) If Ω is an isometry, v 6= 0, and Ωv = λv, then we have (using Theorem

1.17)
‖v‖ = ‖Ωv‖ = ‖λv‖ = |λ| ‖v‖ .

But v 6= 0, and hence |λ| = 1.
(iii) If H† = −H , v 6= 0, and Hv = λv, then

λ〈v, v〉 = 〈v, λv〉 = 〈v,Hv〉 = 〈H†v, v〉 = 〈−Hv, v〉 = 〈−λv, v〉
= −λ∗〈v, v〉.

But 〈v, v〉 6= 0, and hence λ = −λ∗. This shows that λ is pure imaginary.
(iv) Let P = S†S be a positive definite operator. If v 6= 0, then the fact

that S is nonsingular means Sv 6= 0, and hence 〈Sv, Sv〉 = ‖Sv‖2 > 0. Then,
for Pv = (S†S)v = λv, we see that

λ〈v, v〉 = 〈v, λv〉 = 〈v, Pv〉 = 〈v, (S†S)v〉 = 〈Sv, Sv〉.

But 〈v, v〉 = ‖v‖2 > 0 also, and therefore we must have λ > 0.
If P is positive, then S is singular and the only difference is that now for

v 6= 0 we have 〈Sv, Sv〉 = ‖Sv‖2 ≥ 0 which implies that λ ≥ 0.

We say that an operator N is normal if N †N = NN †. Note this implies
that for any v ∈ V we have

‖Nv‖2 = 〈Nv,Nv〉 = 〈(N †N)v, v〉 = 〈(NN †)v, v〉 = 〈N †v,N †v〉
=
∥∥N †v

∥∥2
.

Now let λ be a complex number. It is easy to see that if N is normal then so is
N − λ1 since (from Theorem 6.3)

(N − λ1)†(N − λ1) = (N † − λ∗1)(N − λ1) = N †N − λN † − λ∗N + λ∗λ1

= (N − λ1)(N † − λ∗1) = (N − λ1)(N − λ1)†.

Using N − λ1 instead of N in the previous result we obtain

‖Nv − λv‖2 =
∥∥N †v − λ∗v

∥∥2
.

Since the norm is positive definite, this equation proves the next theorem.

Theorem 6.8. Let N be a normal operator and let λ be an eigenvalue of N .
Then Nv = λv if and only if N †v = λ∗v.

In words, if v is an eigenvector of a normal operator N with eigenvalue λ,
then v is also an eigenvector of N † with eigenvalue λ∗. (Note it is always true
that if λ is an eigenvalue of an operator T , then λ∗ will be an eigenvalue of T †.
However, the eigenvectors will in general be different. See Exercise 6.2.9.)
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Corollary. If N is normal and Nv = 0 for some v ∈ V , then N †v = 0.

Proof. This follows from Theorem 6.8 by taking λ = λ∗ = 0. Alternatively,
using N †N = NN † along with the fact that Nv = 0, we see that

〈N †v,N †v〉 = 〈v, (NN †)v〉 = 〈v, (N †N)v〉 = 0.

Since the inner product is positive definite, this requires that N †v = 0.

As was the case with matrices, if H† = H , then H†H = HH = HH†

so that any Hermitian operator is normal. Furthermore, if U is unitary, then
U †U = UU † (= 1) so that U is also normal. A Hermitian operator T defined
on a real inner product space is said to be symmetric. This is equivalent to
requiring that with respect to an orthonormal basis, the matrix elements aij of
T are given by

aij = 〈ei, T ej〉 = 〈Tei, ej〉 = 〈ej , T ei〉 = aji.

Therefore a symmetric operator is represented by a real symmetric matrix. It
is also true that antisymmetric operators (i.e., T T = −T ) and anti-Hermitian
operators (H† = −H) are normal.

Theorem 6.9. (i) Eigenvectors belonging to distinct eigenvalues of a Hermitian
operator are orthogonal.

(ii) Eigenvectors belonging to distinct eigenvalues of an isometric operator
are orthogonal. Hence the eigenvectors belonging to distinct eigenvalues of a
unitary operator are orthogonal.

(iii) Eigenvectors belonging to distinct eigenvalues of a normal operator are
orthogonal.

Proof. As we remarked above, Hermitian and unitary operators are special cases
of normal operators. Thus parts (i) and (ii) follow from part (iii). However, it
is instructive to give independent proofs of parts (i) and (ii).

Assume T is an operator on a unitary space, and Tvi = λivi for i = 1, 2 with
λ1 6= λ2. We may then also assume without loss of generality that λ1 6= 0.

(i) If T = T †, then (using Theorem 6.7(i))

λ2〈v1, v2〉 = 〈v1, λ2v2〉 = 〈v1, T v2〉 = 〈T †v1, v2〉 = 〈Tv1, v2〉
= 〈λ1v1, v2〉 = λ∗1〈v1, v2〉 = λ1〈v1, v2〉.

But λ1 6= λ2, and hence 〈v1, v2〉 = 0.
(ii) If T is isometric, then T †T = 1 and we have

〈v1, v2〉 = 〈v1, (T †T )v2〉 = 〈Tv1, T v2〉 = λ∗1λ2〈v1, v2〉.
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But by Theorem 6.7(ii) we have |λ1|2 = λ∗1λ1 = 1, and thus λ∗1 = 1/λ1. There-
fore, multiplying the above equation by λ1, we see that λ1〈v1, v2〉 = λ2〈v1, v2〉
and hence, since λ1 6= λ2, this shows that 〈v1, v2〉 = 0.

(iii) If T is normal, then

〈v1, T v2〉 = λ2〈v1, v2〉

while on the other hand, using Theorem 6.8 we have

〈v1, T v2〉 = 〈T †v1, v2〉 = 〈λ∗1v1, v2〉 = λ1〈v1, v2〉.

Therefore 〈v1, v2〉 = 0 since λ1 6= λ2.

Theorem 6.10. (i) Let T be an operator on a unitary space V , and let W be
a T -invariant subspace of V . Then W⊥ is invariant under T †.

(ii) Let U be a unitary operator on a unitary space V , and let W be a U -
invariant subspace of V . Then W⊥ is also invariant under U .

Proof. (i) For any v ∈ W we have Tv ∈W since W is T -invariant. Let w ∈W⊥

be arbitrary. We must show that T †w ∈ W⊥. But this is easy because

〈T †w, v〉 = 〈w, Tv〉 = 0

by definition of W⊥. Thus T †w ∈ W⊥ so that W⊥ is invariant under T †.
(ii) The fact that U is unitary means U−1 = U † exists, and hence U is

nonsingular (so KerU = {0}). In other words, for any v′ ∈ W there exists
v ∈ W such that Uv = v′ (by Theorem 4.6). Now let w ∈ W⊥ be arbitrary.
Then

〈Uw, v′〉 = 〈Uw,Uv〉 = 〈w, (U †U)v〉 = 〈w, v〉 = 0

by definition of W⊥. Thus Uw ∈ W⊥ so that W⊥ is invariant under U .

Repeating the proof of part (ii) of this theorem in the case of an orthogonal
operator on a Euclidean space (i.e., a real inner product space), we obtain the
following corollary.

Corollary. Let T be an orthogonal operator on a finite-dimensional Euclidean
space V , and let W be a T -invariant subspace of V . Then W⊥ is also T -
invariant.

Recall from the discussion in Section 5.6 that the algebraic multiplicity of a
given eigenvalue is the number of times the eigenvalue is repeated as a root of
the characteristic polynomial. We also defined the geometric multiplicity as the
number of linearly independent eigenvectors corresponding to this eigenvalue
(i.e., the dimension of its eigenspace).
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Theorem 6.11. Let H be a Hermitian operator on a finite-dimensional unitary
space V . Then the algebraic multiplicity of any eigenvalue λ of H is equal to its
geometric multiplicity.

Proof. Let Vλ = {v ∈ V : Hv = λv} be the eigenspace corresponding to the
eigenvalue λ. Clearly Vλ is invariant under H since Hv = λv ∈ Vλ for every
v ∈ Vλ. By Theorem 6.10(i), we then have that V ⊥

λ is also invariant under
H† = H . Furthermore, by Theorem 1.22 we see V = Vλ ⊕ V ⊥

λ . Applying
Theorem 5.12 we may write H = H1 ⊕H2 where H1 = H |Vλ and H2 = H |V ⊥

λ .
Let A be the matrix representation of H , and let Ai be the matrix repre-

sentation of Hi (i = 1, 2). By Theorem 5.12, we also have A = A1 ⊕A2. Using
Theorem 5.10, it then follows that the characteristic polynomial of A is given
by

det(xI −A) = det(xI −A1) det(xI −A2).

Now, H1 is a Hermitian operator on the finite-dimensional space Vλ with only
the single eigenvalue λ. Therefore λ is the only root of det(xI − A1) = 0, and
hence it must occur with an algebraic multiplicity equal to the dimension of Vλ

(since this is just the size of the matrix A1). In other words, if dimVλ = m,
then det(xI − A1) = (x − λ)m. On the other hand, λ is not an eigenvalue of
A2 by definition, and hence det(λI − A2) 6= 0. This means that det(xI − A)
contains (x− λ) as a factor exactly m times.

Corollary. Any Hermitian operator H on a finite-dimensional unitary space V
is diagonalizable.

Proof. Since V is a unitary space, the characteristic polynomial of H will factor
into (not necessarily distinct) linear terms. The conclusion then follows from
Theorems 6.11 and 5.14.

In fact, from Theorem 5.18 we know that any normal matrix is unitarily
similar to a diagonal matrix. This means that given any normal operator T ∈
L(V ), there is an orthonormal basis for V that consists of eigenvectors of T .

Exercises

1. Let V = Rn with the standard inner product, and suppose the length of
any X ∈ V remains unchanged under A ∈ L(V ). Show that A must be
an orthogonal transformation.

2. Let V be the space of all continuous complex-valued functions defined on
[0, 2π], and define an inner product on V by

〈f, g〉 = 1

2π

∫ 2π

0

f(x)∗g(x) dx.
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Suppose there exists h ∈ V such that |h(x)| = 1 for all x ∈ [0, 2π], and
define Th ∈ L(V ) by Thf = hf . Prove that T is unitary.

3. Let W be a finite-dimensional subspace of an inner product space V , and
recall that V = W ⊕W⊥ (see Exercise 1.6.11). Define U ∈ L(V ) by

U(w1 + w2) = w1 − w2

where w1 ∈ W and w2 ∈ W⊥.

(a) Prove that U is a Hermitian operator.
(b) Let V = R3 have the standard inner product, and let W ⊂ V be

spanned by the vector (1, 0, 1). Find the matrix of U relative to the
standard basis for V .

4. Let V be a finite-dimensional inner product space. An operator Ω ∈ L(V )
is said to be a partial isometry if there exists a subspace W of V such
that ‖Ωw‖ = ‖w‖ for all w ∈ W , and ‖Ωw‖ = 0 for all w ∈W⊥. Let Ω be
a partial isometry and suppose {w1, . . . , wk} is an orthonormal basis for
W .

(a) Show 〈Ωu,Ωv〉 = 〈u, v〉 for all u, v ∈W . [Hint : Use Exercise 1.5.7.]
(b) Show {Ωw1, . . . ,Ωwk} is an orthonormal basis for ImΩ.
(c) Show there exists an orthonormal basis {vi} for V such that the first k

columns of [Ω]v form an orthonormal set, and the remaining columns
are zero.

(d) Let {u1, . . . , ur} be an orthonormal basis for (Im Ω)⊥. Show that
{Ωw1, . . . ,Ωwk, u1, . . . , ur} is an orthonormal basis for V .

(e) Suppose T ∈ L(V ) satisfies T (Ωwi) = wi (for 1 ≤ i ≤ k) and Tui = 0
(for 1 ≤ i ≤ r). Show T is well-defined, and that T = Ω†.

(f) Show Ω† is a partial isometry.

5. Let V be a complex inner product space, and suppose H ∈ L(V ) is Her-
mitian. Show:

(a) ‖v + iHv‖ = ‖v − iHv‖ for all v ∈ V .
(b) u+ iHu = v + iHv if and only if u = v.
(c) 1 + iH and 1− iH are nonsingular.
(d) If V is finite-dimensional, then U = (1 − iH)(1 + iH)−1 is a unitary

operator. (U is called the Cayley transform of H . This result
is also true in an infinite-dimensional Hilbert space but the proof is
considerably more difficult.)

6. Let V be a unitary space and suppose T ∈ L(V ). Define T+ = (1/2)(T +
T †) and T− = (1/2i)(T − T †).

(a) Show T+ and T− are Hermitian, and that T = T+ + iT−.
(b) If T ′

+ and T ′
− are Hermitian operators such that T = T ′

+ + iT ′
−, show

T ′
+ = T+ and T ′

− = T−.
(c) Prove T is normal if and only if [T+, T−] = 0.
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7. Let V be a finite-dimensional inner product space, and suppose T ∈ L(V )
is both positive and unitary. Prove T = 1.

8. Let H ∈ Mn(C) be Hermitian. Then for any nonzero x ∈ Cn we define
the Rayleigh quotient to be the number

R(x) =
〈x,Hx〉
‖x‖2

.

Prove max{R(x) : x 6= 0} is the largest eigenvalue ofH , and that min{R(x) :
x 6= 0} is the smallest eigenvalue of H .

9. If V is finite-dimensional and T ∈ L(V ) has eigenvalue λ, show T † has
eigenvalue λ∗.

6.3 More on Orthogonal Transformations

In this section we will take a more detailed look at the structure of orthogonal
transformations on a real inner product space V (i.e., a finite-dimensional Eu-
clidean space). Our goal is to show that there is a basis for V such that these
operators can be written as the direct sum of two-dimensional rotations plus at
most a single reflection. This result will be used in Section 8.8 when we discuss
oriented bases for vector spaces.

Let us first make some careful definitions. (The reader might want to first
review Section 4.5.) A linear operator T ∈ L(V ) on a finite-dimensional inner
product space V is called a rotation if T is either the identity on V or else
there exists a two-dimensional subspace W of V with basis {e1, e2} such that
for some real number θ we have

T (e1) = (cos θ)e1 + (sin θ)e2

T (e2) = (− sin θ)e1 + (cos θ)e2

and T (v) = v for all v ∈ W⊥. The operator T is said to be a rotation of W
about W⊥.

If there exists a one-dimensional subspace W of V such that T (w) = −w for
all w ∈ W and T (v) = v for all v ∈ W⊥, then T is said to be a reflection of

V about W⊥. Since, as have seen earlier, orthogonal transformations preserve
inner products, we have the following slight generalization of Theorem 4.17.

Theorem 6.12. Let T ∈ L(V ) be orthogonal on a two-dimensional inner prod-
uct space V . Then T is either a rotation or a reflection, and in fact is a rotation
if and only if det T = +1 and a reflection if and only if detT = −1.

Now let T be any linear operator on a finite-dimensional real space V , and
let A be the matrix representation of T with respect to some basis for V . Since
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V is real, there is no guarantee that A has an eigenvalue in R, but we can use
A to define another operator T ′ on Cn by T ′(x) = Ax for all x ∈ Cn. Now T ′

does have an eigenvalue λ ∈ C and corresponding eigenvector v ∈ Cn. Let us
write both of these in terms of their real and imaginary parts as λ = λre + iλim

and v = vre + ivim where λre, λim ∈ R and vre, vim ∈ Rn.
The eigenvalue equation for T ′ is T ′(v) = Av = λ(v), and in terms of real

and imaginary components this becomes

A(vre + ivim) = (λre + iλim)(vre + ivim)

or

Avre + iAvim = (λrevre − λimvim) + i(λrevim + λimvre).

Equating real and imaginary parts we have the equations

Avre = λrevre − λimvim

and
Avim = λrevim + λimvre

which shows that both Avre and Avim are in the real space spanned by {vre, vim}.
Since eigenvectors are nonzero by definition, we can’t have both vre and vim equal
to zero, so we define the nonzero subspace W ⊂ Rn to be the linear span of vre
and vim. Thus we have 1 ≤ dimW ≤ 2.

By construction, W is invariant under A and we have proved the following.

Theorem 6.13. Let V be a finite-dimensional real vector space, and let T ∈
L(V ). Then there exists a T -invariant subspace W of V with 1 ≤ dimW ≤ 2.

We now apply this result to the particular case of orthogonal operators, and
show that V can be written as a direct sum of 1- or 2-dimensional T -invariant
subspaces. In other words, we show that T is reducible, and the Wi form a
T -invariant direct sum decomposition of V (see Section 5.5).

Theorem 6.14. Let T be an orthogonal operator on a finite-dimensional Eu-
clidean space V . Then V = W1 ⊕ · · · ⊕ Wr where each Wi is T -invariant,
1 ≤ dimWi ≤ 2 and vectors belonging to distinct subspaces Wi and Wj are
orthogonal (i.e., the subspaces Wi are pairwise orthogonal).

Proof. The proof is by induction on dimV . If dimV = 1 there is nothing to
prove, so let dimV = n > 1 and assume that the theorem holds for dimV <
n. By Theorem 6.13 there exists a T -invariant subspace W1 such that 1 ≤
dimW1 ≤ 2. If W1 = V then we are done. Otherwise, by Theorem 1.22 we
know that V = W1 ⊕ W⊥

1 where W⊥
1 is nonzero. Furthermore, W⊥

1 is also
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T -invariant (by the corollary to Theorem 6.10), and the restriction TW⊥
1

of T

to W⊥
1 is also clearly orthogonal.

Since dimW⊥
1 < n, we may apply our induction hypothesis to the operator

TW⊥
1

to conclude that W⊥
1 = W2 ⊕ · · · ⊕ Wr where each Wi is T -invariant,

and the subspaces Wi are pairwise orthogonal. But then V = W1 ⊕ W⊥
1 =

W1 ⊕ · · · ⊕Wr.

Now we can combine Theorems 6.12 and 6.14 for our main result.

Theorem 6.15. Let T be an orthogonal operator on a finite-dimensional Eu-
clidean space V = W1 ⊕ · · · ⊕ Wr where the Wi are pairwise orthogonal T -
invariant subspaces of V , and each Wi is of dimension either 1 or 2.

(i) If detT = +1, then there are an even number of Wi for which TWi
is

a reflection, and if detT = −1, then there are an odd number of Wi for which
TWi

is a reflection.
(ii) The decomposition V = W1⊕· · ·⊕Wr can be made so that if detT = +1

then there are no Wi’s such that TWi
is a reflection, and if detT = −1, then

there is precisely one Wi such that TWi
is a reflection. Furthermore, if TWk

is
a reflection, then dimWk = 1.

Proof. (i) Suppose that TWi
is a reflection for m of the Wi’s. By Theorem 5.12,

the matrix representation of T is the direct sum of the matrix representations
of TWi

, and hence by Theorems 5.10 and 6.12 we have

detT = (detTW1
) · · · (detTWr

) = (−1)m.

This proves part (i).

(ii) Let W̃ = {v ∈ V : T (v) = −v}. Then W̃ is T -invariant as is W := W̃⊥.

Note that V = W ⊕ W̃ . Applying Theorem 6.14 to TW , we may write W =
W1⊕· · ·⊕Ws where these Wi’s are pairwise orthogonal and each has dimension
1 or 2. Because W̃ contains all vectors in V that are reflected by T , and W is
the orthogonal complement to W̃ , it follows that for each i = 1, . . . , s it must be
that TWi

is a rotation. Formally, we see that if w ∈ Wi is such that T (w) = −w,

then w ∈ Wi ∩ W̃ ⊂W ∩ W̃ = {0}.
Next, we assume that W̃ 6= 0 or we are done. So, choose an orthonormal

basis {ej} for W̃ . We write this basis as a pairwise disjoint union ẽ1 ∪ · · · ∪ ẽq

where (by definition) each ẽ1, . . . , ẽq−1 consists of exactly two of the ej ’s, and

ẽq also consists of two of the ej ’s if dim W̃ is an even number, and only a single

ej if dim W̃ is an odd number. For each j = 1, . . . , q define Ws+j to be the span
of ẽj . Then

V = W ⊕ W̃ = W1 ⊕ · · · ⊕Ws ⊕ W̃

= W1 ⊕ · · · ⊕Ws ⊕Ws+1 ⊕ · · · ⊕Ws+q



266 CHAPTER 6. OPERATORS AND DIAGONALIZATION

where all of the Wi’s are pairwise orthogonal.
Since each ẽj consists of either 1 or 2 of the basis vectors ei for W̃ (so that

T (ei) = −ei), we see that if ẽj consists of 2 basis vectors, then the matrix
representation [TWs+j ]ẽj

is given by

[
−1 0

0 −1

]

and hence detTWs+j = +1. Then (by Theorem 6.12) TWi
is a rotation for all

1 ≤ i < s + q. If ẽq consists of a single vector ej, then dimWs+q = 1 and
detTWs+q

= −1 so that (by Theorem 6.12 again) TWs+q
represents a reflection.

Finally, letting s+q = r we see that our decomposition satisfies the requirements
of the theorem.

It’s not hard to see what is really going on here. Recall that a rotation in
R2 looks like [

cos θ − sin θ
sin θ cos θ

]
.

If we have more than a single reflection, then we can group them into pairs
by choosing a rotation with θ = π. This then leaves us with at most a single
unpaired reflection.

As we saw in Section 5.5, the decomposition of V described in Theorem 6.15
shows that we may write the orthogonal operator T in the form

T = T1 ⊕ · · · ⊕ Tr

where Ti = TWi
and each Ti represents a rotation for all but at most one of the

Ti’s which would be a reflection.

Exercises

1. Define the matrices

A =

[
1
2

√
3

2
√

3
2 − 1

2

]
and B =

[
1 0
0 −1

]
.

(a) Show that A represents a reflection.
(b) Find the axis in R3 about which A reflects.
(c) Show that both AB and BA represent rotations.

2. Show that the composite of two rotations on R3 is another rotation on R3.

3. Consider the matrices

A =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 B =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1




where θ, φ ∈ R.
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(a) Show that both A and B represent rotations.
(b) Show that the product AB is a rotation.
(c) Find the axis of rotation for AB.

4. Prove that it is impossible for an orthogonal operator to be both a rotation
and a reflection.

5. Prove that the composite of two reflections is a rotation on any two- or
three-dimensional Euclidean space.

6. Let V be a two-dimensional Euclidean space, and let x 6= y ∈ V be unit
vectors. Show there exists a unique rotation T such that T (x) = y.

6.4 Projections

In this section we introduce the concept of projection operators and show how
they may be related to direct sum decompositions where each of the subspaces
in the direct sum is invariant under some linear operator.

Suppose that U and W are subspaces of a vector space V with the property
that V = U ⊕W . Then every v ∈ V has a unique representation of the form
v = u + w where u ∈ U and w ∈ W (Theorem 1.14). We now define the
mapping E : V → V by Ev = u. Note that E is well-defined since the direct
sum decomposition is unique. Moreover, given any other v′ ∈ V = U ⊕W with
v′ = u′ +w′, we know that v + v′ = (u+ u′) + (w+w′) and kv = ku+ kw, and
hence it is easy to see that E is in fact linear because

E(v + v′) = u+ u′ = Ev + Ev′

and
E(kv) = ku = k(Ev).

The linear operator E ∈ L(V ) is called the projection of V on U in the

direction of W . Furthermore, since any u ∈ U ⊂ V may be written in the
form u = u+ 0, we also see that Eu = u and therefore

E2v = E(Ev) = Eu = u = Ev.

In other words, a projection operator E has the property that E2 = E. By way
of terminology, any operator T ∈ L(V ) with the property that T 2 = T is said
to be idempotent.

On the other hand, given a vector space V , suppose we have an operator
E ∈ L(V ) with the property that E2 = E. We claim that V = ImE ⊕ KerE.
Indeed, first note that if u ∈ ImE, then by definition this means there exists
v ∈ V with the property that Ev = u. It therefore follows that

Eu = E(Ev) = E2v = Ev = u

and thus Eu = u for any u ∈ ImE. Conversely, the equation Eu = u obviously
says that u ∈ ImE, and hence we see that u ∈ ImE if and only if Eu = u.
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Next, note that given any v ∈ V we may clearly write

v = Ev + v − Ev = Ev + (1− E)v

where by definition, Ev ∈ ImE. Since

E[(1− E)v] = (E − E2)v = (E − E)v = 0

we see that (1−E)v ∈ KerE, and hence V = ImE+KerE. We claim that this
sum is in fact direct.

To see this, let w ∈ ImE∩KerE. Since w ∈ ImE and E2 = E, we have seen
that Ew = w, while the fact that w ∈ KerE means that Ew = 0. Therefore
w = 0 so that ImE ∩KerE = {0}, and hence

V = ImE ⊕KerE.

Since we have now shown that any v ∈ V may be written in the unique form
v = u + w with u ∈ ImE and w ∈ KerE, it follows that Ev = Eu + Ew =
u+ 0 = u so that E is the projection of V on ImE in the direction of KerE.

It is also of use to note that

KerE = Im(1− E)

and
Ker(1− E) = ImE.

To see this, suppose w ∈ KerE. Then

w = Ew + (1− E)w = (1− E)w

which implies w ∈ Im(1 − E), and hence KerE ⊂ Im(1 − E). On the other
hand, if w ∈ Im(1 − E) then there exists w′ ∈ V such that w = (1 − E)w′ and
hence

Ew = (E − E2)w′ = (E − E)w′ = 0

so that w ∈ KerE. This shows that Im(1−E) ⊂ KerE, and therefore KerE =
Im(1 − E). The similar proof that Ker(1− E) = ImE is left as an exercise for
the reader (Exercise 6.4.1).

Theorem 6.16. Let V be a vector space with dimV = n, and suppose E ∈ L(V )
has rank k = dim(ImE). Then E is idempotent (i.e., E2 = E) if and only if
any one of the following statements is true:

(i) If v ∈ ImE, then Ev = v.
(ii) V = ImE⊕KerE and E is the projection of V on ImE in the direction

of KerE.
(iii) ImE = Ker(1− E) and KerE = Im(1 − E).
(iv) It is possible to choose a basis for V such that [E] = Ik ⊕ 0n−k .
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Proof. Suppose E2 = E. In view of the above discussion, all that remains is
to prove part (iv). Applying part (ii), we let {e1, . . . , ek} be a basis for ImE
and {ek+1, . . . , en} be a basis for KerE. By part (i), we know that Eei = ei for
i = 1, . . . , k and, by definition of KerE, we have Eei = 0 for i = k + 1, . . . , n.
But then [E] has the desired form since the ith column of [E] is just Eei.

Conversely, suppose (i) is true and v ∈ V is arbitrary. Then E2v = E(Ev) =
Ev implies E2 = E. Now suppose (ii) is true and v ∈ V . Then v = u+w where
u ∈ ImE and w ∈ KerE. Therefore Ev = Eu + Ew = Eu = u (by definition
of projection) and E2v = E2u = Eu = u so that E2v = Ev for all v ∈ V ,
and hence E2 = E. If (iii) holds and v ∈ V , then Ev ∈ ImE = Ker(1 − E)
so that 0 = (1 − E)Ev = Ev − E2v and hence E2v = Ev again. Similarly,
(1 − E)v ∈ Im(1 − E) = KerE so that 0 = E(1 − E)v = Ev − E2v and hence
E2v = Ev. In either case, we have E2 = E. Finally, from the form of [E] given
in (iv), it is obvious that E2 = E.

Note that part (ii) of this theorem is really a particular example of the rank
theorem.

It is also worth making the following observation. If we are given a vector
space V and a subspaceW ⊂ V , then there may be many subspaces U ⊂ V with
the property that V = U ⊕W . For example, the space R3 is not necessarily
represented by the usual orthogonal Cartesian coordinate system. Rather, it
may be viewed as consisting of a line plus any (oblique) plane not containing
the given line. However, in the particular case that V = W ⊕W⊥, then W⊥ is
uniquely specified by W (see Section 1.6). In this case, the projection E ∈ L(V )
defined by Ev = w with w ∈ W is called the orthogonal projection of V
on W . In other words, E is an orthogonal projection if (ImE)⊥ = KerE.
By the corollary to Theorem 1.22, this is equivalent to the requirement that
(KerE)⊥ = ImE.

It is not hard to generalize these results to the direct sum of more than
two subspaces. Indeed, suppose we have a vector space V such that V =
W1⊕· · ·⊕Wr. Since any v ∈ V has the unique representation as v = w1+· · ·+wr

with wi ∈ Wi, we may define for each j = 1, . . . , r the operator Ej ∈ L(V ) by
Ejv = wj . That each Ej is in fact linear is easily shown exactly as above for
the simpler case. It should also be clear that ImEj = Wj (see Exercise 6.4.2).
If we write

wj = 0 + · · ·+ 0 + wj + 0 + · · ·+ 0

as the unique expression for wj ∈ Wj ⊂ V , then we see that Ejwj = wj , and
hence for any v ∈ V we have

Ej
2v = Ej(Ejv) = Ejwj = wj = Ejv

so that Ej
2 = Ej .

The representation of each wj as Ejv is very useful because we may write
any v ∈ V as

v = w1 + · · ·+ wr = E1v + · · ·+ Erv = (E1 + · · ·+ Er)v
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and thus we see that E1 + · · ·+ Er = 1. Furthermore, since the image of Ej is
Wj , it follows that if Ejv = 0 then wj = 0, and hence

KerEj = W1 ⊕ · · ·Wj−1 ⊕Wj+1 ⊕ · · · ⊕Wr.

We then see that for any j = 1, . . . , r we have V = ImEj ⊕ KerEj exactly as
before. It is also easy to see that EiEj = 0 if i 6= j because ImEj = Wj ⊂
KerEi.

Theorem 6.17. Let V be a vector space, and suppose V = W1 ⊕ · · · ⊕ Wr.
Then for each j = 1, . . . , r there exists a linear operator Ej ∈ L(V ) with the
following properties:

(i) 1 = E1 + · · ·+ Er.
(ii) EiEj = 0 if i 6= j.
(iii) Ej

2 = Ej.
(iv) ImEj = Wj.

Conversely, if {E1, . . . , Er} are linear operators on V that obey properties (i)
and (ii), then each Ej is idempotent and V = W1⊕· · ·⊕Wr where Wj = ImEj .

Proof. In view of the previous discussion, we only need to prove the converse
statement. From (i) and (ii) we see that

Ej = Ej1 = Ej(E1 + · · ·+ Er) = Ej
2 +

∑

i6=j

EjEi = Ej
2

which shows that each Ej is idempotent. Next, property (i) shows us that for
any v ∈ V we have

v = 1v = E1v + · · ·+ Erv

and hence V = W1 + · · ·+Wr where we have defined Wj = ImEj . Now suppose
0 = w1 + · · ·+ wr where each wj ∈Wj . If we can show this implies w1 = · · · =
wr = 0, then any v ∈ V will have a unique representation v = v1 + · · ·+ vr with
vi ∈Wi. This is because if

v = v1 + · · ·+ vr = v′1 + · · ·+ v′r

then

(v1 − v′1) + · · ·+ (vr − v′r) = 0

would imply vi − v′i = 0 for each i, and thus vi = v′i. Hence it will follow that
V = W1 ⊕ · · · ⊕Wr (Theorem 1.14).

Since w1+· · ·+wr = 0, it is obvious that Ej(w1+· · ·+wr) = 0. However, note
that Ejwi = 0 if i 6= j (because wi ∈ ImEi and EjEi = 0), while Ejwj = wj

(since wj = Ejw
′ for some w′ ∈ V and hence Ejwj = Ej

2w′ = Ejw
′ = wj).

This shows that w1 = · · · = wr = 0 as desired.
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We now turn our attention to invariant direct sum decompositions, referring
to Section 5.5 for notation. We saw in Corollary 1 of Theorem 5.14 that a
diagonalizable operator T ∈ L(V ) leads to a direct sum decomposition of V in
terms of the eigenspaces of T . However, Theorem 6.17 shows us that such a
decomposition should lead to a collection of projections on these eigenspaces.
Our next theorem elaborates on this observation in detail. Before stating and
proving this result however, let us take another look at a matrix that has been
diagonalized.

We observe that a diagonal matrix of the form

D =




λ1Im1
0 0 · · · 0 0

0 λ2Im2
0 · · · 0 0

...
...

...
...

...

0 0 0 · · · 0 λrImr




can also be written as

D = λ1




Im1

0m2

. . .

0mr


+ λ2




0m1

Im2

. . .

0mr




+ · · ·+ λr




0m1

0m2

. . .

Imr


 .

If we define Ei to be the matrix obtained from D by setting λi = 1 and λj = 0
for each j 6= i (i.e., the ith matrix in the above expression), then this may be
written in the simple form

D = λ1E1 + λ2E2 + · · ·+ λrEr

where clearly

I = E1 + E2 + · · ·+ Er.

Furthermore, it is easy to see that the matrices Ei have the property that

EiEj = 0 if i 6= j

and

Ei
2 = Ei 6= 0.

With these observations in mind, we now prove this result in general.
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Theorem 6.18. If T ∈ L(V ) is a diagonalizable operator with distinct eigen-
values λ1, . . . , λr then there exist linear operators E1, . . . , Er in L(V ) such that:

(i) 1 = E1 + · · ·+ Er.
(ii) EiEj = 0 if i 6= j.
(iii) T = λ1E1 + · · ·+ λrEr.
(iv) Ej

2 = Ej.
(v) ImEj = Wj where Wj = Ker(T − λj1) is the eigenspace corresponding

to λj.
Conversely, if there exist distinct scalars λ1, . . . , λr and distinct nonzero linear
operators E1, . . . , Er satisfying properties (i), (ii) and (iii), then properties (iv)
and (v) are also satisfied, and T is diagonalizable with λ1, . . . , λr as its distinct
eigenvalues.

Proof. First assume T is diagonalizable with distinct eigenvalues λ1, . . . , λr and
let W1, . . . ,Wr be the corresponding eigenspaces. By Corollary 1 of Theorem
5.14 we know V = W1 ⊕ · · · ⊕Wr. Then Theorem 6.17 shows the existence
of the projection operators E1, . . . , Er satisfying properties (i), (ii), (iv) and
(v). As to property (iii), we see (by property (i)) that for any v ∈ V we have
v = E1v+ · · ·+Erv. Since Ejv ∈Wj , we know from the definition of eigenspace
that T (Ejv) = λj(Ejv), and therefore

Tv = T (E1v) + · · ·+ T (Erv)

= λ1(E1v) + · · ·+ λr(Erv)

= (λ1E1 + · · ·+ λrEr)v

which verifies property (iii).
Now suppose we are given a linear operator T ∈ L(V ) together with distinct

scalars λ1, . . . , λr and (nonzero) linear operatorsE1, . . . , Er that obey properties
(i), (ii) and (iii). Multiplying (i) by Ei and using (ii) proves (iv). Now multiply
(iii) from the right by Ei and use property (ii) to obtain TEi = λiEi or (T −
λi1)Ei = 0. If wi ∈ ImEi is arbitrary, then wi = Eiw

′
i for some w′

i ∈ V and
hence (T − λi1)wi = (T − λi1)Eiw

′
i = 0 which shows that wi ∈ Ker(T − λi1).

Since Ei 6= 0, this shows the existence of a nonzero vector wi ∈ Ker(T − λi1)
with the property that Twi = λiwi. This proves that each λi is an eigenvalue
of T . We claim there are no other eigenvalues of T other than {λi}.

To see this, let α be any scalar and assume that (T − α1)v = 0 for some
nonzero v ∈ V . Using properties (i) and (iii), we see that

T − α1 = (λ1 − α)E1 + · · ·+ (λr − α)Er

and hence letting both sides of this equation act on v yields

0 = (λ1 − α)E1v + · · ·+ (λr − α)Erv.

Multiplying this last equation from the left by Ei and using properties (ii) and
(iv), we then see that (λi − α)Eiv = 0 for every i = 1, . . . , r. Since v 6= 0 may
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be written as v = E1v + · · · + Erv, it must be true that Ejv 6= 0 for some j,
and hence in this case we have λj − α = 0 or α = λj .

We must still show that T is diagonalizable, and that ImEi = Ker(T −
λi1). It was shown in the previous paragraph that any nonzero wj ∈ ImEj

satisfies Twj = λjwj , and hence any nonzero vector in the image of any Ei is
an eigenvector of Ei. Note this says that ImEi ⊂ Ker(T −λi1). Using property
(i), we see that any w ∈ V may be written as w = E1w+ · · ·+Erw which shows
that V is spanned by eigenvectors of T . But this is just what we mean when
we say that T is diagonalizable.

Finally, suppose wi ∈ Ker(T − λi1) is arbitrary. Then (T − λi1)wi = 0 and
hence (exactly as we showed above)

0 = (λ1 − λi)E1wi + · · ·+ (λr − λi)Erwi.

Thus for each j = 1, . . . , r we have

0 = (λj − λi)Ejwi

which implies Ejwi = 0 for j 6= i. Since wi = E1wi + · · ·+Erwi while Ejwi = 0
for j 6= i, we conclude that wi = Eiwi which shows that wi ∈ ImEi. In other
words, we have also shown that Ker(T −λi1) ⊂ ImEi. Together with our earlier
result, this proves ImEi = Ker(T − λi1).

Exercises

1. (a) Let E be an idempotent linear operator. Show Ker(1− E) = ImE.
(b) If E2 = E, show (1− E)2 = 1− E.

2. Let V = W1 ⊕ · · · ⊕Wr and suppose v = w1 + · · · + wr ∈ V . For each
j = 1, . . . , r we define the operator Ej on V by Ejv = wj .

(a) Show Ej ∈ L(V ).
(b) Show ImEj = Wj .

3. Let E1, . . . , Er andW1, . . . ,Wr be as defined in Theorem 6.17, and suppose
T ∈ L(V ).

(a) If TEi = EiT for every Ei, prove every Wj = ImEj is T -invariant.
(b) If every Wj is T -invariant, prove TEi = EiT for every Ei. [Hint :

Let v ∈ V be arbitrary. Show that property (i) of Theorem 6.17
implies T (Eiv) = wi for some wi ∈ Wi = ImEi. Now show that
Ej(TEi)v = (Eiwi)δij , and hence that Ej(Tv) = T (Ejv).]

4. Prove property (v) in Theorem 6.18 holds for the matrices Ei given prior
to the theorem.

5. Let W be a finite-dimensional subspace of an inner product space V .

(a) Show there exists precisely one orthogonal projection on W .
(b) Let E be the orthogonal projection on W . Show that for any v ∈ V

we have ‖v − Ev‖ ≤ ‖v − w‖ for every w ∈ W . In other words, show
Ev is the unique element of W that is “closest” to v.
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6.5 The Spectral Theorem

We now turn to another major topic of this chapter, the so-called spectral
theorem. This important result is actually nothing more than another way
of looking at Theorem 5.18. We begin with a simple version that is easy to
understand and visualize if the reader will refer back to the discussion prior to
Theorem 6.18.

Theorem 6.19. Suppose A ∈ Mn(C) is a diagonalizable matrix with distinct
eigenvalues λ1, . . . , λr. Then A can be written in the form

A = λ1E1 + · · ·+ λrEr

where the Ei are n× n matrices with the following properties:
(i) Each Ei is idempotent (i.e., E2

i = Ei).
(ii) EiEj = 0 for i 6= j.
(iii) E1 + · · ·+ Er = I.
(iv) AEi = EiA for every Ei.

Proof. Since A is diagonalizable by assumption, let D = P−1AP be the di-
agonal form of A for some nonsingular matrix P (whose columns are just the
eigenvectors of A). Remember that the diagonal elements of D are just the
eigenvalues λi of A. Let Pi be the n× n diagonal matrix with diagonal element
1 wherever a λi occurs in D, and 0’s everywhere else. It should be clear that
the collection {Pi} obeys properties (i)–(iii), and that

P−1AP = D = λ1P1 + · · ·+ λrPr.

If we now define Ei = PPiP
−1, then we have

A = PDP−1 = λ1E1 + · · ·+ λrEr

where the Ei also obey properties (i)–(iii) by virtue of the fact that the Pi do.
Using (i) and (ii) in this last equation we find

AEi = (λ1E1 + · · ·+ λrEr)Ei = λiEi

and similarly it follows that EiA = λiEi so that each Ei commutes with A, i.e.,
EiA = AEi.

By way of terminology, the collection of eigenvalues λ1, . . . , λr is called the
spectrum of A, the sum E1 + · · · + Er = I is called the resolution of the

identity induced by A, and the expression A = λ1E1 + · · · + λrEr is called
the spectral decomposition of A. These definitions also apply to arbitrary
normal operators as in Theorem 6.21 below.
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Corollary. Let A be diagonalizable with spectral decomposition as in Theorem
6.19. If f(x) ∈ C[x] is any polynomial, then

f(A) = f(λ1)E1 + · · ·+ f(λr)Er .

Proof. Using properties (i)–(iii) in Theorem 6.19, it is easy to see that for any
m > 0 we have

Am = (λ1)
mE1 + · · ·+ (λr)

mEr.

The result for arbitrary polynomials now follows easily from this result.

It is easy to see how to construct the spectral decomposition. Let D be the
diagonal form of A. Disregarding multiplicities, we can write D as

D =



λ1

. . .

λn


 = U †AU

where U is the unitary matrix whose columns are the eigenvectors of A. If we let
vi be the ith eigenvector and write U = [v1 · · · vn] as a function of its columns,
then what we have is

A = UDU † =
[
v1 · · · vn

]


λ1

. . .

λn






v†1
...
v†n




=
[
v1 · · · vn

]


λ1v

†
1

...
λnv

†
n




= λ1v1v
†
1 + · · ·+ λnvnv

†
n .

Note that each vi is a column vector, and each v†i is a row vector, and hence

each term viv
†
i is an n× n matrix.

Before turning to our proof of the spectral theorem, we first prove a simple
but useful characterization of orthogonal projections.

Theorem 6.20. Let V be an inner product space and suppose E ∈ L(V ). Then
E is an orthogonal projection if and only if E2 = E = E†.

Proof. We first assume that E is an orthogonal projection. By definition this
means E2 = E, and hence we must show that E† = E. From Theorem 6.16
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we know that V = ImE ⊕ KerE = ImE ⊕ (ImE)⊥. Suppose v, w ∈ V are
arbitrary. Then we may write v = v1 +v2 and w = w1 +w2 where v1, w1 ∈ ImE
and v2, w2 ∈ (ImE)⊥. Therefore

〈v,Ew〉 = 〈v1 + v2, w1〉 = 〈v1, w1〉+ 〈v2, w1〉 = 〈v1, w1〉

and

〈v,E†w〉 = 〈Ev,w〉 = 〈v1, w1 + w2〉 = 〈v1, w1〉+ 〈v1, w2〉 = 〈v1, w1〉.

In other words, 〈v, (E − E†)w〉 = 0 for all v, w ∈ V , and hence E = E† (by
Theorem 6.4(i)).

On the other hand, if E2 = E = E†, then we know from Theorem 6.16 that
E is a projection of V on ImE in the direction of KerE, i.e., V = ImE⊕KerE.
Therefore, we need only show that ImE and KerE are orthogonal subspaces.
To show this, let w ∈ ImE and w′ ∈ KerE be arbitrary. Then Ew = w and
Ew′ = 0 so that

〈w′, w〉 = 〈w′, Ew〉 = 〈E†w′, w〉 = 〈Ew′, w〉 = 0.

We are now in a position to prove the spectral theorem for normal operators.
In order to distinguish projection operators from their matrix representations
in this theorem, we denote the operators by πi and the corresponding matrices
by Ei.

Theorem 6.21 (Spectral Theorem for Normal Operators). Let V be a
finite-dimensional unitary space, and let N be a normal operator on V with
distinct eigenvalues λ1, . . . , λr. Then

(i) N = λ1π1 + · · · + λrπr where each πi is the orthogonal projection of V
onto a subspace Wi = Imπi.

(ii) πiπj = 0 for i 6= j.
(iii) π1 + · · ·+ πr = 1.
(iv) V = W1 ⊕ · · · ⊕Wr where the subspaces Wi are mutually orthogonal.
(v) Wj = Imπj = Ker(N − λj1) is the eigenspace corresponding to λj.

Proof. Choose any orthonormal basis {ei} for V , and let A be the matrix rep-
resentation of N relative to this basis. As discussed following Theorem 5.6,
the normal matrix A has the same eigenvalues as the normal operator N . By
Theorem 5.18 we know that A is diagonalizable, and hence applying Theorem
6.19 we may write

A = λ1E1 + · · ·+ λrEr

where E2
i = Ei, EiEj = 0 if i 6= j, and E1 + · · · + Er = I. Furthermore, A

is diagonalized by a unitary matrix P , and as we saw in the proof of Theorem
6.19, Ei = PPiP

† where each Pi is a real diagonal matrix. Since each Pi is
clearly Hermitian, this implies E†

i = Ei, and hence each Ei is an orthogonal
projection (Theorem 6.20).
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Now define πi ∈ L(V ) as that operator whose matrix representation relative
to the basis {ei} is just Ei. From the isomorphism between linear transforma-
tions and their representations (Theorem 4.11), it should be clear that

N = λ1π1 + · · ·+ λrπr

π†
i = πi

π2
i = πi

πiπj = 0 for i 6= j

π1 + · · ·+ πr = 1.

Since π2
i = πi = π†

i , Theorem 6.20 tells us that each πi is an orthogonal
projection of V on the subspace Wi = Imπi. Since π1 + · · · + πr = 1, we see
that for any v ∈ V we have v = π1v+ · · ·+ πrv so that V = W1 + · · ·+Wr. To
show this sum is direct suppose, for example, that

w1 ∈ W1 ∩ (W2 + · · ·+Wr).

This means that w1 = w2 + · · ·+wr where wi ∈ Wi for each i = 1, . . . , r. Since
wi ∈Wi = Imπi, it follows that there exists vi ∈ V such that πivi = wi for each
i. Then

wi = πivi = π2
i vi = πiwi

and if i 6= j, then πiπj = 0 implies

πiwj = (πiπj)vj = 0.

Applying π1 to w1 = w2 + · · ·+ wr, we obtain w1 = π1w1 = 0. Hence we have
shown that W1 ∩ (W2 + · · · + Wr) = {0}. Since this argument can clearly be
applied to any of the Wi, we have proved that V = W1 ⊕ · · · ⊕Wr .

Next we note that for each i, πi is the orthogonal projection of V on Wi =
Imπi in the direction of W⊥

i = Kerπi, so that V = Wi ⊕W⊥
i . Therefore, since

V = W1 ⊕ · · · ⊕Wr , it follows that for each j 6= i we must have Wj ⊂W⊥
i , and

hence the subspaces Wi must be mutually orthogonal. Finally, the fact that
Wj = Ker(N − λj1) was proved in Theorem 6.18.

The observant reader will have noticed the striking similarity between the
spectral theorem and Theorem 6.18. In fact, part of Theorem 6.21 is essentially
a corollary of Theorem 6.18. This is because a normal operator is diagonalizable,
and hence satisfies the hypotheses of Theorem 6.18. However, note that in the
present case we have used the existence of an inner product in our proof, whereas
in Section 6.4, no such structure was assumed to exist.

Theorem 6.22. Let
∑r

j=1 λjEj be the spectral decomposition of a normal op-
erator N on a finite-dimensional unitary space. Then for each i = 1, . . . , r there
exists a polynomial fi(x) ∈ C[x] such that fi(λj) = δij and fi(N) = Ei.
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Proof. For each i = 1, . . . , r we must find a polynomial fi(x) ∈ C[x] with the
property that fi(λj) = δij . It should be obvious that the polynomials fi(x)
defined by

fi(x) =
∏

j 6=i

x− λj

λi − λj

have this property. From the corollary to Theorem 6.19 we have p(N) =∑
j p(λj)Ej for any p(x) ∈ C[x], and hence

fi(N) =
∑

j

fi(λj)Ej =
∑

j

δijEj = Ei

as required.

Exercises

1. Let T be an operator on a finite-dimensional unitary space. Prove T is
unitary if and only if T is normal and |λ| = 1 for every eigenvalue λ of T .

2. Let H be a normal operator on a finite-dimensional unitary space. Prove
that H is Hermitian if and only if every eigenvalue of H is real.

3. Let Vn ⊂ F [x] denote the set of all polynomials of degree ≤ n, and let
a0, a1, . . . , an ∈ F be distinct.

(a) Show Vn is a vector space over F with basis {1, x, x2, . . . , xn}, and
hence that dimVn = n+ 1.

(b) For each i = 0, . . . , n define the mapping Ti : Vn → F by Ti(f) =
f(ai). Show that the Ti are linear functionals on Vn, i.e., that Ti ∈
Vn

∗.
(c) For each k = 0, . . . , n define the polynomial

pk(x) =
(x − a0) · · · (x− ak−1)(x − ak+1) · · · (x− an)

(ak − a0) · · · (ak − ak−1)(ak − ak+1) · · · (ak − an)

=
∏

i6=k

(
x− ai

ak − ai

)
∈ Vn.

Show that Ti(pj) = δij .
(d) Show p0, . . . , pn forms a basis for Vn, and hence that any f ∈ Vn may

be written as

f =

n∑

i=0

f(ai)pi.

(e) Now let b0, b1, . . . , bn ∈ F be arbitrary, and define f =
∑
bipi. Show

f(aj) = bj for 0 ≤ j ≤ n. Thus there exists a polynomial of degree
≤ n that takes on given values at n+ 1 distinct points.
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(f) Now assume that f, g ∈ F [x] are of degree ≤ n and satisfy f(aj) =
bj = g(aj) for 0 ≤ j ≤ n. Prove f = g, and hence that the poly-
nomial defined in part (e) is unique. This is called the Lagrange

interpolation formula.
(g) Let N be an operator on a finite-dimensional unitary space. Prove

that N is normal if and only if N † = g(N) for some polynomial g.
[Hint : If N is normal with eigenvalues λ1, . . . , λr, show the existence
of a polynomial g such that g(λi) = λ∗i for each i.]

6.6 Positive Operators

Before proving the main result of this section (the polar decomposition theorem),
let us briefly discuss functions of a linear transformation. We have already
seen an example of such a function. If A is a normal operator with spectral
decomposition A =

∑
λiEi, then we saw that the linear transformation p(A)

was given by p(A) =
∑
p(λi)Ei where p(x) is any polynomial in C[x] (Corollary

to Theorem 6.19).
In order to generalize this notion, let N be a normal operator on a unitary

space, and hence N has spectral decomposition
∑
λiEi. If f is an arbitrary

complex-valued function (defined at least at each of the λi), we define a linear
transformation f(N) by

f(N) =
∑

i

f(λi)Ei.

What we are particularly interested in is the function f(x) =
√
x defined for all

real x ≥ 0 as the positive square root of x.
Recall (see Section 6.2) that we defined a positive operator P by the require-

ment that P = S†S for some operator S. It is then clear that P † = P , and
hence P is Hermitian (and therefore also normal). From Theorem 6.7(iv), the
eigenvalues of P =

∑
λjEj are real and non-negative, and we can define

√
P by

√
P =

∑

j

√
λjEj

where each λj ≥ 0.

Using the properties of the Ej , it is easy to see that (
√
P )2 = P . Further-

more, since Ej is an orthogonal projection, it follows that E†
j = Ej (Theorem

6.20), and therefore (
√
P )† =

√
P so that

√
P is Hermitian. Note that since

P = S†S we have

〈Pv, v〉 = 〈(S†S)v, v〉 = 〈Sv, Sv〉 = ‖Sv‖2 ≥ 0.

Using
∑
Ej = 1, let us write v =

∑
Ejv =

∑
vj where the nonzero vj are

mutually orthogonal (either from Theorem 6.21(iv) or by direct calculation since

〈vi, vj〉 = 〈Eiv,Ejv〉 = 〈v,E†
iEjv〉 = 〈v,EiEjv〉 = 0 for i 6= j). Then

√
P (v) =

∑

j

√
λjEjv =

∑

j

√
λjvj
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and hence we also have (using 〈vj , vk〉 = 0 if j 6= k)

〈
√
P (v), v〉 =

〈∑

j

√
λjvj ,

∑

k

vk

〉
=
∑

j,k

√
λj〈vj , vk〉 =

∑

j

√
λj〈vj , vj〉

=
∑

j

√
λj ‖vj‖2 ≥ 0.

In summary, we have shown that
√
P satisfies

(PT1) (
√
P )2 = P

(PT2) (
√
P )† =

√
P

(PT3) 〈
√
P (v), v〉 ≥ 0

and it is natural to ask about the uniqueness of any operator satisfying these
three properties. For example, if we let T =

∑±
√
λjEj , then we still have

T 2 =
∑
λjEj = P regardless of the sign chosen for each term. Let us denote

the fact that
√
P satisfies properties (PT2) and (PT3) above by the expression√

P ≥ 0. In other words, by the statement A ≥ 0 we mean A† = A and
〈Av, v〉 ≥ 0 for every v ∈ V (i.e., A is a positive Hermitian operator).

We now claim that if P = T 2 and T ≥ 0, then T =
√
P . To prove this, we

first note that T ≥ 0 implies T † = T (property (PT2)), and hence T must also
be normal. Now let

∑
µiFi be the spectral decomposition of T . Then

∑

i

(µi)
2Fi = T 2 = P =

∑

j

λjEj .

If vi 6= 0 is an eigenvector of T corresponding to µi, then property (PT3) tells
us (using the fact that each µi is real because T is Hermitian)

0 ≤ 〈Tvi, vi〉 = 〈µivi, vi〉 = µi ‖vi‖2 .

But ‖vi‖ > 0, and hence µi ≥ 0. In other words, any operator T ≥ 0 has
nonnegative eigenvalues.

Since each µi is distinct and nonnegative, so is each (µi)
2, and hence each

(µi)
2 must be equal to some λj . Therefore the corresponding Fi and Ej must

be equal (by Theorem 6.21(v)). By suitably numbering the eigenvalues, we may
write (µi)

2 = λi, and thus µi =
√
λi. This shows that

T =
∑

i

µiFi =
∑

i

√
λiEi =

√
P

as claimed.

We summarize this discussion in the next result which gives us three equiv-
alent definitions of a positive transformation.
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Theorem 6.23. Let P be an operator on a unitary space V . Then the following
conditions are equivalent:

(i) P = T 2 for some unique Hermitian operator T ≥ 0.
(ii) P = S†S for some operator S.
(iii) P † = P and 〈Pv, v〉 ≥ 0 for every v ∈ V .

Proof. (i) ⇒ (ii): If P = T 2 and T † = T , then P = TT = T †T .
(ii) ⇒ (iii): If P = S†S, then P † = P and 〈Pv, v〉 = 〈S†Sv, v〉 = 〈Sv, Sv〉 =

‖Sv‖2 ≥ 0.
(iii) ⇒ (i): Note that property (iii) is just our statement that P ≥ 0. Since

P † = P , we see that P is normal, and hence we may write P =
∑
λjEj .

Defining T =
∑√

λjEj , we have T † = T (since every Ej is Hermitian), and the
preceding discussion shows that T ≥ 0 is the unique operator with the property
that P = T 2.

We remark that in the particular case that P is positive definite, then P =
S†S where S is nonsingular. This means that P is also nonsingular.

Finally, we are in a position to prove the last result of this section, the
so-called polar decomposition (or factorization) of an operator. While we
state and prove this theorem in terms of matrices, it should be obvious by now
that it applies just as well to operators. Also note that this theorem is quite
similar to the SVD discussed in Section 5.8 and can in fact be proved as a direct
consequence of Theorem 5.19.

Theorem 6.24 (Polar Decomposition). If A ∈ Mn(C), then there exist
unique positive Hermitian matrices H1, H2 ∈ Mn(C) and (not necessarily
unique) unitary matrices U1, U2 ∈Mn(C) such that A = U1H1 = H2U2. More-
over, H1 = (A†A)1/2 and H2 = (AA†)1/2. In addition, the matrices U1 and U2

are uniquely determined if and only if A is nonsingular.

Proof. Let (λ1)
2, . . . , (λn)2 be the eigenvalues of the positive Hermitian matrix

A†A, and assume the λi are numbered so that λi > 0 for i = 1, . . . , r and
λi = 0 for i = r+1, . . . , n (see Theorem 6.7(iv)). (Note that if A is nonsingular,
then A†A is positive definite and hence r = n.) Applying Theorem 5.18, we let
{v1, . . . , vn} be the corresponding orthonormal eigenvectors of A†A. For each
i = 1, . . . , r we define the vectors wi = Avi/λi. Then

〈wi, wj〉 = 〈Avi/λi, Avj/λj〉 = 〈vi, A
†Avj〉/λiλj

= 〈vi, vj〉(λj)
2/λiλj = δij(λj)

2/λiλj

so that w1, . . . , wr are also orthonormal. We now extend these to an orthonormal
basis {w1, . . . , wn} for Cn. If we define the columns of the matrices V , W ∈
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Mn(C) by V i = vi and W i = wi, then V and W will be unitary by Theorem
5.15.

Defining the Hermitian matrix D ∈Mn(C) by

D = diag(λ1, . . . , λn)

it is easy to see that the equations Avi = λiwi may be written in matrix form
as AV = WD. Using the fact that V and W are unitary, we define U1 = WV †

and H1 = V DV † to obtain

A = WDV † = (WV †)(V DV †) = U1H1.

Since det(λI − V DV †) = det(λI − D), we see that H1 and D have the same
nonnegative eigenvalues, and hence H1 is a positive Hermitian matrix. We can
now apply this result to the matrix A† to write A† = Ũ1H̃1 or A = H̃†

1Ũ
†
1 =

H̃1Ũ
†
1 . If we define H2 = H̃1 and U2 = Ũ †

1 , then we obtain A = H2U2 as desired.
We now observe that using A = U1H1 we may write

A†A = H1U
†
1U1H1 = (H1)

2

and similarly
AA† = H2U2U

†
2H2 = (H2)

2

so that H1 and H2 are unique even if A is singular. Since U1 and U2 are
unitary, they are necessarily nonsingular, and hence H1 and H2 are nonsingular
if A = U1H1 = H2U2 is nonsingular. In this case, U1 = AH−1

1 and U2 = H−1
2 A

will also be unique. On the other hand, suppose A is singular. Then r 6= n and
wr, . . . , wn are not unique. This means U1 = WV † (and similarly U2) is not
unique. In other words, if U1 and U2 are unique, then A must be nonsingular.

The reason this is called the “polar decomposition” is because of its analogy
to complex numbers. Recall that a complex number z can be written in polar
form as z = |z| eiθ = reiθ. Here, the unitary matrix is the analogue of eiθ which
gives a unit length “direction,” and the Hermitian matrix plays the role of a
distance.

Exercises

1. Let V be a unitary space and let E ∈ L(V ) be an orthogonal projection.

(a) Show directly that E is a positive transformation.
(b) Show ‖Ev‖ ≤ ‖v‖ for all v ∈ V .

2. Prove that if A and B are commuting positive transformations, then AB
is also positive.

3. This exercise is related to Exercise 5.5.4. Prove that any representation
{D(a) : a ∈ G} of a finite group G is equivalent to a unitary representation
as follows:
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(a) Consider the matrix X =
∑

a∈GD
†(a)D(a). Show X is Hermitian

and positive definite, and hence that X = S2 for some Hermitian S.
(b) Show D(a)†XD(a) = X .
(c) Show U(a) = SD(a)S−1 is a unitary representation.

6.7 The Matrix Exponential Series*

We now use Theorem 6.19 to prove a very useful result, namely, that any unitary
matrix U can be written in the form eiH for some Hermitian matrix H . Before
proving this however, we must first discuss some of the theory of sequences and
series of matrices. In particular, we must define just what is meant by expres-
sions of the form eiH . If the reader already knows something about sequences
and series of numbers, then the rest of this section should present no difficulty.
However, if not, then the stated results may be taken on faith.

Let {Sr} be a sequence of complex matrices where each Sr ∈ Mn(C) has

entries s
(r)
ij . We say that {Sr} converges to the limit S = (sij) ∈ Mn(C) if

each of the n2 sequences {s(r)
ij } converges to a limit sij . We then write Sr → S

or limr→∞ Sr = S (or even simply limSr = S). In other words, a sequence
{Sr} of matrices converges if and only if every entry of Sr forms a convergent
sequence.

Similarly, an infinite series of matrices

∞∑

r=1

Ar

where Ar = (a
(r)
ij ) is said to be convergent to the sum S = (sij) if the sequence

of partial sums

Sm =
m∑

r=1

Ar

converges to S. Another way to say this is that the series
∑
Ar converges to S if

and only if each of the n2 series
∑
a
(r)
ij converges to sij for each i, j = 1, . . . , n.

We adhere to the convention of leaving off the limits in a series if they are
infinite.

Our next theorem proves several intuitively obvious properties of sequences
and series of matrices.

Theorem 6.25. (i) Let {Sr} be a convergent sequence of n × n matrices with
limit S, and let P be any n× n matrix. Then PSr → PS and SrP → SP .

(ii) If Sr → S and P is nonsingular, then P−1SrP → P−1SP .
(iii) If

∑
Ar converges to A and P is nonsingular, then

∑
P−1ArP con-

verges to P−1AP .
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Proof. (i) Since Sr → S, we have lim s
(r)
ij = sij for all i, j = 1, . . . , n. Therefore

lim(PSr)ij = lim

(∑

k

piks
(r)
kj

)
=
∑

k

pik lim s
(r)
kj =

∑

k

pikskj = (PS)ij .

Since this holds for all i, j = 1, . . . , n we must have PSr → PS. It should be
obvious that we also have SrP → SP .

(ii) As in part (i), we have

lim(P−1SrP )ij = lim

(∑

k,m

p−1
ik s

(r)
kmpmj

)

=
∑

k,m

p−1
ik pmj lim s

(r)
km

=
∑

k,m

p−1
ik pmjskm

= (P−1SP )ij .

Note that we may use part (i) to formally write this as

lim(P−1SrP ) = P−1 lim(SrP ) = P−1SP.

(iii) If we write the mth partial sum as

Sm =
m∑

r=1

P−1ArP = P−1

(
m∑

r=1

Ar

)
P

then we have

lim
m→∞

(Sm)ij =
∑

k,l

lim

[
p−1

ik

(
m∑

r=1

a
(r)
kl

)
plj

]

=
∑

k,l

p−1
ik plj lim

m∑

r=1

a
(r)
kl

=
∑

k,l

p−1
ik pljakl

= (P−1AP )ij .

Theorem 6.26. For any A = (aij) ∈Mn(C) the following series converges:

∞∑

k=0

Ak

k!
= I +A+

A2

2!
+ · · ·+ Ar

r!
+ · · · .
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Proof. Choose a positive real numberM > max{n, |aij |} where the max is taken
over all i, j = 1, . . . , n. Then |aij | < M and n < M < M2. Now consider the

term A2 = (bij) =
(∑

k aikakj

)
. We have (by Theorem 1.17, property (N3))

|bij | ≤
n∑

k=1

|aik| |akj | <
n∑

k=1

M2 = nM2 < M4.

Proceeding by induction, suppose that for Ar = (cij), it has been shown that
|cij | < M2r. Then Ar+1 = (dij) where

|dij | ≤
n∑

k=1

|aik| |ckj | < nMM2r = nM2r+1 < M2(r+1).

This proves Ar = (a
(r)
ij ) has the property that

∣∣∣a(r)
ij

∣∣∣ < M2r for every r ≥ 1.

Now, for each of the n2 terms i, j = 1, . . . , n we have

∞∑

r=0

∣∣∣a(r)
ij

∣∣∣
r!

<
∞∑

r=0

M2r

r!
= exp(M2)

so that each of these n2 series (i.e., for each i, j = 1, . . . , n) must converge by
the comparison test. Hence the series I +A+A2/2! + · · · must converge (since
a series that converges absolutely must converge).

We call the series in Theorem 6.26 the matrix exponential series, and
denote its sum by eA = expA. In general, the series for eA is extremely difficult,
if not impossible, to evaluate. However, there are important exceptions.

Example 6.4. Let A be the diagonal matrix

A =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


 .

Then it is easy to see that

Ar =




(λ1)
r 0 · · · 0

0 (λ2)
r · · · 0

...
...

...

0 0 · · · (λn)r


 .

and hence

expA = I + A+
A2

2!
+ · · · =




eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
...

0 0 · · · eλn


 .
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Example 6.5. Consider the 2× 2 matrix

J =

[
0 −1
1 0

]

and let

A = θJ =

[
0 −θ
θ 0

]

where θ ∈ R. Noting J2 = −I, we see that A2 = −θ2I, A3 = −θ3J , A4 = θ4I,
A5 = θ5J , A6 = −θ6I, and so forth. From elementary calculus we know

sin θ = θ − θ3

3!
+
θ5

5!
− · · ·

and

cos θ = 1− θ2

2!
+
θ4

4!
− · · ·

and hence

eA = I +A+A2/2! + · · ·

= I + θJ − θ2

2!
I − θ3

3!
J +

θ4

4!
I +

θ5

5!
J − θ6

6!
I + · · ·

= I

(
1− θ2

2!
+
θ4

4!
− · · ·

)
+ J

(
θ − θ3

3!
+
θ5

5!
− · · ·

)

= (cos θ)I + (sin θ)J.

In other words, using the explicit forms of I and J we see that

eA =

[
cos θ − sin θ
sin θ cos θ

]

so that eθJ represents a rotation in R2 by an angle θ.

Theorem 6.27. Let A ∈ Mn(C) be diagonalizable, and let λ1, . . . , λr be the
distinct eigenvalues of A. Then the matrix power series

∞∑

s=0

asA
s

converges if and only if the series
∞∑

s=0

as(λi)
s
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converges for each i = 1, . . . , r.

Proof. Since A is diagonalizable, choose a nonsingular matrix P such that D =
P−1AP is diagonal. It is then easy to see that for every s ≥ 1 we have

asD
s = asP

−1AsP = P−1asA
sP

where the n diagonal entries of Ds are just the numbers (λi)
s. By Theorem

6.25(iii), we know that
∑
asA

s converges if and only if
∑
asD

s converges. But
by definition of series convergence,

∑
asD

s converges if and only if
∑

s as(λi)
s

converges for every i = 1, . . . , r.

Theorem 6.28. Let f(x) = a0 + a1x+ a2x
2 + · · · be any power series with co-

efficients in C, and let A ∈Mn(C) be diagonalizable with spectral decomposition
A = λ1E1 + · · ·+ λrEr. Then, if the series

f(A) = a0I + a1A+ a2A
2 + · · ·

converges, its sum is

f(A) = f(λ1)E1 + · · ·+ f(λr)Er .

Proof. As in the proof of Theorem 6.19, let the diagonal form of A be

D = P−1AP = λ1P1 + · · ·+ λrPr

so that Ei = PPiP
−1. Now note that

P−1f(A)P = a0P
−1P + a1P

−1AP + a2P
−1APP−1AP + · · ·

= a0I + a1D + a2D
2 + · · ·

= f(P−1AP )

= f(D).

Using properties (i)–(iii) of Theorem 6.19 applied to the Pi, it is easy to see
that Dk = (λ1)

kP1 + · · ·+ (λr)
kPr and hence

f(D) = f(λ1)P1 + · · ·+ f(λr)Pr.

Then if f(A) =
∑
akA

k converges, so does
∑
P−1akA

kP = P−1f(A)P = f(D)
(Theorem 6.25(iii)), and we have

f(A) = f(PDP−1) = Pf(D)P−1 = f(λ1)E1 + · · ·+ f(λr)Er.
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Example 6.6. Consider the exponential series eA where A is diagonalizable.
Then, if λ1, . . . , λr are the distinct eigenvalues of A, we have the spectral de-
composition A = λ1E1 + · · ·+ λrEr. Using f(A) = eA, Theorem 6.28 yields

eA = eλ1E1 + · · ·+ eλrEr

in agreement with Example 6.4.

We can now prove our earlier assertion that a unitary matrix U can be
written in the form eiH for some Hermitian matrix H .

Theorem 6.29. Every unitary matrix U can be written in the form eiH for
some Hermitian matrix H. Conversely, if H is Hermitian, then eiH is unitary.

Proof. By Theorem 6.7(ii), the distinct eigenvalues of U may be written in the
form eiλ1 , . . . , eiλk where each λi is real. Since U is also normal, it follows from
Theorem 5.18 that there exists a unitary matrix P such that P †UP = P−1UP
is diagonal. In fact

P−1UP = eiλ1P1 + · · ·+ eiλkPk

where the Pi are the idempotent matrices used in the proof of Theorem 6.19.
From Example 6.4 we see that the matrix eiλ1P1 + · · · + eiλkPk is just eiD

where

D = λ1P1 + · · ·+ λkPk

is a diagonal matrix with the λi as diagonal entries. Therefore, using Theorem
6.25(iii) we see that

U = PeiDP−1 = eiPDP−1

= eiH

where H = PDP−1. Since D is a real diagonal matrix it is clearly Hermitian,
and since P is unitary (so that P−1 = P †), it follows that H† = (PDP †)† =
PDP † = H so that H is Hermitian also.

Conversely, suppose H is Hermitian with distinct real eigenvalues λ1, . . . , λk.
Since H is also normal, there exists a unitary matrix P that diagonalizes H .
Then as above, we may write this diagonal matrix as

P−1HP = λ1P1 + · · ·+ λkPk

so that (from Example 6.4 again)

P−1eiHP = eiP−1HP = eiλ1P1 + · · ·+ eiλkPk.
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Using the properties of the Pi, it is easy to see that the right hand side of this
equation is diagonal and unitary. Indeed, using

(eiλ1P1 + · · ·+ eiλkPk)† = e−iλ1P1 + · · ·+ e−iλkPk

we have
(eiλ1P1 + · · ·+ eiλkPk)†(eiλ1P1 + · · ·+ eiλkPk) = I

and
(eiλ1P1 + · · ·+ eiλkPk)(eiλ1P1 + · · ·+ eiλkPk)† = I.

Therefore the left hand side must also be unitary, and hence (using P−1 = P †)

I = (P−1eiHP )†(P−1eiHP )

= P †(eiH)†PP−1eiHP

= P †(eiH)†eiHP

so that PP−1 = I = (eiH)†eiH . Similarly we see that eiH(eiH)† = I, and thus
eiH is unitary.

While this theorem is also true in infinite dimensions (i.e., in a Hilbert space),
its proof is considerably more difficult. The reader is referred to the books listed
in the bibliography for this generalization.

Given a constant matrix A, we now wish to show that

detA

dt
= AetA. (6.1)

To see this, we first define the derivative of a matrix M = M(t) to be that
matrix whose elements are just the derivatives of the corresponding elements of
M . In other words, if M(t) = (mij(t)), then (dM/dt)ij = dmij/dt. Now note
that (with M(t) = tA)

etA = I + tA+
(tA)2

2!
+

(tA)3

3!
+ · · ·

and hence (since the aij are constant) taking the derivative with respect to t
yields the desired result:

detA

dt
= 0 +A+ tAA+

(tA)2A

2!
+ · · ·

= A

[
I + tA+

(tA)2

2!
+ · · ·

]

= AetA.

Next, given two matrices A and B (of compatible sizes), we recall their
commutator is the matrix [A,B] = AB − BA = −[B,A]. If [A,B] = 0, then
AB = BA and we say that A and B commute. Now consider the function
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f(x) = exABe−xA. Leaving it to the reader to verify that the product rule for
derivatives also holds for matrices, we obtain (note that AexA = exAA)

df

dx
= AexABe−xA − exABe−xAA = Af − fA = [A, f ]

d2f

dx2
= [A, df/dx] = [A, [A, f ]]

...

Expanding f(x) in a Taylor series about x = 0, we find (using f(0) = B)

f(x) = f(0) +

(
df

dx

)

0

x+

(
d2f

dx2

)

0

x2

2!
+ · · ·

= B + [A,B]x + [A, [A,B]]
x2

2!
+ · · · .

Setting x = 1, we finally obtain

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · (6.2)

Note that setting B = I shows that eAe−A = I as we would hope.
In the particular case that both A and B commute with their commutator

[A,B], then we find from equation (6.2) that eABe−A = B + [A,B] and hence
eAB = BeA + [A,B]eA or

[eA, B] = [A,B]eA. (6.3)

Example 6.7. We now show that if A and B are two matrices that both com-
mute with their commutator [A,B], then

eAeB = exp

{
A+B +

1

2
[A,B]

}
. (6.4)

(This is sometimes referred to as Weyl’s formula.)
To prove this, we start with the function f(x) = exAexBe−x(A+B). Then

df

dx
= exAAexBe−x(A+B) + exAexBBe−x(A+B) − exAexB(A+B)e−x(A+B)

= exAAexBe−x(A+B) − exAexBAe−x(A+B)

= exA[A, exB]e−x(A+B) (6.5)

As a special case, note [A,B] = 0 implies df/dx = 0 so that f is independent of x.
Since f(0) = I, it follows that we may choose x = 1 to obtain eAeBe−(A+B) = I
or eAeB = eA+B (as long as [A,B] = 0).
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From equation (6.3) we have (replacing A by xB and B by A) [A, exB] =
x[A,B]exB. Using this along with the fact that A commutes with the commu-
tator [A,B] (so that exA[A,B] = [A,B]exA), we have

df

dx
= xexA[A,B]exBe−x(A+B) = x[A,B]f.

Since A and B are independent of x, we may formally integrate this from 0 to
x to obtain

ln
f(x)

f(0)
= [A,B]

x2

2
.

Using f(0) = I, this is f(x) = exp{[A,B]x2/2} so that setting x = 1 we find

eAeBe−(A+B) = exp

{
1

2
[A,B]

}
.

Finally, multiplying this equation from the right by eA+B and using the fact
that[[A,B]/2, A+B] = 0 yields equation (6.4).

Exercises

1. (a) Let N be a normal operator on a finite-dimensional unitary space.
Prove

det eN = etr N .

(b) Prove this holds for any N ∈Mn(C). [Hint : Use Theorem 5.17.]

2. If the limit of a sequence of unitary operators exists, is it also unitary?
Why?

3. Let T be a unitary operator. Show the sequence {T n : n = 0, 1, 2, . . .}
contains a subsequence {T nk : k = 0, 1, 2, . . .} that converges to a unitary
operator. [Hint : You will need the fact that the unit disk in C2 is compact.]
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Chapter 7

Linear Forms

7.1 Bilinear Forms

Let U and V be vector spaces over F . We say that a mapping f : U × V → F
is bilinear if it has the following properties for all u1, u2 ∈ U , for all v1, v2 ∈ V
and all a, b ∈ F :

(BM1) f(au1 + bu2, v1) = af(u1, v1) + bf(u2, v1).
(BM2) f(u1, av1 + bv2) = af(u1, v1) + bf(u1, v2).

In other words, f is bilinear if for each v ∈ V the mapping u 7→ f(u, v) is linear,
and if for each u ∈ U the mapping v 7→ f(u, v) is linear. In the particular case
that V = U , then the bilinear map f : V × V → F is called a bilinear form

on V . Rather than write expressions like f(u, v), we will sometimes write the
bilinear map as 〈u, v〉 if there is no need to refer to the mapping f explicitly.
While this notation is used to denote several different operations, the context
generally makes it clear exactly what is meant.

We say the bilinear map f : U × V → F is nondegenerate if f(u, v) = 0
for all v ∈ V implies u = 0, and f(u, v) = 0 for all u ∈ U implies v = 0.

Example 7.1. Suppose A = (aij) ∈ Mn(F). Then we may interpret A as a
bilinear form on Fn as follows. In terms of the standard basis {ei} for Fn, any
X ∈ Fn may be written as X =

∑
xiei, and hence for all X , Y ∈ Fn we define

the bilinear form fA by

fA(X,Y ) =
∑

i,j

aijxiyj = XTAY.

Here the row vector XT is the transpose of the column vector X , and the
expression XTAY is just the usual matrix product. It should be easy for the
reader to verify that fA is actually a bilinear form on Fn.

293
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Example 7.2. Recall from Section 4.1 that the vector space V ∗ = L(V,F) :
V → F is defined to be the space of linear functionals on V . In other words, if
φ ∈ V ∗, then for every u, v ∈ V and a, b ∈ F we have

φ(au+ bv) = aφ(u) + bφ(v) ∈ F .

The space V ∗ is called the dual space of V . If V is finite-dimensional, then
viewing F as a one-dimensional vector space (over F), it follows from The-
orem 4.4 that dimV ∗ = dimV . In particular, given a basis {ei} for V , the
proof of Theorem 4.4 showed that a unique basis {ωi} for V ∗ is defined by the
requirement that

ωi(ej) = δi
j

where we now again use superscripts to denote basis vectors in the dual space.
We refer to the basis {ωi} for V ∗ as the basis dual to the basis {ei} for V .
Elements of V ∗ are usually referred to as 1-forms, and are commonly denoted
by Greek letters such as β, φ, θ and so forth. Similarly, we often refer to the ωi

as basis 1-forms.
Suppose α, β ∈ V ∗. Since α and β are linear, we may define a bilinear form

f : V × V → F by
f(u, v) = α(u)β(v)

for all u, v ∈ V . This form is usually denoted by α⊗β and is called the tensor

product of α and β. In other words, the tensor product of two elements α,
β ∈ V ∗ is defined for all u, v ∈ V by

(α⊗ β)(u, v) = α(u)β(v).

We may also define the bilinear form g : V × V → F by

g(u, v) = α(u)β(v) − α(v)β(u).

We leave it to the reader to show that this is indeed a bilinear form. The
mapping g is usually denoted by α ∧ β, and is called the wedge product or
the antisymmetric tensor product of α and β. In other words

(α ∧ β)(u, v) = α(u)β(v) − α(v)β(u).

Note that α ∧ β is just α ⊗ β − β ⊗ α. We will have much more to say about
these mappings in Chapter 8.

Generalizing Example 7.1 leads to the following theorem.

Theorem 7.1. Given a bilinear map f : Fm ×Fn → F , there exists a unique
matrix A ∈ Mm×n(F) such that f = fA. In other words, there exists a unique
matrix A such that f(X,Y ) = XTAY for all X ∈ Fm and Y ∈ Fn.
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Proof. In terms of the standard bases for Fm and Fn, we have the column
vectors X =

∑m
i=1 xiei ∈ Fm and Y =

∑n
j=1 yjej ∈ Fn. Using the bilinearity

of f we then have

f(X,Y ) = f

(∑

i

xiei,
∑

j

yjej

)
=
∑

i,j

xiyjf(ei, ej).

If we define aij = f(ei, ej), then we see our expression becomes

f(X,Y ) =
∑

i,j

xiaijyj = XTAY.

To prove the uniqueness of the matrix A, suppose there exists a matrix A′

such that f = fA′ . Then for all X ∈ Fm and Y ∈ Fn we have

f(X,Y ) = XTAY = XTA′Y

and hence XT (A−A′)Y = 0. Now let C = A−A′ so that

XTCY =
∑

i,j

cijxiyj = 0

for all X ∈ Fm and Y ∈ Fn. In particular, choosing X = ei and Y = ej , we
find that cij = 0 for every i and j. Thus C = 0 so that A = A′.

The matrix A defined in this theorem is said to represent the bilinear
map f relative to the standard bases for Fm and Fn. It thus appears that f
is represented by the mn elements aij = f(ei, ej). It is extremely important
to realize that the elements aij are defined by the expression f(ei, ej) and,
conversely, given a matrix A = (aij), we define the expression f(ei, ej) by
requiring f(ei, ej) = aij . In other words, to say we are given a bilinear map
f : Fm × Fn → F means that we are given values of f(ei, ej) for each i and
j. Then, given these values, we can evaluate expressions of the form f(X,Y ) =∑

i,j xiyjf(ei, ej). Conversely, if we are given each of the f(ei, ej), then we have
defined a bilinear map on Fm ×Fn.

We denote the set of all bilinear maps on U and V by B(U × V,F) and
the set of all bilinear forms as simply B(V ) = B(V × V,F). It is easy to make
B(U × V,F) into a vector space over F . To do so, we simply define

(af + bg)(u, v) = af(u, v) + bg(u, v)

for any f , g ∈ B(U × V,F) and a, b ∈ F . The reader should have no trouble
showing that af + bg is itself a bilinear mapping.

It is left to the reader (see Exercise 7.1.1) to show that the association
A 7→ fA defined in Theorem 7.1 is actually an isomorphism between Mm×n(F)
and B(Fm×Fn,F). More generally, it should be clear that Theorem 7.1 applies
equally well to any pair of finite-dimensional vector spaces U and V , and from
now on we shall treat it as such.
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Theorem 7.2. Let V be finite-dimensional over F , and let V ∗ have basis {ωi}.
Define the elements f ij ∈ B(V ) by

f ij(u, v) = ωi(u)ωj(v)

for all u, v ∈ V . Then {f ij} forms a basis for B(V ) which thus has dimension
(dimV )2.

Proof. Let {ei} be the basis for V dual to the {ωi} basis for V ∗, and define
aij = f(ei, ej). Given any f ∈ B(V ), we claim that f =

∑
i,j aijf

ij . To prove

this, it suffices to show that f(er, es) =
(∑

i,j aijf
ij
)
(er, es) for all r and s.

We first note that
(∑

i,j

aijf
ij

)
(er, es) =

∑

i,j

aijω
i(er)ω

j(es)

=
∑

i,j

aijδ
i
rδ

j
s = ars

= f(er, es).

Since f is bilinear, it follows from this that f(u, v) =
(∑

i,j aijf
ij
)
(u, v) for all

u, v ∈ V so that f =
∑

i,j aijf
ij . Hence {f ij} spans B(V ).

Now suppose
∑

i,j aijf
ij = 0 (note this 0 is actually an element of B(V )).

Applying this to (er, es) and using the above result, we see that

0 =

(∑

i,j

aijf
ij

)
(er, es) = ars.

Therefore {f ij} is linearly independent and hence forms a basis for B(V ).

It should be mentioned in passing that the functions f ij defined in Theorem
7.2 can be written as the tensor product ωi ⊗ ωj : V × V → F (see Example
7.2). Thus the set of bilinear forms ωi⊗ωj forms a basis for the space V ∗⊗V ∗

which is called the tensor product of the two spaces V ∗. This remark is not
meant to be a complete treatment by any means, and we will return to these
ideas in Chapter 8.

We also note that if {ei} is a basis for V and dimV = n, then the matrix
A of any f ∈ B(V ) has elements aij = f(ei, ej), and hence A = (aij) has n2

independent elements. Thus, dimB(V ) = n2 as we saw above.

Theorem 7.3. Let P be the transition matrix from a basis {ei} for V to a new
basis {ēi}. If A is the matrix of f ∈ B(V ) relative to {ei}, then Ā = PTAP is
the matrix of f relative to the basis {ēi}.



7.1. BILINEAR FORMS 297

Proof. Let X , Y ∈ V be arbitrary. In Section 4.4 we showed that the transition
matrix P = (pij) defined by ēi = P (ei) =

∑
j ejpji also transforms the compo-

nents of X =
∑

i xiei =
∑

j x̄j ēj as xi =
∑

j pij x̄j . In matrix notation, this may

be written as [X ]e = P [X ]ē (see Theorem 4.14), and hence [X ]Te = [X ]Tē P
T .

From Theorem 7.1 we then have

f(X,Y ) = [X ]Te A[Y ]e = [X ]Tē [P ]TA[P ][Y ]ē = [X ]Tē Ā[Y ]ē.

Since X and Y are arbitrary, this shows that Ā = PTAP is the unique repre-
sentation of f in the new basis {ēi}.

Just as the transition matrix led to the definition of a similarity transforma-
tion, we now say that a matrix B is congruent to a matrix A if there exists
a nonsingular matrix P such that B = PTAP . It is easy to see that con-
gruent matrices have the same rank. Indeed, by Theorem 2.16 we know that
rank(P ) = rank(PT ). Then using Theorem 5.20 it follows that

rank(B) = rank(PTAP ) = rank(AP ) = rank(A).

We are therefore justified in defining rank(f), the rank of a bilinear form f
on V , to be the rank of any matrix representation of f . We leave it to the reader
to show that f is nondegenerate if and only if rank(f) = dimV (see Exercise
7.1.3).

Exercises

1. Show the association A 7→ fA defined in Theorem 7.1 is an isomorphism
between Mm×m(F) and B(Fm × Fn,F).

2. Let V = Mm×n(F) and suppose A ∈ Mm(F) is fixed. Then for any X ,
Y ∈ V we define the mapping fA : V ×V → F by fA(X,Y ) = tr(XTAY ).
Show this defines a bilinear form on V .

3. Prove that a bilinear form f on V is nondegenerate if and only if rank(f) =
dimV .

4. (a) Let V = R3 and define f ∈ B(V ) by

f(X,Y ) = 3x1y1 − 2x1y2 + 5x2y1 + 7x2y2 − 8x2y3 + 4x3y2 − x3y3.

Write out f(X,Y ) as a matrix product XTAY .
(b) Suppose A ∈Mn(F) and let f(X,Y ) = XTAY for X , Y ∈ Fn. Show

f ∈ B(Fn).

5. Let V = R2 and define f ∈ B(V ) by

f(X,Y ) = 2x1y1 − 3x1y2 + x2y2.

(a) Find the matrix representation A of f relative to the basis v1 = (1, 0),
v2 = (1, 1).
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(b) Find the matrix representation Ā of f relative to the basis v̄1 = (2, 1),
v̄2 = (1,−1).

(c) Find the transition matrix P from the basis {vi} to the basis {v̄i} and
verify that Ā = PTAP .

6. Let V = Mn(C), and for all A, B ∈ V define

f(A,B) = n tr(AB) − (trA)(trB).

(a) Show this defines a bilinear form on V .
(b) Let U ⊂ V be the subspace of traceless matrices. Show that f is

degenerate, but that fU = f |U is nondegenerate.
(c) Let W ⊂ V be the subspace of all traceless skew-Hermitian matrices

A (i.e., trA = 0 and A† = A∗T = −A). Show fW = f |W is negative
definite, i.e., that fW (A,A) < 0 for all nonzero A ∈W .

(d) Let Ṽ ⊂ V be the set of all matrices A ∈ V with the property that

f(A,B) = 0 for all B ∈ V . Show Ṽ is a subspace of V . Give an

explicit description of Ṽ and find its dimension.

7.2 Symmetric and Antisymmetric Bilinear Forms

An extremely important type of bilinear form is one for which f(u, u) = 0 for
all u ∈ V . Such forms are said to be alternating. If f is alternating, then for
every u, v ∈ V we have

0 = f(u+ v, u+ v)

= f(u, u) + f(u, v) + f(v, u) + f(v, v)

= f(u, v) + f(v, u)

and hence
f(u, v) = −f(v, u).

A bilinear form that satisfies this condition is called antisymmetric (or skew-

symmetric).
It is also worth pointing out the simple fact that the diagonal matrix elements

of any representation of an alternating (or antisymmetric) bilinear form will
necessarily be zero. This is because the diagonal elements are given by aii =
f(ei, ei) = 0.

Theorem 7.4. Let f ∈ B(V ) be alternating. Then there exists a basis for V in
which the matrix A of f takes the block diagonal form

A = M ⊕ · · · ⊕M ⊕ 0⊕ · · · ⊕ 0

where 0 is the 1× 1 matrix (0), and

M =

[
0 1
−1 0

]
.
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Moreover, the number of blocks consisting of the matrix M is just (1/2) rank(f).

Proof. We first note the theorem is clearly true if f = 0. Next we note that if
dimV = 1, then any vector vi ∈ V is of the form vi = aiu for some basis vector
u and scalar ai. Therefore, for any v1, v2 ∈ V we have

f(v1, v2) = f(a1u, a2u) = a1a2f(u, u) = 0

so that again f = 0. We now assume f 6= 0 and dimV > 1, and proceed
by induction on dimV . In other words, we assume the theorem is true for
dimV < n, and proceed to show it is also true for dimV = n.

Since dimV > 1 and f 6= 0, there exist nonzero vectors u1, u2 ∈ V such that
f(u1, u2) 6= 0. Moreover, we can always multiply u1 by the appropriate scalar
so that

f(u1, u2) = 1 = −f(u2, u1).

It is also true that u1 and u2 must be linearly independent because if u2 = ku1,
then f(u1, u2) = f(u1, ku1) = kf(u1, u1) = 0.

We now define the two-dimensional subspace U ⊂ V spanned by the vectors
{u1, u2}. By definition, the matrix (aij) ∈ M2(F) of f restricted to U is given
by aij = f(ui, uj), and hence it is easy to see that (aij) is given by the matrix
M defined in the statement of the theorem.

Since any u ∈ U is of the form u = au1 + bu2, we see that

f(u, u1) = af(u1, u1) + bf(u2, u1) = −b

and
f(u, u2) = af(u1, u2) + bf(u2, u2) = a.

Now define the set

W = {w ∈ V : f(w, u) = 0 for every u ∈ U}.

We claim that V = U ⊕W (compare this with Theorem 1.22).
To show U ∩W = {0}, we assume v ∈ U ∩W . Then v ∈ U has the form

v = αu1 + βu2 for some scalars α and β. But v ∈W so that 0 = f(v, u1) = −β
and 0 = f(v, u2) = α, and hence v = 0. We now show V = U +W .

Let v ∈ V be arbitrary, and define the vectors

u = f(v, u2)u1 − f(v, u1)u2 ∈ U
w = v − u.

If we can show w ∈ W , then we will have shown that v = u + w ∈ U +W as
desired. But this is easy to do since we have

f(u, u1) = f(v, u2)f(u1, u1)− f(v, u1)f(u2, u1) = f(v, u1)

f(u, u2) = f(v, u2)f(u1, u2)− f(v, u1)f(u2, u2) = f(v, u2)
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and therefore we find that

f(w, u1) = f(v − u, u1) = f(v, u1)− f(u, u1) = 0

f(w, u2) = f(v − u, u2) = f(v, u2)− f(u, u2) = 0.

These equations show that f(w, u) = 0 for every u ∈ U , and thus w ∈ W .
This completes the proof that V = U ⊕W , and hence it follows that dimW =
dimV − dimU = n− 2 < n.

Next we note that the restriction of f to W is just an alternating bilinear
form on W and therefore, by our induction hypothesis, there exists a basis
{u3, . . . , un} for W such that the matrix of f restricted to W has the desired
form. But the matrix of V is the direct sum of the matrices of U and W , where
the matrix of U was shown above to be M . Therefore {u1, u2, . . . , un} is a basis
for V in which the matrix of f has the desired form.

Finally, it should be clear that the rows of the matrix of f that are made up
of the portion M ⊕ · · · ⊕M are necessarily linearly independent (by definition
of direct sum and the fact that the rows of M are independent). Since each M
contains two rows, we see that rank(f) = rr(f) is precisely twice the number of
M matrices in the direct sum.

Corollary 1. Any nonzero alternating bilinear form must have even rank.

Proof. Since the number of M blocks in the matrix of f is (1/2) rank(f), it
follows that rank(f) must be an even number.

Corollary 2. If there exists a nondegenerate, alternating form on V , then
dimV is even.

Proof. This is Exercise 7.2.7.

If f ∈ B(V ) is alternating, then the matrix elements aij representing f
relative to any basis {ei} for V are given by

aij = f(ei, ej) = −f(ej, ei) = −aji.

Any matrix A = (aij) ∈ Mn(F) with the property that aij = −aji (i.e., A =
−AT ) is said to be antisymmetric. If we are given any element aij of an
antisymmetric matrix, then we automatically know aji. Because of this, we
say aij and aji are not independent. Since the diagonal elements of any
such antisymmetric matrix must be zero, this means the maximum number
of independent elements in A is given by (n2 − n)/2. Therefore the subspace
of B(V ) consisting of nondegenerate alternating bilinear forms is of dimension
n(n− 1)/2.



7.2. SYMMETRIC AND ANTISYMMETRIC BILINEAR FORMS 301

Another extremely important class of bilinear forms on V is that for which
f(u, v) = f(v, u) for all u, v ∈ V . In this case we say that f is symmetric, and
we have the matrix representation

aij = f(ei, ej) = f(ej, ei) = aji.

As expected, any matrix A = (aij) with the property that aij = aji (i.e.,
A = AT ) is said to be symmetric. In this case, the number of independent
elements of A is [(n2− n)/2] +n = (n2 +n)/2, and hence the subspace of B(V )
consisting of symmetric bilinear forms has dimension n(n+ 1)/2.

It is also easy to prove generally that a matrix A ∈ Mn(F) represents a
symmetric bilinear form on V if and only if A is a symmetric matrix. Indeed,
if f is a symmetric bilinear form, then for all X , Y ∈ V we have

XTAY = f(X,Y ) = f(Y,X) = Y TAX.

But XTAY is just a 1 × 1 matrix, and hence (XTAY )T = XTAY . Therefore
(using Theorem 2.15) we have

Y TAX = XTAY = (XTAY )T = Y TATXTT = Y TATX.

Since X and Y are arbitrary, this implies A = AT . Conversely, suppose A is a
symmetric matrix. Then for all X , Y ∈ V we have

XTAY = (XTAY )T = Y TATXTT = Y TAX

so that A represents a symmetric bilinear form. The analogous result holds for
antisymmetric bilinear forms as well (see Exercise 7.2.2).

Note that adding the dimensions of the symmetric and antisymmetric sub-
spaces of B(V ) we find

n(n− 1)/2 + n(n+ 1)/2 = n2 = dimB(V ).

This should not be surprising since, for an arbitrary bilinear form f ∈ B(V ) and
any X , Y ∈ V , we can always write

f(X,Y ) = (1/2)[f(X,Y ) + f(Y,X)] + (1/2)[f(X,Y )− f(Y,X)].

In other words, any bilinear form can always be written as the sum of a sym-
metric and an antisymmetric bilinear form.

There is another particular type of form that is worth distinguishing. In
particular, let V be finite-dimensional over F , and let f = 〈· , ·〉 be a symmetric
bilinear form on V . We define the mapping q : V → F by

q(X) = f(X,X) = 〈X,X〉

for everyX ∈ V . The mapping q is called the quadratic form associated with
the symmetric bilinear form f . It is clear that (by definition) q is represented
by a symmetric matrix A, and hence it may be written in the alternative forms

q(X) = XTAX =
∑

i,j

aijxixj =
∑

i

aii(xi)
2 + 2

∑

i<j

aijxixj .
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This expression for q in terms of the variables xi is called the quadratic poly-

nomial corresponding to the symmetric matrix A. In the case where A happens
to be a diagonal matrix, then aij = 0 for i 6= j and we are left with the simple
form q(X) = a11(x1)

2+· · ·+ann(xn)2. In other words, the quadratic polynomial
corresponding to a diagonal matrix contains no “cross product” terms.

While we will show in the next section that every quadratic form has a
diagonal representation, let us first look at a special case.

Example 7.3. Consider the real quadratic polynomial on Rn defined by

q(Y ) =
∑

i,j

bijyiyj

(where bij = bji as usual for a quadratic form). If it happens that b11 = 0 but,
for example, that b12 6= 0, then we make the substitutions

y1 = x1 + x2

y2 = x1 − x2

yi = xi for i = 3, . . . , n.

A little algebra (which you should check) then shows that q(Y ) takes the form

q(Y ) =
∑

i,j

cijxixj

where now c11 6= 0. This means we can focus our attention on the case q(X) =∑
i,j aijxixj where it is assumed that a11 6= 0.
Thus, given the real quadratic form q(X) =

∑
i,j aijxixj where a11 6= 0, let

us make the substitutions

x1 = y1 − (1/a11)[a12y2 + · · ·+ a1nyn]

xi = yi for each i = 2, . . . , n.

Some more algebra shows that q(X) now takes the form

q(x1, . . . , xn) = a11(y1)
2 + q′(y2, . . . , yn)

where q′ is a new quadratic polynomial. Continuing this process, we eventually
arrive at a new set of variables in which q has a diagonal representation. This
is called completing the square.

Given any quadratic form q, it is possible to fully recover the values of f
from those of q. To show this, let u, v ∈ V be arbitrary. Then

q(u+ v) = 〈u+ v, u + v〉



7.2. SYMMETRIC AND ANTISYMMETRIC BILINEAR FORMS 303

= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= q(u) + 2f(u, v) + q(v)

and therefore
f(u, v) = (1/2)[q(u+ v)− q(u)− q(v)].

This equation is called the polar form of f .

Exercises

1. (a) Show that if f is a nondegenerate, antisymmetric bilinear form on V ,
then n = dim V is even.

(b) Show there exists a basis for V in which the matrix of f takes the
block matrix form [

0 D
−D 0

]

where D is the (n/2)× (n/2) matrix




0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0


 .

2. Show that a matrix A ∈Mn(F) represents an antisymmetric bilinear form
on V if and only if A is antisymmetric.

3. Reduce each of the following quadratic forms to diagonal form:

(a) q(x, y, z) = 2x2 − 8xy + y2 − 16xz + 14yz + 5z2.
(b) q(x, y, z) = x2 − xz + y2.
(c) q(x, y, z) = xy + y2 + 4xz + z2.
(d) q(x, y, z) = xy + yz.

4. (a) Find all antisymmetric bilinear forms on R3.
(b) Find a basis for the space of all antisymmetric bilinear forms on Rn.

5. Let V be finite-dimensional over C. Prove:

(a) The equation

(Ef)(u, v) = (1/2)[f(u, v)− f(v, u)]

for every f ∈ B(V ) defines a linear operator E on B(V ).
(b) E is a projection, i.e., E2 = E.
(c) If T ∈ L(V ), the equation

(T †f)(u, v) = f(Tu, T v)

defines a linear operator T † on B(V ).
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(d) ET † = T †E for all T ∈ B(V ).

6. Let V be finite-dimensional over C, and suppose f , g ∈ B(V ) are antisym-
metric. Show there exists an invertible T ∈ L(V ) such that f(Tu, T v) =
g(u, v) for all u, v ∈ V if and only if f and g have the same rank.

7. Prove Corollary 2 of Theorem 7.4.

7.3 Diagonalization of Symmetric Bilinear Forms

We now turn to the diagonalization of quadratic forms. One obvious way to
accomplish this in the case of a real quadratic form is to treat the matrix rep-
resentation A of the quadratic form as the matrix representation of a linear
operator. Then from the corollary to Theorem 5.18 we know that there exists
an orthogonal matrix S that diagonalizes A so that S−1AS = STAS is diagonal.
Hence from Theorem 7.3 it follows that this will represent the quadratic form
in the new basis.

However, there is an important distinction between bilinear forms and linear
operators. In order to diagonalize a linear operator we must find its eigenvalues
and eigenvectors. This is possible because a linear operator is a mapping from a
vector space V into itself, so the equation Tv = λv makes sense. But a bilinear
form is a mapping from V × V → F , and the concept of an eigenvalue has no
meaning in this case.

We can avoid this issue because it is also possible to diagonalize a symmetric
bilinear form using a nonorthogonal transformation. It is this approach that we
follow in the proof of our next theorem. After the proof we will give an example
that should clarify the algorithm that was described. Note that there is no
requirement in this theorem that the bilinear form be real, and in fact it applies
to a vector space over any field.

Theorem 7.5. Let f be a symmetric bilinear form on a finite-dimensional space
V . Then there exists a basis {ei} for V in which f is represented by a diagonal
matrix. Alternatively, if f is represented by a (symmetric) matrix A in one
basis, then there exists a nonsingular transition matrix P to the basis {ei} such
that PTAP is diagonal.

Proof. Let the (symmetric) matrix representation of f be A = (aij) ∈ Mn(F),
and first assume a11 6= 0. For each i = 2, . . . , n we multiply the ith row of
A by a11, and then add −ai1 times the first row to this new ith row. In
other words, this combination of two elementary row operations results in Ai →
a11Ai − ai1A1. Following this procedure for each i = 2, . . . , n yields the first
column of A in the form A1 = (a11, 0, . . . , 0) (remember this is a column vector,
not a row vector). We now want to put the first row of A into the same form.
However, this is easy because A is symmetric. We thus perform exactly the same
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operations (in the same sequence), but on columns instead of rows, resulting in
Ai → a11A

i − ai1A
1. Therefore the first row is also transformed into the form

A1 = (a11, 0, . . . , 0). In other words, this sequence of operations results in the
transformed A having the block matrix form

[
a11 0
0 B

]

where B is a matrix of size less than that of A. We can also write this in the
form (a11)⊕B.

Now look carefully at what we did in the particular case of i = 2. Let
us denote the multiplication operation by the elementary matrix Em, and the
addition operation by Ea (see Section 2.7). Then what was done in performing
the row operations was simply to carry out the multiplication (EaEm)A. Next,
because A is symmetric, we carried out exactly the same operations but applied
to the columns instead of the rows. As we saw at the end of Section 2.7, this
is equivalent to the multiplication A(ET

mE
T
a ). In other words, for i = 2 we

effectively carried out the multiplication

EaEmAE
T
mE

T
a .

For each succeeding value of i we then carried out this same procedure, and the
final net effect on A was simply a multiplication of the form

Es · · ·E1AE
T
1 · · ·ET

s

which resulted in the block matrix (a11) ⊕ B shown above. Furthermore, note
that if we let S = ET

1 · · ·ET
s = (Es · · ·E1)

T , then (a11) ⊕ B = STAS must be
symmetric since (STAS)T = STATS = STAS. This means that in fact the
matrix B must also be symmetric.

We can now repeat this procedure on the matrix B and, by induction, we
eventually arrive at a diagonal representation of A given by

D = Er · · ·E1AE
T
1 · · ·ET

r

for some set of elementary row transformations Ei. But from Theorems 7.3
and 7.5, we know that D = PTAP , and therefore PT is given by the product
er · · · e1(I) = Er · · ·E1 of elementary row operations applied to the identity
matrix exactly as they were applied to A. It should be emphasized that we were
able to arrive at this conclusion only because A is symmetric, thereby allowing
each column operation to be the transpose of the corresponding row operation.
Note however, that while the order of the row and column operations performed
is important within their own group, the associativity of the matrix product
allows the column operations (as a group) to be performed independently of the
row operations.

We still must take into account the case where a11 = 0. If a11 = 0 but
aii 6= 0 for some i > 1, then we can bring aii into the first diagonal position by
interchanging the ith row and column with the first row and column respectively.



306 CHAPTER 7. LINEAR FORMS

We then follow the procedure given above. If aii = 0 for every i = 1, . . . , n
then we can pick any aij 6= 0 and apply the operations Ai → Ai + Aj and
Ai → Ai +Aj . This puts 2aij 6= 0 into the ith diagonal position, and allows us
to proceed as in the previous case (which then goes into the first case treated).

Example 7.4. Let us find the transition matrix P such that D = PTAP is
diagonal, with A given by




1 −3 2
−3 7 −5

2 −5 8


 .

We begin by forming the matrix (A|I):



1 −3 2 1 0 0
−3 7 −5 0 1 0

2 −5 8 0 0 1


 .

Now carry out the following sequence of elementary row operations to both A
and I, and identical column operations to A only:

A2 + 3A1→
A3 − 2A1→




1 −3 2 1 0 0
0 −2 1 3 1 0
0 1 4 −2 0 1







1 0 0 1 0 0
0 −2 1 3 1 0
0 1 4 −2 0 1




↑ ↑
A2 + 3A1 A3 − 2A1

2A3 +A2→




1 0 0 1 0 0
0 −2 1 3 1 0
0 0 9 −1 1 2







1 0 0 1 0 0
0 −2 0 3 1 0
0 0 18 −1 1 2




↑
2A3 +A2

We have thus diagonalized A, and the final form of the matrix (A|I) is just
(D|PT ). Note also that

PTAP =




1 0 0
3 1 0
−1 1 2






1 −3 2
−3 7 −5

2 −5 8






1 3 −1
0 1 1
0 0 2
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=




1 0 0
0 −2 0
0 0 18


 = D.

Since Theorem 7.5 tells us that every symmetric bilinear form has a diago-
nal representation, it follows that the associated quadratic form q(X) has the
diagonal representation

q(X) = XTAX = a11(x1)
2 + · · ·+ ann(xn)2

where A is the diagonal matrix representing the (symmetric) bilinear form.
Let us stop for a minute and look at what we have (or have not) actually

done. If we treat the matrix representation of a real symmetric bilinear form as
a real symmetric matrix A and diagonalize it by finding its eigenvectors, then we
what we have done is construct an orthogonal matrix P whose columns are the
eigenvectors of A, and is such that P−1AP = PTAP is a diagonal matrix with
diagonal entries that are just the eigenvalues of A. In other words, not only has
the transformation PTAP diagonalized the bilinear form, the same transforma-
tion P−1AP has diagonalized the linear operator whose matrix representation
was given by A with respect to some basis.

However, if we perform the nonorthogonal diagonalization as described in
the proof of Theorem 7.5, then the resulting matrix PTAP has diagonal entries
that are not the eigenvalues of A. Furthermore, since the matrix P is not
orthogonal in general, the matrix PTAP is not the representation of any linear
operator with respect to any basis. But given this P (which is nonsingular), we
could construct the matrix P−1AP which would represent the linear operator
in a new basis with transition matrix P , but this representation would not be
diagonal.

Let us now specialize this discussion somewhat and consider only real sym-
metric bilinear forms. We begin by noting that in general, the diagonal repre-
sentation of a symmetric bilinear form f has positive, negative, and zero entries.
We can always renumber the basis vectors so that the positive entries appear
first, followed by the negative entries and then the zero entries. It is in fact
true, as we now show, that any other diagonal representation of f has the same
number of positive and negative entries. If there are P positive entries and N
negative entries, then the difference S = P −N is called the signature of f .

Theorem 7.6. Let f ∈ B(V ) be a real symmetric bilinear form. Then ev-
ery diagonal representation of f has the same number of positive and negative
entries.

Proof. Let {e1, . . . , en} be the basis for V in which the matrix of f is diagonal
(see Theorem 7.5). By suitably numbering the ei, we may assume that the first
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P entries are positive and the next N entries are negative (also note there could
be n−P −N zero entries). Now let {e′1, . . . , e′n} be another basis for V in which
the matrix of f is also diagonal. Again, assume the first P ′ entries are positive
and the next N ′ entries are negative. Since the rank of f is just the rank of any
matrix representation of f , and since the rank of a matrix is just the dimension
of its row (or column) space, it is clear that rank(f) = P + N = P ′ + N ′.
Because of this, we need only show that P = P ′.

Let U be the linear span of the P vectors {e1, . . . , eP}, let W be the linear
span of {e′P ′+1, . . . , e

′
n}, and note dimU = P and dimW = n−P ′. Then for all

nonzero vectors u ∈ U and w ∈ W , we have f(u, u) > 0 and f(w,w) ≤ 0 (this
inequality is ≤ and not < because if P ′ + N ′ 6= n, then the last of the basis
vectors that span W will define a diagonal element in the matrix of f that is
0). Hence it follows that U ∩W = {0}, and therefore (by Theorem 1.11)

dim(U +W ) = dimU + dimW − dim(U ∩W ) = P + n− P ′ − 0

= P − P ′ + n.

Since U and W are subspaces of V , it follows that dim(U +W ) ≤ dim V = n,
and therefore P −P ′ +n ≤ n. This shows P ≤ P ′. Had we let U be the span of
{e′1, . . . , e′P ′} and W be the span of {eP+1, . . . , en}, we would have found that
P ′ ≤ P . Therefore P = P ′ as claimed.

While Theorem 7.5 showed that any quadratic form has a diagonal repre-
sentation, the important special case of a real quadratic form allows an even
simpler representation. This corollary is known as Sylvester’s theorem (or
the law of inertia or the principal axis theorem).

Corollary. Let f be a real symmetric bilinear form. Then f has a unique
diagonal representation of the form



Ir
−Is

0t




where Ir and Is are the r × r and s × s identity matrices, and 0t is the t × t
zero matrix. In particular, the associated quadratic form q has a representation
of the form

q(x1, . . . , xn) = (x1)
2 + · · ·+ (xr)

2 − (xr+1)
2 − · · · − (xr+s)

2.

Proof. Let f be represented by a (real) symmetric n×n matrix A. By Theorem
7.6, there exists a nonsingular matrix P1 such that D = PT

1 AP1 = (dij) is a
diagonal representation of f with a unique number r of positive entries followed
by a unique number s of negative entries. We let t = n − r − s be the unique
number of zero entries in D.
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Now let P2 be the diagonal matrix with diagonal entries

(P2)ii =





1/
√
dii for i = 1, . . . , r

1/
√
−dii for i = r + 1, . . . , r + s

1 for i = r + s+ 1, . . . , n

.

Since P2 is diagonal, it is obvious that (P2)
T = P2. We leave it to the reader to

multiply out the matrices and show that

PT
2 DP2 = PT

2 P
T
1 AP1P2 = (P1P2)

TA(P1P2)

is a congruence transformation that takes A into the desired form.

We say that a real symmetric bilinear form f ∈ B(V ) is nonnegative (or
positive semidefinite) if

q(X) = XTAX =
∑

i,j

aijxixj = f(X,X) ≥ 0

for all X ∈ V , and we say that f is positive definite if q(X) > 0 for all nonzero
X ∈ V . In particular, from Theorem 7.6 we see that f is nonnegative if and
only if the signature S = rank(f) ≤ dimV , and f will be positive definite if and
only if S = dimV .

Example 7.5. The quadratic form (x1)
2 − 4x1x2 + 5(x2)

2 is positive definite
because it can be written in the form

(x1 − 2x2)
2 + (x2)

2

which is nonnegative for all real values of x1 and x2, and is zero only if x1 =
x2 = 0.

The quadratic form (x1)
2 + (x2)

2 + 2(x3)
2 − 2x1x3 − 2x2x3 can be written

in the form
(x1 − x3)

2 + (x2 − x3)
2.

Since this is nonnegative for all real values of x1, x2 and x3 but is zero for
nonzero values (e.g., x1 = x2 = x3 6= 0), this quadratic form is nonnegative but
not positive definite.

Exercises

1. Determine the rank and signature of the following real quadratic forms:

(a) x2 + 2xy + y2.
(b) x2 + xy + 2xz + 2y2 + 4yz + 2z2.
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2. Find the transition matrix P such that PTAP is diagonal where A is given
by:

(a)




1 2 −3
2 5 −4
−3 −4 8


 (b)




0 1 1
1 −2 2
1 2 −1




(c)




1 1 −2 −3
1 2 −5 −1
−2 −5 6 9
−3 −1 9 11




3. Let f be the symmetric bilinear form associated with the real quadratic
form q(x, y) = ax2 + bxy + cy2. Show:

(a) f is nondegenerate if and only if b2 − 4ac 6= 0.
(b) f is positive definite if and only if a > 0 and b2 − 4ac < 0.

4. If A is a real, symmetric, positive definite matrix, show there exists a
nonsingular matrix P such that A = PTP .

The remaining exercises are all related.

5. Let V be finite-dimensional over C, let S be the subspace of all symmetric
bilinear forms on V , and let Q be the set of all quadratic forms on V .

(a) Show Q is a subspace of all functions from V to C.
(b) Suppose T ∈ L(V ) and q ∈ Q. Show the equation (T †q)(v) = q(Tv)

defines a quadratic form T †q on V .
(c) Show the function T † is a linear operator on Q, and show T † is in-

vertible if and only if T is invertible.

6. (a) Let q be the quadratic form on R2 defined by q(x, y) = ax2+2bxy+cy2

(where a 6= 0). Find an invertible T ∈ L(R2) such that

(T †q)(x, y) = ax2 + (c− b2/a)y2.

[Hint : Complete the square to find T−1 (and hence T ).]
(b) Let q be the quadratic form on R2 defined by q(x, y) = 2bxy. Find an

invertible T ∈ L(R2) such that

(T †q)(x, y) = 2bx2 − 2by2.

(c) Let q be the quadratic form on R3 defined by q(x, y, z) = xy+2xz+z2.
Find an invertible T ∈ L(R3) such that

(T †q)(x, y, z) = x2 − y2 + z2.

7. Suppose A ∈ Mn(R) is symmetric, and define a quadratic form q on Rn

by

q(X) =
n∑

i,j=1

aijxixj .
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Show there exists T ∈ L(Rn) such that

(T †q)(X) =

n∑

i=1

ci(xi)
2

where each ci is either 0 or ±1.

7.4 Hermitian Forms*

Let us now briefly consider how some of the results of the previous sections
carry over to the case of bilinear forms over the complex number field.

We say that a mapping f : V × V → C is a Hermitian form on V if for
all u1, u2, v ∈ V and a, b ∈ C we have

(HF1) f(au1 + bu2, v) = a∗f(u1, v) + b∗f(u2, v).
(HF2) f(u1, v) = f(v, u1)

∗.

(We should point out that many authors define a Hermitian form by requiring
that the scalars a and b on the right hand side of property (HF1) not be the
complex conjugates as we have defined it. In this case, the scalars on the right
hand side of property (HF3) below will be the complex conjugates of what we
have shown.) As was the case for the Hermitian inner product (see Section 1.5),
we see that

f(u, av1 + bv2) = f(av1 + bv2, u)
∗ = [a∗f(v1, u) + b∗f(v2, u)]

∗

= af(v1, u)
∗ + bf(v2, u)

∗ = af(u, v1) + bf(u, v2)

which we state as

(HF3) f(u, av1 + bv2) = af(u, v1) + bf(u, v2).

Since f(u, u) = f(u, u)∗ it follows that f(u, u) ∈ R for all u ∈ V .
Along with a Hermitian form f is the associated Hermitian quadratic

form q : V → R defined by q(u) = f(u, u) for all u ∈ V . A little algebra
(Exercise 7.4.1) shows that f may be obtained from q by the polar form

expression of f which is

f(u, v) = (1/4)[q(u+ v)− q(u− v)]− (i/4)[q(u+ iv)− q(u− iv)].

We also say that f is nonnegative semidefinite if q(u) = f(u, u) ≥ 0 for all
u ∈ V , and positive definite if q(u) = f(u, u) > 0 for all nonzero u ∈ V . For
example, the usual Hermitian inner product on Cn is a positive definite form
since for every nonzero X = (x1, . . . , xn) ∈ Cn we have

q(X) = f(X,X) = 〈X,X〉 =
n∑

i=1

(xi)∗xi =

n∑

i=1

∣∣xi
∣∣2 > 0.
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As we defined it in Section 5.7, we say that a matrix H = (hij) ∈Mn(C) is
Hermitian if hij = h∗ji. In other words, H is Hermitian if H = H∗T := H†.

Note also that for any scalar k we have k† = k∗. Furthermore, using Theorem
2.15(iv), we see that

(AB)† = (AB)∗T = (A∗B∗)T = B†A†.

By induction, this obviously extends to any finite product of matrices. It is also
clear that

A†† = A.

Example 7.6. Let H be a Hermitian matrix. We show that f(X,Y ) = X†HY
defines a Hermitian form on Cn.

Let X1, X2, Y ∈ Cn be arbitrary, and let a, b ∈ C. Then (using Theorem
2.15(i))

f(aX1 + bX2, Y ) = (aX1 + bX2)
†HY

= (a∗X†
1 + b∗X†

2)HY

= a∗X†
1HY + b∗X†

2HY

= a∗f(X1, Y ) + b∗f(X2, Y )

which shows that f(X,Y ) satisfies property (HF1) of a Hermitian form. Now,
since X†HY is a (complex) scalar we have (X†HY )T = X†HY , and therefore

f(X,Y )∗ = (X†HY )∗ = (X†HY )† = Y †HX = f(Y,X)

where we used the fact that H† = H . Thus f(X,Y ) satisfies property (HF2),
and hence defines a Hermitian form on Cn.

It is probably worth pointing out that X†HY will not be a Hermitian form
if the alternative definition mentioned above is used. In this case, one must use
f(X,Y ) = XTHY ∗ (see Exercise 7.4.2).

Now let V have basis {ei}, and let f be a Hermitian form on V . Then for
any X =

∑
xiei and Y =

∑
yiei in V , we see that

f(X,Y ) = f

(∑

i

xiei,
∑

j

yjej

)
=
∑

i,j

x∗i yjf(ei, ej).

Just as we did in Theorem 7.1, we define the matrix elements hij representing
a Hermitian form f by hij = f(ei, ej). Note that since f(ei, ej) = f(ej , ei)

∗, we
see the diagonal elements of H = (hij) must be real. Using this definition for
the matrix elements of f we then have

f(X,Y ) =
∑

i,j

x∗i hijy
j = X†HY.
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Following the proof of Theorem 7.1, this shows that any Hermitian form f has a
unique representation in terms of the Hermitian matrix H . If we want to make
explicit the basis referred to in this expression, we write f(X,Y ) = [X ]†eH [Y ]e
where it is understood that the elements hij are defined with respect to the
basis {ei}.

Finally, let us prove the complex analogues of Theorems 7.3 and 7.6.

Theorem 7.7. Let f be a Hermitian form on V , and let P be the transition
matrix from a basis {ei} for V to a new basis {ēi}. If H is the matrix of f with
respect to the basis {ei} for V , then H = P †HP is the matrix of f relative to
the new basis {ēi}.

Proof. We saw in the proof of Theorem 7.3 that for any X ∈ V we have [X ]e =

P [X ]ē, and hence [X ]†e = [X ]†ēP
†. Therefore, for any X , Y ∈ V we see that

f(X,Y ) = [X ]†eH [Y ]e = [X ]†ēP
†HP [Y ]ē = [X ]†ēH [Y ]ē

where H = P †HP is the (unique) matrix of f relative to the basis {ēi}.

Theorem 7.8. Let f be a Hermitian form on V . Then there exists a basis for
V in which the matrix of f is diagonal, and every other diagonal representation
of f has the same number of positive and negative entries.

Proof. Using the fact that f(u, u) is real for all u ∈ V along with the appropriate
polar form of f , it should be easy for the reader to follow the proofs of Theorems
7.5 and 7.6 and complete the proof of this theorem (see Exercise 7.4.3).

We note that because of this result, our earlier definition for the signature
of a bilinear form applies equally well to Hermitian forms.

Exercises

1. Let f be a Hermitian form on V and q the associated quadratic form.
Verify the polar form

f(u, v) = (1/4)[q(u+ v)− q(u − v)]− (i/4)[q(u+ iv)− q(u− iv)].

2. Verify the statement made at the end of Example 7.6.

3. Prove Theorem 7.8.

4. Show that the algorithm described in Section 7.3 applies to Hermitian
matrices if we allow multiplication by complex numbers and, instead of
multiplying by ET on the right, we multiply by E∗T .
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5. For each of the following Hermitian matrices H , use the results of the
previous exercise to find a nonsingular matrix P such that PTHP is di-
agonal:

(a)

[
1 i
−i 2

]
(b)

[
1 2 + 3i

2− 3i −1

]

(c)




1 i 2 + i
−i 2 1− i

2− i 1 + i 2


 (d)




1 1 + i 2i
1− i 4 2− 3i
−2i 2 + 3i 7




7.5 Simultaneous Diagonalization*

We now want to investigate how we might simultaneously diagonalize two real
quadratic forms in the case where at least one of them is positive definite. This
is directly applicable to problems such as finding the normal modes of a system
of coupled oscillators, as we will show. In fact, we will look at several ways to
go about this simultaneous diagonalization.

For our first approach, we start with the forms XTAX and XTBX where
both A and B are real symmetric matrices and A is positive definite. Then,
by the corollary to Theorem 5.18, we diagonalize A by an orthogonal trans-
formation P so that P−1AP = PTAP = D where D is the diagonal matrix
diag(λ1, . . . , λn) consisting of the eigenvalues of A. Under this change of basis,
X → X = P−1X or X = PX (Theorem 4.14), and hence

XTAX = X
T
PTAPX = X

T
DX = λ1(x̄1)

2 + · · ·+ λn(x̄n)2.

Since A is positive definite, each λi > 0 and we may define the nonorthogonal
matrix Q = diag(1/

√
λ1, . . . , 1/

√
λn) = QT so that QTDQ = I, X → X̃ =

Q−1X or X = QX̃ and

XTAX = X
T
DX = X̃TQTDQX̃ = X̃T IX̃ = (x̃1)

2 + · · ·+ (x̃n)2.

(This is the same result as Sylvester’s theorem.)
Now, what happens to B under these basis changes? We just compute:

XTBX = X
T
PTBPX = X̃TQTPTBPQX̃ = X̃T B̃X̃

where B̃ = (PQ)TB(PQ) is symmetric because B is symmetric. We can there-

fore diagonalize B̃ by an orthogonal transformation R so that B̃ → R−1B̃R =
RT B̃R = D̃ = diag(µ1, . . . , µn) where the µi are the eigenvalues of B̃. Under

the transformation R we have Y = R−1X̃ or X̃ = RY and

XTBX = X̃T B̃X̃ = Y TRT B̃RY = Y T D̃Y = µ1(y1)
2 + · · ·+ µn(yn)2.

Finally, we have to look at what this last transformation R does to A. But
this is easy because R is orthogonal and A is already diagonal so that

XTAX = X̃T IX̃ = Y TRT IRY = Y TY = (y1)
2 + · · ·+ (yn)2.
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In other words, the nonorthogonal transformationX = PX = PQX̃ = (PQR)Y
diagonalizes both A and B.

Now recall that the µi were the eigenvalues of B̃ = (PQ)TB(PQ), and

hence are determined by solving the secular equation det(B̃ − µI) = 0. But
using (PQ)TA(PQ) = QTDQ = I we can write this as

0 = det(B̃ − µI) = det[(PQ)TB(PQ)− µ(PQ)TA(PQ)]

= det[(PQ)T (B − µA)(PQ)]

= [det(PQ)]2 det(B − µA).

But PQ is nonsingular so det(PQ) 6= 0 and we are left with

det(B − µA) = 0 (7.1)

as the defining equation for the µi.
The second way we can simultaneously diagonalize A and B is to first per-

form a nonorthogonal diagonalization of A by using elementary row transfor-
mations as in the proof of Theorem 7.5. Since A is positive definite, Sylvester’s
theorem shows that there is a nonsingular matrix P with PTAP = I and where
X = P−1X or X = PX such that

XTAX = X
T
PTAPX = X

T
IX = (x̄1)

2 + · · ·+ (x̄n)2.

Note that even though this is the same result as in the first (orthogonal) ap-
proach, the diagonalizing matrices are different.

Using this P , we see that B = PTBP is also symmetric and hence can be
diagonalized by an orthogonal matrix Q where Y = Q−1X or X = QY . Then
Q−1BQ = QTBQ = D = diag(µ1, . . . , µn) where the µi are the eigenvalues of
B. Under these transformations we have

XTAX = X
T
PTAPX = X

T
IX = Y TQT IQY = Y TY

= (y1)
2 + · · ·+ (yn)2

and

XTBX = X
T
PTBPX = Y TQTPTBPQY = Y TQTBQY = Y TDY

= µ1(y1)
2 + · · ·+ µn(yn)2

so that the transformation X → Y = (PQ)−1X diagonalizes both A and B.
To find the eigenvalues µi we must solve 0 = det(B − µI) = det(PTBP −

µI) = det(PTBP − µPTAP ) = det[PT (B − µI)P ] = (detP )2 det(B − µA) so
that again we have

det(B − µA) = 0.

Either way, we have proved most of the next theorem.
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Theorem 7.9. Let XTAX and XTBX be two real quadratic forms on an
n-dimensional Euclidean space V , and assume that XTAX is positive definite.
Then there exists a nonsingular matrix P such that the transformation X = PY
reduces XTAX to the form

XTAX = Y TY = (y1)
2 + · · ·+ (yn)2

and XTBX to the form

XTBX = Y TDY = µ1(y1)
2 + · · ·+ µn(yn)2

where µ1, . . . , µn are roots of the equation

det(B − µA) = 0.

Moreover, the µi are real and positive if and only if XTBX is positive definite.

Proof. In view of the above discussion, all that remains is to prove the last
statement of the theorem. Since B is a real symmetric matrix, there exists an
orthogonal matrix S that brings it into the form

STBS = diag(λ1, . . . , λn) = D̃

where the λi are the eigenvalues of B. Writing X = SY , we see that

XTBX = Y TSTBSY = Y T D̃Y = λ1(y1)
2 + · · ·+ λn(yn)2

and thus XTBX is positive definite if and only if Y T D̃Y is positive definite,
i.e., if and only if every λi > 0. Since we saw above that

(PQ)TB(PQ) = diag(µ1, . . . , µn) = D

it follows from Theorem 7.6 that the number of positive λi must equal the
number of positive µi. Therefore XTBX is positive definite if and only if every
µi > 0.

Example 7.7. Let us show how Theorem 7.9 can be of help in classical me-
chanics. This rather long example requires a knowledge of both the Lagrange
equations of motion and Taylor series expansions. The details of the physics
are given in any modern text on classical mechanics. Our purpose is simply to
demonstrate the usefulness of this theorem.

We will first solve the general problem of coupled oscillators undergoing small
oscillations using the standard techniques for systems of differential equations.
After that, we will show how the same solution can be easily written down based
on the results of Theorem 7.9.
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Consider the small oscillations of a conservative system of N particles about
a point of stable equilibrium. We assume the position ri of the ith particle is a
function of n generalized coordinates qi, and not explicitly on the time t. Thus
we write ri = ri(q1, . . . , qn), and

ṙi =
dri

dt
=

n∑

j=1

∂ri

∂qj
q̇j i = 1, . . . , N

where we denote the derivative with respect to time by a dot.
Since the velocity vi of the ith particle is given by ‖ṙi‖, the kinetic energy T

of the ith particle is (1/2)mivi
2 = (1/2)miṙi · ṙi, and hence the kinetic energy

of the system of N particles is given by

T =
1

2

N∑

i=1

miṙi · ṙi :=
1

2

n∑

j,k=1

Mjk q̇j q̇k

where

Mjk =
N∑

i=1

mi
∂ri

∂qj
· ∂ri

∂qk
= Mkj

is a function of the coordinates q.
We assume that the equilibrium position of each qi is at qi = 0 and expand

in a Taylor series:

Mij(q1, . . . , qn) = Mij(0) +
n∑

k=1

(
∂Mij

∂qk

)

0

qk + · · · .

Since we are considering only small oscillations, we will work to second order in
the coordinates. Because T has two factors of q̇ in it already, we need keep only
the first (constant) term in this expansion. Then denoting the constant Mij(0)
by mij = mji we have

T =
1

2

n∑

i,j=1

mij q̇iq̇j (7.2)

so that T is a quadratic form in the q̇i’s. Moreover, since T > 0 we must have
that in fact T is a positive definite quadratic form.

Let the potential energy of the system be V = V (q1, . . . , qn). Expanding
V in a Taylor series expansion about the equilibrium point (the minimum of
potential energy), we have

V (q1, . . . , qn) = V (0) +

n∑

i=1

(
∂V

∂qi

)

0

qi +
1

2

n∑

i,j=1

(
∂2V

∂qi∂qj

)

0

qiqj + · · · .

Since we are expanding about the minimum we must have (∂V/∂qi)0 = 0 for
every i. Furthermore, we may shift the zero of potential and assume V (0) = 0
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because this has no effect on the force on each particle. To second order we may
therefore write the potential as the quadratic form

V =
1

2

n∑

i,j=1

vijqiqj (7.3)

where the vij = vji are constants. Furthermore, each vij > 0 because we are
expanding about a minimum, and hence V is also a positive definite quadratic
form in the qi’s.

The Lagrange equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (7.4)

where L = T − V is called the Lagrangian. Written out, it is

L = T − V =
1

2

n∑

j,k=1

(mjk q̇j q̇k − vjkajqk). (7.5)

Since T is a function of the q̇i’s and V is a function of the qi’s, the equations of
motion take the form

d

dt

(
∂T

∂q̇i

)
+
∂V

∂qi
= 0. (7.6)

In particular, using the above expressions for T and V the equations of motion
become

n∑

k=1

(mik q̈k + vikqk) = 0. (7.7)

This is a set of n coupled second order differential equations. As we stated
above, let’s first look at the standard approach to solving this system, because
it’s a good application of several results we have covered so far in this book.
(We follow the treatment in the excellent text by Fetter and Walecka [12].)

To begin, we change from qk to a new complex variable zk where the physical
solution is then given by qk = Re zk:

n∑

k=1

(mik z̈k + vikzk) = 0. (7.8)

We then look for solutions of the form zk = z0
ke

iωt where all n coordinates
oscillate at the same frequency. Such solutions are called normal modes.
Substituting these into equation (7.8) yields

n∑

k=1

(vik − ω2mik)z0
k = 0.

In order for this system of linear equations to have a nontrivial solution, we
must have

det(vik − ω2mik) = 0. (7.9)
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This characteristic equation is an nth order polynomial in ω2, and we denote
the n roots by ω2

s , s = 1, . . . , n. Each ωs is called a normal frequency, and

the corresponding nontrivial solution z
(s)
k satisfies

n∑

k=1

(vik − ω2
smik)z

(s)
k = 0. (7.10)

We now show that each ω2
s is both real and greater than or equal to zero.

To see this, first multiply equation (7.10) by z
(s)∗
i and sum over i to solve

for ω2
s :

ω2
s =

∑
ik z

(s)∗
i vikz

(s)
k∑

ik z
(s)∗
i mikz

(s)
k

.

But vik and mik are both real and symmetric, so using the fact that i and k
are dummy indices, we see that taking the complex conjugate of this equation
shows that (ω2

s)∗ = ω2
s as claimed.

Next, there are two ways to see that ω2
s ≥ 0. First, we note that if ω2

s < 0,

then ωs would contain an imaginary part, and zk = z
(s)
k eiωst would then either

grow or decay exponentially, neither of which leads to a stable equilibrium.
Alternatively, simply note that both vik and mik are positive definite quadratic
forms, and hence ω2

s ≥ 0.

The next thing we can now show is that because all of the coefficients in

equation (7.10) are real, it follows that for each s the ratio z
(s)
k /z

(s)
n is real for

every k = 1, . . . , n− 1. This is just a consequence of Cramer’s rule. To see this,
consider a general homogeneous linear system

a11x1 + · · · + a1nxn = 0
...

an1x1 + · · · + annxn = 0

In order to have a nontrivial solution for x we must have detA = det(aij) = 0.
But then rankA < n so the rows of A are linearly dependent. Let’s say that the
nth equation is a linear combination of the preceding n− 1 equations. Then we
can disregard it and assume that the remaining n − 1 equations have at least
one nonzero component, say xn. Dividing by xn we can write our system as

a11(x1/xn) + · · · + a1 n−1(xn−1/xn) = −a1n

...
an−1 1(x1/xn) + · · · + an−1 n−1(xn−1/xn) =−an−1n

This is now n − 1 inhomogeneous equations in n− 1 unknowns, and Cramer’s
rule lets us solve for the ratios xk/xn. Since all of the aij are real, these ratios
are necessarily real by the construction process of Cramer’s rule.
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So, since z
(s)
k /z

(s)
n is real for each s, any complex constant can only appear

as an overall multiplicative factor independent of k. This means we can write
the solution to equation (7.10) in the form

z
(s)
k = eiφsr

(s)
k k = 1, . . . , n (7.11)

where φs is real and one component (say r
(s)
n ) can be arbitrarily specified. Using

equation (7.11) in equation (7.10) and canceling the common phase eiφs gives
us

n∑

k=1

vikr
(s)
k = ω2

s

n∑

k=1

mikr
(s)
k i = 1, . . . , n. (7.12)

We will refer to ωs as an eigenvalue, and r(s) as the corresponding eigenvector.
Note that this yields the same equation for r(s) for both ±ωs.

Now write equation (7.12) for the tth eigenvalue, multiply it by r
(s)
i and sum

over i: ∑

ik

r
(s)
i vikr

(t)
k = ω2

t

∑

ik

r
(s)
i mikr

(t)
k

Multiply equation (7.12) by r
(t)
i , sum over i and subtract it from the previous

equation to obtain

(ω2
t − ω2

s)
∑

ik

r
(t)
i mikr

(s)
k = 0.

If we assume that ω2
s 6= ω2

t for s 6= t, then this equation implies

∑

ik

r
(t)
i mikr

(s)
k = 0 for s 6= t

which is an orthogonality relation between the eigenvectors r(s) and r(t). Fur-

thermore, since equation (7.12) only determines n − 1 real ratios r
(s)
k /r

(s)
n , we

are free to multiply all components z
(s)
k in equation (7.11) by a common factor

that depends only on s (and not k). Then we can choose our solutions to be
orthonormal and we have the normalization condition

∑

ik

r
(t)
i mikr

(s)
k = δst. (7.13)

The solutions in equation (7.11) now become

z
(s)
k = C(s)eiφsr

(s)
k (7.14)

where r
(s)
k is fixed by the normalization, so C(s) and φs are the only real param-

eters that we can still arbitrarily specify. Note also that there is one of these
equations for ω = +ωs and one for ω = −ωs.

One other remark. We assumed above that ω2
s 6= ω2

t for s 6= t. If there are
in fact repeated roots, then we must apply the Gram-Schmidt process to each
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eigenspace separately. But be sure to realize that the inner product used must
be that defined by equation (7.13).

The general solution to equation (7.8) is a superposition of the solutions
(7.14):

zk(t) =
n∑

s=1

[
(z

(s)
+ )ke

iωst + (z
(s)
− )ke

−iωst
]

(7.15)

where
(z

(s)
± )k := C

(s)
± eiφ±

s r
(s)
k for k = 1, . . . , n.

This solution is a linear combination of all normal modes labeled by s, and the
subscript k labels the coordinate under consideration.

Recall that the physical solution is given by qk = Re zk. Then redefining the
complex number

(z
(s)
+ )k + (z

(s)
− )∗k := z

(s)
k := C(s)r

(s)
k eiφs

we have (since C
(s)
± and r

(s)
k are real)

qk(t) = Re zk(t) =
1

2
(zk(t) + zk(t)∗)

=
1

2

n∑

s=1

[
(z

(s)
+ )ke

iωst + (z
(s)
− )ke

−iωst + (z
(s)
+ )∗ke

−iωst + (z
(s)
− )∗ke

iωst
]

=
1

2

n∑

s=1

[
C(s)r

(s)
k eiφseiωst + C(s)r

(s)
k e−iφse−iωst

]

=

n∑

s=1

Re(C(s)r
(s)
k ei(ωst+φs))

and therefore

qk(t) =
n∑

s=1

C(s)r
(s)
k cos(ωst+ φs). (7.16)

This is the most general solution to Lagrange’s equations for small oscillations
about a point of stable equilibrium. Each qk is the displacement from equilib-
rium of the kth generalized coordinate, and is given as an expansion in terms
of the kth component of the eigenvector r(s). The coefficients C(s) cos(ωst+φs)
of this expansion are called the normal coordinates. We will come back to
them shortly.

Let us recast our results using vector and matrix notation. If we define the
“potential energy matrix” V = (vij) and the “mass matrix” M = (mij), then
the eigenvalue equation (7.9) may be written

det(V − ω2M) = 0 (7.17)

and equation (7.12) for the sth eigenvector r
(s)
k becomes

(V − ω2
sM)r(s) = 0. (7.18)
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Using the matrix M we can define an inner product on our solution space, and
the orthonormality condition (equation (7.13)) may be written

〈r(s), r(t)〉 := r(s)T
Mr(t) = δst. (7.19)

Finally, the general solution (7.16) takes the form

q =

n∑

s=1

C(s)r(s) cos(ωst+ φs). (7.20)

Other than finding the integration constants C(s) and φs by specifying the
initial conditions of a specific problem, this completes the standard solution to
a system of coupled oscillators. We now turn to Theorem 7.9 and study its
application to this problem.

Notice that equation (7.17) is just an example of what we denoted by det(B−
µA) = 0 in Theorem 7.9. If we use the eigenvectors r(s) defined by equation
(7.18) to construct a transition matrix P (i.e., let the sth column of P be
r(s)), then equation (7.19) shows that the congruence transformation PTMP
diagonalizesM . (This is the analogue of diagonalizingA in the proof of Theorem
7.9.)

To see this in detail, note that pij = ith entry of the jth column = r
(j)
i so

that

(PTMP )ij =
∑

kl

pT
ikmklplj =

∑

kl

pkimklplj

=
∑

kl

r
(i)
k mklr

(j)
l = δij by equation (7.13)

and therefore
PTMP = I (7.21)

where the sth column of P is the eigenvector r(s) corresponding to the sth
normal mode defined by ωs. In other words, the transition matrix P (sometimes
called the modal matrix) diagonalizes the mass matrix M .

Again looking back at what we did with two quadratic forms, we should
find that P also diagonalizes the potential energy matrix V , and the diagonal
elements should be the eigenvalues ω2

s . That this is indeed the case is straight-
forward to show:

(PTV P )ij =
∑

kl

pT
ikvklplj =

∑

kl

pkivklplj

=
∑

kl

r
(i)
k vklr

(j)
l now use equation (7.12)

=
∑

kl

r
(i)
k ω2

jmklr
(j)
l = ω2

j

∑

kkl

r
(i)
k mklr

(j)
l

= ω2
j δij by equation (7.13).
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In other words,

PTV P =



ω2

1 0
. . .

0 ω2
n


 := Dω. (7.22)

Thus we have shown that, as expected, the transition matrix P simulta-
neously diagonaizes both of the quadratic forms M and V . We could do this
because at least one of them was positive definite.

What else do we know about the transition matrix? It takes us from our
original basis (essentially the standard basis on Rn) to the basis of eigenvectors
{r(s)}. Since the q(t)’s are time dependent linear combinations of the r(s)’s (see
equation (7.20)), let us define new coordinates q′(t) in the usual way by

q′(t) = P−1q(t) (7.23)

or q(t) = Pq′(t) (see Theorem 4.14). From equation (7.21) we see that
(PTM)P = I which implies that P−1 = PTM , and hence

q′(t) = (PTM)q(t). (7.24)

Since P and M are constant, real matrices, we have simply changed to a new
basis that is a linear combination of the original generalized coordinates q.

Now let’s see what the Lagrangian looks like in these new coordinates. Writ-
ing equation (7.5) in matrix notation we have

L =
1

2
(q̇TM q̇− qTV q). (7.25)

We use q(t) = Pq′(t) to write this in terms of the new coordinates as (remember
P is a constant matrix)

L =
1

2
(q̇′TPTMP q̇′ − q′TPTV Pq′).

But from equations (7.21) and (7.22) we know that P diagonalizes both M and
V so we are left with the simple form

L =
1

2
(q̇′T q̇′ − q′TDωq′). (7.26)

In terms of components this is

L =
1

2

n∑

k=1

(q̇′ 2k − ω2
kq

′ 2
k ) (7.27)

and we see that the new coordinates have diagonalized the Lagrangian. Fur-
thermore, knowing q′ we know q = Pq′ which are the original generalized
coordinates (i.e., the displacements from equilibrium). This means that we can



324 CHAPTER 7. LINEAR FORMS

take q′k, k = 1, . . . , n as new generalized coordinates, called the normal coor-

dinates.
We write the Lagrange equations (7.4) in terms of the q′i and use equation

(7.27) to obtain
q̈′k + ω2

kq
′
k = 0. (7.28)

This shows that the diagonalized Lagrangian leads to equations of motion that
have become decoupled, so our original problem of n coupled second order dif-
ferential equations has now become a set of n independent uncoupled simple
harmonic oscillators. Each normal coordinate q′k oscillates independently with
an angular frequency ωk (the normal mode frequency). Note also that equations
(7.27) and (7.28) are very general – they hold for any system undergoing small
oscillations about a point of static equilibrium.

The solution to equation (7.28) is

q′k(t) = C(k) cos(ωkt+ φk)

or

q′(t) =



C(1) cos(ω1t+ φ1)
...
C(n) cos(ωnt+ φn)


 . (7.29)

From q = Pq′ (or qk =
∑

l pklq
′
l) and the definition of P (i.e., pkl = r

(l)
k ) we

have

qk(t) =

n∑

l=1

r
(l)
k C(l) cos(ωlt+ φl) =

n∑

l=1

q′lr
(l)
k (7.30)

which is the same as equation (7.16) as it should be. Note that the normal
coordinates are just the coefficients (or amplitudes) of the eigenvectors r(s) in
the expansion of q(t).

Summarizing, we start from the Lagrangian (7.25) written in terms of the
coordinates q. This consists of two real quadratic forms, and we use them
to construct the eigenvalue equation (7.18). We solve for the eigenvalues ωs

using equation (7.17), and then find the eigenvectors r(s) using equation (7.18)
again. These eigenvectors are normalized according to equation (7.19), and
these normalized eigenvectors are used to construct the transition matrix P .
Defining new coordinates q′(t) = P−1q(t) (equation (7.23)), the Lagrangian
becomes equation (7.26), and the Lagrange equations of motion (7.28) have the
solution (7.29). Finally, converting back to the q’s from the q′’s we have the
solutions given in equations (7.30).

Of course, all we really have to do is find the eigenvalues and eigenvectors,
because we have solved the problem in full generality and we know that the
solution is simply given by equation (7.30).



7.5. SIMULTANEOUS DIAGONALIZATION* 325

Example 7.8. Let us work out a specific example. Consider two identical pen-
dulums moving in a common plane as shown below. Assume that at equilibrium
the pendulums hang vertically with the spring at its natural length d0. Each is
of mass m and length l, and they are connected by a spring of force constant k.
We let their separation at any instant be d, and the generalized coordinates be
the horizontal displacements qi. Note that if θ1 6= θ2, the two masses do not lie
on a horizontal line. Since we are considering small oscillations only, to second
order in θ we have sin θi ≈ θi so that qi = l sin θi ≈ lθi or θi ≈ qi/l.

ll

mm
k

d

d0

θ1 θ2

q1 q2

The kinetic energy is easy to find. Each mass has velocity lθ̇i ≈ q̇i so that

T =
1

2
m(q̇21 + q̇22).

However, the potential energy is somewhat more difficult.
Take the origin of our coordinate system to be at the pivot point of the

first mass, with the y-axis pointing down and the x-axis to the right. The total
potential energy of the system is due to both gravity and the spring. Defining
the gravitational potential energy to be zero when the pendulums are at their
lowest point, each pendulum has gravitational potential energy given by

Vgrav = mgl(1− cos θi) ≈ mgl
θ2i
2

=
mg

2l
q2i .

(This is because gravitational potential energy is defined by F = −∇V = mgŷ.
Integrating from l to y = l cos θi and taking V (l) = 0 gives V = mgl(1− cos θ).
Then using cos θ ≈ 1− θ2/2 yields the above result.)

The potential energy of the spring is Vspring = (1/2)k(d− d0)
2, so we must

find d as function of the qi’s. From the figure, it is fairly clear that to first
order in the qi’s we have d = d0 + (q2 − q1), but we can calculate it as follows.
The (x, y) coordinates of the first mass are (l sin θ1, l cos θ1) and the second are
(d0 + l sin θ2, l cos θ2). Using the Pythagorean theorem we find

d2 = (d0 + l sin θ2 − l sin θ1)2 + (l cos θ2 − l cos θ1)
2

= d2
0 + 2l2[1− (sin θ1 sin θ2 + cos θ1 cos θ2)] + 2d0(l sin θ2 − l sin θ1)
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= d2
0 + 2l2[1− cos(θ1 − θ2)] + 2d0(q2 − q1)

= d2
0 + l2(θ1 − θ2)2 + 2d0(q2 − q1)

= (d0 + q2 − q1)2

and therefore d = d0 + q2 − q1 as expected. The total potential energy of our
system is then

V = Vgrav + Vspring =
mg

2l
(q21 + q22) +

1

2
k(q2 − q1)2

=
1

2

(mg
l

+ k
)
(q21 + q22)−

1

2
k(q1q2 + q2q1).

We now have both T and V in the form of equations (7.2) and (7.3), and we
can immediately write down the mass and potential energy matrices

M =

[
m 0
0 m

]
V =

[
mg/l+ k −k
−k mg/l+ k

]
.

Now we solve equation (7.17) for the normal frequencies ω2.

det(V − ω2M) =

∣∣∣∣∣
mg/l+ k −mω2 −k

−k mg/l+ k −mω2

∣∣∣∣∣

= (mg/l+ k −mω2)2 − k2

= m2(ω2)2 − 2mω2(mg/l+ k) + (mg/l+ k)2 − k2 = 0.

This is actually very easy to solve for ω2 using the quadratic formula, and the
result is ω2 = (g/l + k/m)± k/m or

ω1 = (g/l)1/2 and ω2 = (g/l+ 2k/m)1/2.

The next step is to use these normal frequencies in equation (7.18) to find
the eigenvectors r(s). For ω1 we have

det(V − ω2
1M)r(1) =

∣∣∣∣∣
k −k
−k k

∣∣∣∣∣

[
r
(1)
1

r
(1)
2

]
=

[
0

0

]

so that kr
(1)
1 − kr(1)2 = 0 or r

(1)
1 = r

(1)
2 . (Note that since det(V − ω2M) = 0,

the rows are linearly dependent, and we need only look at one row for each ω2
s .)

In this mode, both masses have the same amplitude and move together, so the
spring plays no role at all.

For the second mode ω2 we have

det(V − ω2
2M)r(2) =

∣∣∣∣∣
−k −k
−k −k

∣∣∣∣∣

[
r
(2)
1

r
(2)
2

]
=

[
0

0

]
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so that r
(2)
1 = −r(2)2 . Now the pendulums move in opposite directions but with

equal amplitudes. In this mode the spring plays a definite role, which should be
obvious because ω2 depends on k while ω1 does not.

Since the eigenvalue equation (7.18) is homogeneous, we are free to multiply
each r(s) by a constant N , and we normalize them according to equation (7.19).
This gives

r(1)T
Mr(1) = N2

[
1 1

] [m 0
0 m

] [
1
1

]
= N2(2m) = 1

so that N = 1/
√

2m. The vector r(2) gives the same result so we have the
normalized eigenvectors

r(1) =
1√
2m

[
1
1

]
and r(2) =

1√
2m

[
1
−1

]
.

We leave it to the reader to verify that r(1)T
Mr(2) = r(2)T

Mr(1) = 0.
The transition (or modal) matrix P is given by

P =
1√
2m

[
1 1
1 −1

]

and we also leave it to you to verify that P diagonalizes both M and V :

PTMP = I and PTV P =

[
g/l 0
0 g/l+ 2k/m

]
= Dω.

Using equation (7.24), the normal coordinates q′(t) defined by q′(t) =
P−1q(t) are given by

q′(t) = PTMq(t) =
m√
2m

[
1 1
1 −1

] [
1 0
0 1

] [
q1(t)
q2(t)

]

=

√
m

2

[
q1(t) + q2(t)

q1(t)− q2(t)

]

where, from equation (7.29),

q′(t) =

[
q′1(t)

q′2(t)

]
=

[
C(1) cos(ω1t+ φ1)

C(2) cos(ω2t+ φ2)

]
.

To determine the four constants C(i) and φi we must specify the initial con-
ditions for the problem. In other words, we need to specify q(0) and q̇(0) so
that

q′(0) =

[
C(1) cosφ1

C(2) cosφ2

]
=

√
m

2

[
q1(0) + q2(0)

q1(0)− q2(0)

]
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and

q̇′(0) =

[
−ω1C

(1) sinφ1

−ω2C
(2) sinφ2

]
=

√
m

2

[
q̇1(0) + q̇2(0)

q̇1(0)− q̇2(0)

]
.

Let us assume that at t = 0 the left pendulum is displaced a distance α to
the right and released from rest. In other words, q1(0) = α and q2(0) = q̇1(0) =
q̇2(0) = 0. The equation for q̇′(0) yields

q̇′(0) =

[
−ω1C

(1) sinφ1

−ω2C
(2) sinφ2

]
=

[
0

0

]

so that φ1 = φ2 = 0. Now we can use the equation for q′(0) to obtain

[
C(1)

C(2)

]
=

√
m

2

[
α
α

]

and hence C(1) = C(2) = α
√
m/2.

Using these constants, the normal coordinates are now

q′(t) = α

√
m

2

[
cosω1t

cosω2t

]

and the complete time dependent solution for q(t) is

q(t) = Pq′(t) =
α

2

[
1 1

1 −1

] [
cosω1t

cosω2t

]

or

q(t) =

[
q1(t)

q2(t)

]
=
α

2

[
cosω1t+ cosω2t

cosω1t− cosω2t

]
. (7.31)

While this is the solution to our problem, we can put it into a form that makes
it much easier to see what is going on.

Start from the trigonometric identities

cos(a± b) = cos a cos b∓ sina sin b

and
sin(a± b) = sin a cos b± cos a sin b.

Noting that a = (1/2)(a+ b) + (1/2)(a− b) and b = (1/2)(a+ b)− (1/2)(a− b)
we can write

cos a± cos b = cos
[1
2
(a+ b) +

1

2
(a− b)

]
± cos

[1
2
(a+ b)− 1

2
(a− b)

]

=

{
2 cos 1

2 (a+ b) cos 1
2 (a− b)

−2 sin 1
2 (a+ b) sin 1

2 (a− b)
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Applying this to our solution q(t) we have the final form of our solution

q(t) =

[
q1(t)

q2(t)

]
=

[ [
α cos 1

2 (ω2 − ω1)t
]
cos 1

2 (ω2 + ω1)t[
α sin 1

2 (ω2 − ω1)t
]
sin 1

2 (ω2 + ω1)t

]
. (7.32)

To understand what this means physically, let us consider the limit of a weak
spring, i.e., k ≪ mg/l. In this case ω2 is only slightly greater than ω1, and the
sin and cos of ω2 −ω1 vary very slowly compared to the sin and cos of ω2 +ω1.
This means that the terms in brackets in equation (7.32) act like very slowly
varying amplitudes of the much more rapidly oscillating second terms. This is
the phenomena of beats.

5 10 15 20 25 30

-1.0

-0.5

0.5

1.0

Figure 7.1: A plot of q1(t) = [cos 0.2t] cos 6t

5 10 15 20 25 30

-1.0

-0.5

0.5

1.0

Figure 7.2: A plot of q2(t) = [sin 0.2t] sin 6t

The amplitude of the first pendulum goes to 0 after a time τ = π/(ω2− ω1)
at which time the second pendulum achieves its maximum amplitude. Then
the situation reverses, and the oscillations vary periodically. If the motion is
strictly periodic, then we have q1(0) = q1(tp) for some time tp, and therefore
from equation (7.31) we must have 2 = cosω1tp +cosω2tp. But the only way to
achieve this is to have both cosines equal to 1, so ω1tp = 2πn and ω2tp = 2πm
for some integers n and m. Therefore ω2/ω1 = m/n which is a rational number.
This means that if ω2/ω1 is an irrational number, then despite the apparent
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regularity we see with the beats, the system never returns exactly to its initial
configuration.

The last thing we will cover in this section is yet another way to simultane-
ously diagonalize two real, symmetric bilinear forms. From a practical stand-
point this approach won’t give us a different method of solving the problem,
but it is an interesting application of many of the ideas we have covered in this
text.

First recall the distinction between a linear transformation and a bilinear
form. As we have pointed out, it makes no sense to talk about the eigenvectors
of a bilinear form because it is a mapping from V ×V → F and not from V → V .
However, we will show that it is possible to combine both bilinear forms into an
operator on V that can be diagonalized in the usual manner.

Given a vector space V , the dual space V ∗ is the space of linear functionals on
V . Then given a real, positive definite symmetric bilinear form A : V ×V → R,
there is an associated mapping Ã : V → V ∗ defined by Ã(v) = A(v, ·) ∈ V ∗ for
all v ∈ V . The fact that A is positive definite means A(v, v) = 0 if and only if

v = 0, and therefore Ker Ã = {0} so that Ã is one-to-one and Ã−1 exists.

Similarly, given another real, symmetric bilinear form B, we define B̃ : V →
V ∗ by B̃(v) = B(v, ·). Then the composite mapping Ã−1 ◦ B̃ : V → V is a

linear transformation on V . We will write Ã−1B̃ for simplicity.

V V ∗

eB

eA

eA−1

We now use A to define an inner product on V by 〈u, v〉 := A(u, v). Using
this inner product, we can apply the Gram-Schmidt process to any basis for V
and construct a new orthonormal basis {ei} such that

〈ei, ej〉 = A(ei, ej) = δij

and thus we have diagonalized A to the identity matrix. Relative to this basis,
the bilinear form B has matrix elements B(ei, ej) = bij = bji.

Since Ã−1B̃ : V → V , given any v ∈ V there is some u ∈ V such that
(Ã−1B̃)v = u. Acting on both sides of this equation with Ã gives B̃v = Ãu or
B(v, ·) = A(u, ·), i.e., A(u,w) = B(v, w) for all w ∈ V . So given v, we would
like to find the corresponding u.

To accomplish this, we use the fact that A and B are bilinear and consider
the special case v = ei and w = ej. Writing u =

∑
k ukek we have

A(u,w) = A
(∑

k

ukek, ej

)
=
∑

k

ukA(ek, ej) =
∑

k

ukδkj = uj
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and

B(v, w) = B(ei, ej) = bij

so that A(u,w) = B(v, w) implies uj = bij = bji. This shows that

(Ã−1B̃)ei =
∑

j

ejbji

and hence the operator Ã−1B̃ has matrix representation (bij) which is sym-

metric. Note also that from Section 4.3 we know that if (Ã−1B̃)x = x̄, then
x̄i =

∑
j bijxj .

So, since Ã−1B̃ is a real, symmetric operator it can be diagonalized by an
orthogonal transformation, and we let its eigenvectors be denoted by fi, i.e.,
(Ã−1B̃)fi = λifi. In addition, by the corollary to Theorem 5.18 we know that
the eigenvalues are real.

Furthermore, the eigenvectors belonging to distinct eigenvalues are orthog-
onal even with the inner product we have defined. This follows either from the
discussion at the end of Section 5.7 or from Theorem 6.9. Alternatively, we can
show directly that this is true because A(ei, ej) = 〈ei, ej〉 = δij so that letting

C̃ = Ã−1B̃ for simplicity we have (for any x, y ∈ V )

〈C̃x, y〉 =
∑

ij

(C̃x)iyj〈ei, ej〉 =
∑

ij

(C̃x)iyjδij =
∑

i

(C̃x)iyi

=
∑

ij

bijxjyi =
∑

ij

xjbjiyi =
∑

j

xj(C̃y)j

= 〈x, C̃y〉.

Therefore, if C̃x = λx and C̃y = µy, then on the one hand 〈C̃x, y〉 = λ〈x, y〉
while on the other hand 〈x, C̃y〉 = µ〈x, y〉. Subtracting these equations and
using the above result we have (λ− µ)〈x, y〉 = 0 so that 〈x, y〉 = 0 if λ 6= µ.

What we have then shown is that (Ã−1B̃)fi = λifi where 〈fi, fj〉 = A(fi, fj) =

δij so that A is still diagonal with respect to the fi’s. But then B̃fi = λiÃfi or
B(fi, ·) = λiA(fi, ·) which means that B(fi, fj) = λiA(fi, fj) = λiδij and B is
also diagonal with respect to the fi’s.

Note that the λi are solutions to det(Ã−1B̃ − λ1) = 0 or det(bij − λδij) = 0
where bij = B(ei, ej) and the ei satisfy 〈ei, ej〉 = A(ei, ej) = δij as determined
by the Gram-Schmidt process. Finally, since δij = A(ei, ej) = aij we see that
the λi are solutions of the equation det(bij−λaij) = 0 exactly as in our previous
two approaches.

Exercises

1. Two equal masses m move on a frictionless horizontal table. They are
held by three identical taut strings of equilibrium length l0 and constant
tension τ as shown below.
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y1 y2

l1

l2

l3

m
m

At equilibrium, everything lies in a straight line between the fixed end-
points. Assume that the masses move in the y-direction only.

(a) Write down the Lagrangian in the case of small displacements, i.e.,
yi ≪ l0. [Hint : The string tension is the force along the string,
and potential energy is equivalent to work done, which is force times
distance. Considering only small displacements makes the assumption
of constant tension more physically realistic.]

(b) Find the normal frequencies and normal modes of oscillation. Describe
the motion.

(c) Find the normalized eigenvectors r(s) and show that they are orthonor-
mal. Construct the transition matrix P , and show that PTV P is diag-
onal with diagonal elements that are precisely the normal frequencies.

(d) Find the normal coordinates q′ = P−1q = PTMq.

2. Three beads of masses m,m and 2m slide frictionlessly on a hoop of radius
R. They are connected by three identical (curved) springs each with force
constant k. Let θi denote the displacements from equilibrium of each of
the three masses as shown in the figure below. (The equilibrium positions
are obviously 120◦ apart. Again, the lines shown inside the hoop are
imaginary lines used to label the generalized coordinates of the masses.)

m

m

2m

θ1

θ2

θ3

R

(a) Write down the Lagrangian for the system.
(b) Find the normal frequencies and normalized eigenvectors. (It is easiest

to define ω0 =
√
k/m so that k = mω2

0 . Also, note that there is no
small angle approximation in this problem.)

(c) Show that the transition matrix P diagonalizes the potential energy
matrix V , and find the normal coordinates q′ = PTMq.

(d) Suppose at t = 0 we have θ̇1(0) = θ̇2(0) = θ̇3(0) = 0, and θ2(0) =
θ3(0) = 0 while θ1(0) = α. Find the complete time-dependent solu-
tions for the θi(t)’s and describe the resulting motion in reasonable
detail.
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3. Consider the model of a linear triatomic molecule (such as CO2) shown
below. We have two equal masses m connected to a mass M by equal
springs with force constant k. The displacements from equilibrium are the
xi as shown. Assume that the motion takes place in only one dimension.

mm
M

kk

x1 x2 x3

(a) Write down the Lagrangian for the system.
(b) Find the normal frequencies in terms of the constants ω0 =

√
k/m

and λ = M/m. Note that one of the normal frequencies is zero.
(c) Find the normal modes for the nonzero frequencies and describe them.
(d) What is the motion of the zero frequency mode? [Hint : First look

at what the eigenvalue equation says for zero frequency. Now look at
what the equation of motion for the normal coordinate says, and then
look at the relationship between the normal coordinates q′k and the
generalized coordinates qk.]
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Chapter 8

Multilinear Mappings and

Tensors

The concept of a tensor is something that seems to take on a certain mystique
to students who haven’t yet studied them. However, the basic idea is quite
simple. To say it briefly, a tensor is a scalar-valued mapping that takes as its
argument several vectors, and is linear in each of them individually. While the
notation can get rather cumbersome because of the number of vector spaces
involved, that’s basically all there is to it. However, to make these definitions
as general and useful as we need, we will first have to go back and study dual
spaces somewhat more carefully.

We assume that the reader has studied Sections 3.1 and 3.2, and we will
use the notation and results from those sections freely. In addition, throughout
this chapter we will generally be using the summation convention as discussed
in Section 3.1. However, to help ease into the subject, we will also frequently
stick with the standard summation symbols.

8.1 Bilinear Functionals and the Dual Space

Recall from the end of Section 4.1 and Example 7.2 that the vector space V ∗ =
L(V,F) : V → F is defined to be the space of linear functionals on V . In other
words, if φ ∈ V ∗, then for every u, v ∈ V and a, b ∈ F we have

φ(au + bv) = aφ(u) + bφ(v) ∈ F .

The space V ∗ is called the dual space of V . If V is finite-dimensional, then
viewing F as a one-dimensional vector space (over F), it follows from The-
orem 4.4 that dimV ∗ = dim V . In particular, given a basis {ei} for V , the
proof of Theorem 4.4 showed that a unique basis {ωi} for V ∗ is defined by the
requirement that

ωi(ej) = δi
j

335
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where we now use superscripts to denote basis vectors in the dual space. We
refer to the basis {ωi} for V ∗ as the basis dual to the basis {ei} for V . Elements
of V ∗ are usually referred to as 1-forms, and are commonly denoted by Greek
letters such as β, φ, θ and so forth. Similarly, we often refer to the ωi as basis

1-forms.
Since applying Theorem 4.4 to the special case of V ∗ directly may be some-

what confusing, let us briefly go through a slightly different approach to defining
a basis for V ∗.

Suppose we are given a basis {e1, . . . , en} for a finite-dimensional vector space
V . Given any set of n scalars φi, we define the linear functionals φ ∈ V ∗ =
L(V,F) by φ(ei) = φi. According to Theorem 4.1, this mapping is unique. In
particular, we define n linear functionals ωi by ωi(ej) = δi

j . Conversely, given
any linear functional φ ∈ V ∗, we define the n scalars φi by φi = φ(ei). Then
given any φ ∈ V ∗ and any v =

∑
viei ∈ V , we have on the one hand

φ(v) = φ
(∑

viei

)
=
∑

viφ(ei) =
∑

φiv
i

while on the other hand

ωi(v) = ωi

(∑

j

vjej

)
=
∑

j

vjωi(ej) =
∑

j

vjδi
j = vi.

Therefore φ(v) =
∑

i φiω
i(v) for any v ∈ V , and we conclude that φ =

∑
i φiω

i.
This shows that the ωi span V ∗, and we claim that they are in fact a basis for
V ∗.

To show the ωi are linearly independent, suppose
∑

i aiω
i = 0. We must

show that every ai = 0. But for any j = 1, . . . , n we have

0 =
∑

i

aiω
i(ej) =

∑

i

aiδ
i
j = aj

which verifies our claim. This completes the proof that {ωi} forms a basis for
V ∗.

There is another common way of denoting the action of V ∗ on V that is
quite similar to the notation used for an inner product. In this approach, the
action of the dual basis {ωi} for V ∗ on the basis {ei} for V is denoted by writing
ωi(ej) as

〈ωi, ej〉 = δi
j.

However, it should be carefully noted that this is not an inner product. In
particular, the entry on the left inside the bracket is an element of V ∗, while the
entry on the right is an element of V . Furthermore, from the definition of V ∗

as a linear vector space, it follows that 〈· , ·〉 is linear in both entries. In other
words, if φ, θ ∈ V ∗, and if u, v ∈ V and a, b ∈ F , we have

〈aφ+ bθ, u〉 = a〈φ, u〉+ b〈θ, u〉
〈φ, au + bv〉 = a〈φ, u〉+ b〈φ, v〉.
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These relations define what we shall call a bilinear functional 〈· , ·〉 : V ∗×V →
F on V ∗ and V (compare this with definition IP1 of an inner product given in
Section 1.5).

We summarize these results as a theorem.

Theorem 8.1. Let {e1, . . . , en} be a basis for V , and let {ω1, . . . , ωn} be the
corresponding dual basis for V ∗ defined by ωi(ej) = δi

j. Then any v ∈ V can be
written in the forms

v =

n∑

i=1

viei =

n∑

i=1

ωi(v)ei =

n∑

i=1

〈ωi, v〉ei

and any φ ∈ V ∗ can be written as

φ =

n∑

i=1

φiω
i =

n∑

i=1

φ(ei)ω
i =

n∑

i=1

〈φ, ei〉ωi.

This theorem provides us with a simple interpretation of the dual basis. In
particular, since we already know that any v ∈ V has the expansion v =

∑
viei

in terms of a basis {ei}, we see that ωi(v) = 〈ωi, v〉 = vi is just the ith coordinate
of v. In other words, ωi is just the ith coordinate function on V (relative to the
basis {ei}).

Let us make another observation. If we write v =
∑
viei and recall that

φ(ei) = φi, then (as we saw above) the linearity of φ results in

〈φ, v〉 = φ(v) = φ
(∑

viei

)
=
∑

viφ(ei) =
∑

φiv
i

which looks very much like the standard inner product on Rn. In fact, if V is
an inner product space, we shall see that the components of an element φ ∈ V ∗

may be related in a direct way to the components of some vector in V (see
Section 8.9).

It is also useful to note that given any nonzero v ∈ V , there exists φ ∈ V ∗

with the property that φ(v) 6= 0. To see this, we use Theorem 1.10 to first
extend v to a basis {v, v2, . . . , vn} for V . Then, according to Theorem 4.1,
there exists a unique linear transformation φ : V → F such that φ(v) = 1 and
φ(vi) = 0 for i = 2, . . . , n. This φ so defined clearly has the desired property.
An important consequence of this comes from noting that if v1, v2 ∈ V with
v1 6= v2, then v1 − v2 6= 0, and thus there exists φ ∈ V ∗ such that

0 6= φ(v1 − v2) = φ(v1)− φ(v2).

This proves our next result.
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Theorem 8.2. If V is finite-dimensional and v1, v2 ∈ V with v1 6= v2, then
there exists φ ∈ V ∗ with the property that φ(v1) 6= φ(v2).

Example 8.1. Consider the space V = R2 consisting of all column vectors of
the form

v =

[
v1

v2

]
.

Relative to the standard basis we have

v = v1

[
1
0

]
+ v2

[
0
1

]
= v1e1 + v2e2.

If φ ∈ V ∗, then φ(v) =
∑
φiv

i, and we may represent φ by the row vector
φ = (φ1, φ2). In particular, if we write the dual basis as ωi = (ai, bi), then we
have

1 = ω1(e1) = (a1, b1)

[
1
0

]
= a1

0 = ω1(e2) = (a1, b1)

[
0
1

]
= b1

0 = ω2(e1) = (a2, b2)

[
1
0

]
= a2

1 = ω2(e2) = (a2, b2)

[
0
1

]
= b2

so that ω1 = (1, 0) and ω2 = (0, 1). Note, for example,

ω1(v) = (1, 0)

[
v1

v2

]
= v1

as it should.

Since V ∗ is a vector space, we can define its dual space V ∗∗ (the double

dual) as the space of linear functionals on V ∗. We now proceed to show that
there is a natural isomorphism between V and V ∗∗, and therefore we can gener-
ally consider them to be the same space. By a “natural isomorphism” we mean
that it is independent of the bases chosen for V and V ∗∗.

We first observe that the expression 〈· , u〉 for fixed u ∈ V defines a linear
functional on V ∗. (Note that here 〈· , ·〉 is a bilinear functional and not an inner
product.) In other words, we define the functional fu : V ∗ → F by

fu(φ) = 〈φ, u〉 = φ(u)
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for all φ ∈ V ∗. It follows that for all a, b ∈ F and φ, ω ∈ V ∗ we have

fu(aφ+ bω) = 〈aφ + bω, u〉 = a〈φ, u〉+ b〈ω, u〉 = afu(φ) + bfu(ω)

and hence fu is a linear functional from V ∗ to F . In other words, fu ∈ L(V ∗,F)
is in the dual space of V ∗. As we have already stated, this space is called the
double dual (or second dual) of V , and is denoted by V ∗∗.

Recall that F can be considered to be a 1-dimensional vector space over it-
self, and from Theorem 4.4 we know that dimL(U, V ) = (dimU)(dim V ). Hence
dimV ∗ = dimL(V,F) = dimV , and similarly dim V ∗∗ = dimL(V ∗,F) =
dimV ∗. Therefore we see that dim V = dimV ∗ = dimV ∗∗.

Theorem 8.3. Let V be finite-dimensional over F , and for each u ∈ V define
the function fu : V ∗ → F by fu(φ) = φ(u) for all φ ∈ V ∗. Then the mapping
f : u 7→ fu is an isomorphism of V onto V ∗∗.

Proof. We first show that the mapping f : u 7→ fu defined above is linear. For
any u, v ∈ V and a, b ∈ F we see that

fau+bv(φ) = 〈φ, au + bv〉
= a〈φ, u〉+ b〈φ, v〉
= afu(φ) + bfv(φ)

= (afu + bfv)(φ).

Since this holds for all φ ∈ V ∗, it follows that fau+bv = afu + bfv, and hence
the mapping f is indeed linear (so it defines a vector space homomorphism).

Now let u ∈ V be an arbitrary nonzero vector. By Theorem 8.2 (with v1 = u
and v2 = 0) there exists φ ∈ V ∗ such that fu(φ) = 〈φ, u〉 6= 0, and hence clearly
fu 6= 0. Since it is obviously true that f0 = 0, it follows that Ker f = {0}, and
thus we have a one-to-one mapping from V into V ∗∗ (Theorem 4.5).

Finally, since V is finite-dimensional, we know that dimV = dim V ∗ =
dimV ∗∗, and hence the mapping f must be onto (since it is one-to-one).

The isomorphism f : u→ fu defined in Theorem 8.3 is called the natural (or
evaluation) mapping of V into V ∗∗. (We remark without proof that even if V
is infinite-dimensional this mapping is linear and injective, but is not surjective.)
Because of this isomorphism, we will make the identification V = V ∗∗ from now
on, and hence also view V as the space of linear functionals on V ∗. Furthermore,
if {ωi} is a basis for V ∗, then the dual basis {ei} for V will be taken to be the
basis for V ∗∗. In other words, we may write

ωi(ej) = ej(ω
i) = δi

j

so that
φ(v) = v(φ) =

∑
φiv

i.
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Exercises

1. Find the basis dual to the given basis for each of the following:

(a) R2 with basis e1 = (2, 1), e2 = (3, 1).
(b) R3 with basis e1 = (1,−1, 3), e2 = (0, 1,−1), e3 = (0, 3,−2).

2. Let V be the space of all real polynomials of degree ≤ 1. Define ω1, ω2 ∈
V ∗ by

ω1(f) =

∫ 1

0

f(x) dx and ω2(f) =

∫ 2

0

f(x) dx.

Find a basis {e1, e2} for V that is dual to {ω1, ω2}.

3. Let V be the vector space of all polynomials of degree ≤ 2. Define the
linear functionals ω1, ω2, ω3 ∈ V ∗ by

ω1(f) =

∫ 1

0

f(x) dx, ω2(f) = f ′(1), ω3(f) = f(0)

where f ′(x) is the usual derivative of f(x). Find the basis {ei} for V
which is dual to {ωi}.

4. (a) Let u, v ∈ V and suppose that φ(u) = 0 implies φ(v) = 0 for all
φ ∈ V ∗. Show v = ku for some scalar k.

(b) Let φ, σ ∈ V ∗ and suppose that φ(v) = 0 implies σ(v) = 0 for all
v ∈ V . Show σ = kφ for some scalar k.

5. Let V = F [x], and for a ∈ F , define φa : V → F by φa(f) = f(a). Show:

(a) φa is linear, i.e., φa ∈ V ∗.
(b) If a 6= b, then φa 6= φb.

6. Let V be finite-dimensional and W a subspace of V . If φ ∈ W ∗, prove φ
can be extended to a linear functional Φ ∈ V ∗, i.e., Φ(w) = φ(w) for all
w ∈ W .

8.2 Tensors

Let V be a finite-dimensional vector space over F , and let V r denote the r-fold
Cartesian product V × V × · · · × V . In other words, an element of V r is an
r-tuple (v1, . . . , vr) where each vi ∈ V . If W is another vector space over F ,
then a mapping T : V r →W is said to be multilinear if T (v1, . . . , vr) is linear
in each variable. That is, T is multilinear if for each i = 1, . . . , r we have

T (v1, . . . , avi + bv′i, . . . , vr) = aT (v1, . . . , vi, . . . , vr) + bT (v1, . . . , v
′
i, . . . , vr)

for all vi, v
′
i ∈ V and a, b ∈ F . In the particular case that W = F , the mapping

T is variously called an r-linear form on V , or a multilinear form of degree
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r on V , or an r-tensor on V . The set of all r-tensors on V will be denoted by
Tr(V ).

As might be expected, we define addition and scalar multiplication on Tr(V )
by

(S + T )(v1, . . . , vr) = S(v1, . . . , vr) + T (v1, . . . , vr)

(aT )(v1, . . . , vr) = aT (v1, . . . , vr)

for all S, T ∈ Tr(V ) and a ∈ F . It should be clear that S + T and aT are both
r-tensors. With these operations, Tr(V ) becomes a vector space over F . Note
that the particular case of r = 1 yields T1(V ) = V ∗, i.e., the dual space of V ,
and if r = 2, then we obtain a bilinear form on V .

Although this definition takes care of most of what we will need in this
chapter, it is worth going through a more general (but not really more difficult)
definition as follows. The basic idea is that a tensor is a scalar-valued multilinear
function with variables in both V and V ∗. For example, a tensor could be a
function on the space V ∗ × V × V . By convention, we will always write all V ∗

variables before all V variables so that, for example, a tensor on V ×V ∗×V will
be replaced by a tensor on V ∗×V ×V . (However, not all authors adhere to this
convention, so the reader should be very careful when reading the literature.)
Note also that by Theorem 8.3, the space of linear functions on V ∗ is V ∗∗ which
we view as simply V .

Without further ado, we define a tensor T on V to be a multilinear map on
V ∗s × V r:

T : V ∗s × V r = V ∗ × · · · × V ∗
︸ ︷︷ ︸

s copies

×V × · · · × V︸ ︷︷ ︸
r copies

→ F

where r is called the covariant order and s is called the contravariant order

of T . We shall say that a tensor of covariant order r and contravariant order
s is of type (or rank)

(
s
r

)
. Furthermore, as stated above, we will refer to a

covariant tensor of rank
(
0
r

)
as simply an r-tensor. (Don’t confuse this symbol

with the binomial coefficients.)
If we denote the set of all tensors of type

(
s
r

)
by T s

r (V ), then defining addition
and scalar multiplication exactly as above, we see that T s

r (V ) forms a vector
space over F . A tensor of type

(
0
0

)
is defined to be a scalar, and hence T 0

0 (V ) =

F . A tensor of type
(
1
0

)
is called a contravariant vector, and a tensor of type(

0
1

)
is called a covariant vector (or simply a covector). In order to distinguish

between these types of vectors, we denote the basis vectors for V by a subscript
(e.g., ei), and the basis vectors for V ∗ by a superscript (e.g., ωj). Furthermore,
we will generally leave off the V and simply write Tr or T s

r .
At this point we are virtually forced to adhere to the Einstein summation

convention and sum over repeated indices in any vector or tensor expression
where one index is a superscript and one is a subscript. Because of this, we
write the vector components with indices in the opposite position from that
of the basis vectors. This is why we have been writing x =

∑
i x

iei ∈ V and
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φ =
∑

j φjω
j ∈ V ∗. Thus we now simply write x = xiei and φ = φjω

j where
the summation is to be understood. Generally the limits of the sum will be
clear. However, we will revert to the more complete notation if there is any
possibility of ambiguity, or those rare circumstances when a repeated index is
not to be summed over.

It is also worth emphasizing the trivial fact that the indices summed over
are just “dummy indices.” In other words, we have xiei = xjej and so on.
Throughout this chapter we will be relabelling indices in this manner without
further notice, and we will assume that the reader understands what we are
doing.

Suppose T ∈ Tr, and let {e1, . . . , en} be a basis for V . Pick any r vectors
vi ∈ V and expand them in terms of this basis as vi = eja

j
i where, as usual,

aj
i ∈ F is just the jth component of the vector vi. (Note that here the subscript

i on vi is not a tensor index; the context should make it clear whether we are
dealing with a vector or it’s components. We also emphasize that the aj

i are
not the components of any tensor, and hence the position of indices here is
just a matter of notational convenience and consistency with the summation
convention.) Using the multilinearity of T we see that

T (v1, . . . , vr) = T (ej1a
j1

1, . . . , ejr
ajr

r) = aj1
1 · · ·ajr

rT (ej1 , . . . , ejr
).

The nr scalars T (ej1 , . . . , ejr
) are called the components of T relative to the

basis {ei}, and are denoted by Tj1···jr
. As we will prove in detail below, this

multilinearity essentially shows that a tensor is completely specified once we
know its values on a basis (i.e., its components).

This terminology implies that there exists a basis for Tr such that the Tj1···jr

are just the components of T ∈ Tr with respect to this basis. We now construct
this basis, which will prove that Tr is of dimension nr. (We will show formally
in Section 8.9 that the Kronecker symbols δi

j are in fact the components of
a tensor, and that these components are the same in any coordinate system.
However, for all practical purposes we continue to use the δi

j simply as a nota-
tional device, and hence we place no importance on the position of the indices,
i.e., δi

j = δj
i etc.)

For each collection {i1, . . . , ir} (where 1 ≤ ik ≤ n), we define the tensor
Ωi1··· ir (not simply the components of a tensor Ω) to be that element of Tr

whose values on the basis {ei} for V are given by

Ωi1··· ir (ej1 , . . . , ejr
) = δi1

j1 · · · δir
jr

and whose values on an arbitrary collection {v1, . . . , vr} of vectors are given by
multilinearity as

Ωi1··· ir (v1, . . . , vr) = Ωi1··· ir (ej1a
j1

1, . . . , ejr
ajr

r)

= aj1
1 · · ·ajr

rΩ
i1··· ir (ej1 , . . . , ejr

)

= aj1
1 · · ·ajr

rδ
i1

j1 · · · δir
jr

= ai1
1 · · ·air

r
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That this does indeed define a tensor is guaranteed by this last equation which
shows that each Ωi1··· ir is in fact linear in each variable (since v1 + v′1 = (aj1

1 +
a′j11)ej1 etc.). To prove the nr tensors Ωi1··· ir form a basis for Tr, we must show
they are linearly independent and span Tr.

Suppose αi1··· ir
Ωi1··· ir = 0 where each αi1··· ir

∈ F . From the definition of
Ωi1··· ir we see that applying this to any r-tuple (ej1 , . . . , ejr

) of basis vectors
yields αi1··· ir

= 0. Since this is true for every such r-tuple, it follows that
αi1··· ir

= 0 for every r-tuple of indices (i1, . . . , ir), and hence the Ωi1··· ir are
linearly independent.

Now let Ti1··· ir
= T (ei1 , . . . , eir

) and consider the tensor Ti1··· ir
Ωi1··· ir ∈ Tr.

Using the definition of Ωi1··· ir , we see that both Ti1··· ir
Ωi1··· ir and T yield the

same result when applied to any r-tuple (ej1 , . . . , ejr
) of basis vectors, and hence

they must be equal as multilinear functions on V r. This shows that {Ωi1··· ir}
spans Tr.

While we have treated only the space Tr, it is not any more difficult to treat
the general space T s

r . Thus, if {ei} is a basis for V , {ωj} is a basis for V ∗ and
T ∈ T s

r , we define the components of T (relative to the given bases) by

T i1··· is
j1··· jr

= T (ωi1 , . . . , ωis , ej1 , . . . , ejr
).

Defining the nr+s analogous tensors Ωj1··· jr

i1··· is
, it is easy to mimic the above pro-

cedure and hence prove the following result.

Theorem 8.4. The set T s
r of all tensors of type

(
s
r

)
on V forms a vector space

of dimension nr+s.

Proof. This is Exercise 8.2.1.

Since a tensor T ∈ T s
r is a function on V ∗s×V r, it would be nice if we could

write a basis (e.g., Ωj1··· jr

i1··· is
) for T s

r in terms of the bases {ei} for V and {ωj}
for V ∗. We now show this is easy to accomplish by defining a product on T s

r

called the tensor product. The reader is cautioned not to be intimidated by the
notational complexities, since the concepts involved are really quite simple.

Suppose S ∈ T s1
r1

and T ∈ T s2
r2

. Let u1, . . . , ur1
, v1, . . . , vr2

be vectors in V ,
and α1, . . . , αs1 , β1, . . . , βs2 be covectors in V ∗. Note that the product

S(α1, . . . , αs1 , u1, . . . , ur1
)T (β1, . . . , βs2 , v1, . . . , vr2

)

is linear in each of its r1 + s1 + r2 + s2 variables. Hence we define the tensor

product S ⊗ T ∈ T s1+s2

r1+r2
(read “S tensor T ”) by

(S ⊗ T )(α1, . . . , αs1 , β1, . . . , βs2 , u1, . . . , ur1
, v1, . . . , vr2

)

= S(α1, . . . , αs1 , u1, . . . , ur1
)T (β1, . . . , βs2 , v1, . . . , vr2

).
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It is easily shown that the tensor product is both associative and distributive
(i.e., bilinear in both factors). In other words, for any scalar a ∈ F and tensors
R, S and T such that the following formulas make sense, we have

(R ⊗ S)⊗ T = R⊗ (S ⊗ T )

R⊗ (S + T ) = R⊗ S +R⊗ T
(R + S)⊗ T = R⊗ T + S ⊗ T

(aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T )

(see Exercise 8.2.2). Because of the associativity property (which is a conse-
quence of associativity in F), we will drop the parentheses in expressions such
as the top equation and simply write R⊗S⊗T . This clearly extends to any finite
product of tensors. It is important to note, however, that the tensor product is
most certainly not commutative, i.e., S ⊗ T 6= T ⊗ S.

Now let {e1, . . . , en} be a basis for V , and let {ωj} be its dual basis. We
claim that the set {ωj1 ⊗ · · ·⊗ωjr} of tensor products, where 1 ≤ jk ≤ n, forms
a basis for the space Tr of covariant tensors. To see this, we note that from the
definitions of tensor product and dual space we have

ωj1 ⊗ · · · ⊗ ωjr (ei1 , . . . , eir
) = ωj1(ei1) · · ·ωjr(eir

) = δj1
i1 · · · δjr

ir
(8.1)

so that ωj1 ⊗ · · · ⊗ ωjr and Ωj1··· jr both take the same values on the r-tuples
(ei1 , . . . , eir

), and hence they must be equal as multilinear functions on V r.
Since we showed above that {Ωj1··· jr} forms a basis for Tr, we have proved that
{ωj1 ⊗ · · · ⊗ ωjr} also forms a basis for Tr.

The method of the previous paragraph is readily extended to the space
T s

r . We must recall however, that we are treating V ∗∗ and V as the same
space. If {ei} is a basis for V , then the dual basis {ωj} for V ∗ was defined by
ωj(ei) = 〈ωj , ei〉 = δj

i. Similarly, given a basis {ωj} for V ∗, we define the basis
{ei} for V ∗∗ = V by ei(ω

j) = ωj(ei) = δj
i. In fact, using tensor products, it

is now easy to repeat Theorem 8.4 in its most useful form. Note also that the
next theorem shows that a tensor is determined by its values on the bases {ei}
and {ωj}.

Theorem 8.5. Let V have basis {e1, . . . , en}, and let V ∗ have the corresponding
dual basis {ω1, . . . , ωn}. Then a basis for T s

r is given by the collection

{ei1 ⊗ · · · ⊗ eis
⊗ ωj1 ⊗ · · · ⊗ ωjr}

where 1 ≤ j1, . . . , jr, i1, . . . , is ≤ n, and hence dim T s
r = nr+s.

Proof. In view of Theorem 8.4, all that is needed is to show that

ei1 ⊗ · · · ⊗ eis
⊗ ωj1 ⊗ · · · ⊗ ωjr = Ωj1··· jr

i1··· is
.

The details are left to the reader (see Exercise 8.2.1).
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Note that what this theorem tells us is that any tensor T ∈ T s
r (V ) can be

written as
T = T i1···is

j1···jr
ei1 ⊗ · · · ⊗ eis

⊗ ωj1 ⊗ · · · ⊗ ωjr .

Since the components of a tensor T are defined with respect to a particular
basis (and dual basis), we might ask about the relationship between the com-
ponents of T relative to two different bases. Using the multilinearity of tensors,
this is a simple problem to solve.

First, let {ei} be a basis for V and let {ωj} be its dual basis. If {ēi} is
another basis for V , then there exists a nonsingular transition matrix A = (aj

i)
such that

ēi = eja
j
i. (8.2)

(We emphasize that aj
i is only a matrix, not a tensor. Note also that our

definition of the matrix of a linear transformation given in Section 4.3 shows
that aj

i is the element of A in the jth row and ith column.) Using 〈ωi, ej〉 = δi
j ,

we have
〈ωi, ēk〉 = 〈ωi, eja

j
k〉 = aj

k〈ωi, ej〉 = aj
kδ

i
j = ai

k.

Let us denote the inverse of the matrix A = (ai
j) by A−1 = B = (bij).

In other words, ai
jb

j
k = δi

k and bija
j
k = δi

k. Multiplying both sides of
〈ωi, ēk〉 = ai

k by bji and summing on i yields

〈bjiω
i, ēk〉 = bjia

i
k = δj

k.

But the basis {ω̄i} dual to {ēi} also must satisfy 〈ω̄j , ēk〉 = δj
k, and hence

comparing this with the previous equation shows that the dual basis vectors
transform as

ω̄j = bjiω
i. (8.3)

The reader should compare this carefully with equation (8.2). We say that the
dual basis vectors transform oppositely (i.e., use the inverse transformation
matrix) to the basis vectors.

We now return to the question of the relationship between the components of
a tensor in two different bases. For definiteness, we will consider a tensor T ∈ T 2

1 .
The analogous result for an arbitrary tensor in T s

r will be quite obvious. Let
{ei} and {ωj} be a basis and dual basis for V and V ∗ respectively. Now consider
another pair of bases {ēi} and {ω̄j} where ēi = eja

j
i and ω̄i = bijω

j . Then we

have T ij
k = T (ωi, ωj, ek) as well as T

pq
r = T (ω̄p, ω̄q, ēr), and therefore

T
pq

r = T (ω̄p, ω̄q, ēr) = bpib
q
ja

k
rT (ωi, ωj, ek) = bpib

q
ja

k
rT

ij
k.

This is the classical transformation law for the components of a tensor of
type

(
2
1

)
. It should be kept in mind that (ai

j) and (bij) are inverse matrices
to each other. (In fact, this equation is frequently taken as the definition of a
tensor (at least in older texts). In other words, according to this approach, any
quantity with this transformation property is defined to be a tensor.)

In particular, the components xi of a vector x = xiei transform as

x̄i = bijx
j (8.4)
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while the components αi of a covector α = αiω
i transform as

ᾱi = αja
j
i. (8.5)

We leave it to the reader to verify that these transformation laws lead to the
self-consistent formulas x = xiei = x̄j ēj and α = αiω

i = ᾱjω̄
j as we should

expect (see Exercise 8.2.3).
We point out that these transformation laws are the origin of the terms

“contravariant” and “covariant.” This is because the components of a vector
transform opposite (“contravariant”) to the basis vectors ei, while the com-
ponents of dual vectors transform the same (“covariant”) way as these basis
vectors.

It is also worth mentioning that many authors use a prime (or some other
method such as a different type of letter) for distinguishing different bases. In
other words, if we have a basis {ei} and we wish to transform to another basis
which we denote by {ei′}, then this is accomplished by a transformation matrix
(ai

j′) so that ei′ = eja
j
i′ . In this case, we would write ωi′ = ai′

jω
j where (ai′

j)
is the inverse of (ai

j′ ). In this notation, the transformation law for the tensor
T used above would be written as

T p′q′

r′ = bp
′

ib
q′

ja
k

r′T ij
k.

Note that specifying the components of a tensor with respect to one coor-
dinate system allows the determination of its components with respect to any
other coordinate system. Because of this, we shall frequently refer to a tensor
by its “generic” components. In other words, we will refer to e.g., T ij

k, as
a “tensor” and not the more accurate description as the “components of the
tensor T.”

Example 8.2. We know that under a change of basis ei → ēi = ejp
j
i we also

have xi → x̄i = (p−1)i
jx

j and xi = pi
j x̄

j . (This is just the requirement that

x = xiei = x̄iēi. See Section 4.4.) If x is just the position vector, then the
components xi and x̄i are just the coordinate functions, and hence we may take
their derivatives to write

ai
j = pi

j =
∂xi

∂x̄j
and bij = (p−1)i

j =
∂x̄i

∂xj

where we have also used the notation of equations (8.2) and (8.3).
Now suppose we have a tensor T ∈ T 2

1 (V ), where V has basis {ei} and
corresponding dual basis {ωi}. Then we can write the components with respect
to the basis {ēi} in terms of the components with respect to the basis {ei} by
directly applying the definitions:

T
ij

k = T (ω̄i, ω̄j , ēk) = T (bilω
l, bjmω

m, ena
n

k)

= bilb
j
ma

n
kT (ωl, ωm, en) = bilb

j
ma

n
kT

lm
n
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=
∂x̄i

∂xl

∂x̄j

∂xm

∂xn

∂x̄k
T lm

n .

This is the classical transformation law for a tensor of type
(
2
1

)
.

Example 8.3. For those readers who may have seen a classical treatment of
tensors and have had a course in advanced calculus, we will now show how our
more modern approach agrees with the classical.

If {xi} is a local coordinate system on a differentiable manifold M , then a
(tangent) vector field v(x) on M is defined as the derivative operator

v = vi ∂

∂xi

(where vi = vi(x)) so that v(f) = vi(∂f/∂xi) for every smooth function f :
M → R. Since every vector at x ∈M can in this manner be written as a linear
combination of the ∂/∂xi, we see that {∂/∂xi} forms a basis for the tangent
space at x.

We now define the differential df of a function by df(v) = v(f) and thus
df(v) is just the directional derivative of f in the direction of v. Note that

dxi(v) = v(xi) = vj ∂x
i

∂xj
= vjδi

j = vi

and hence df(v) = vi(∂f/∂xi) = (∂f/∂xi)dxi(v). Since v was arbitrary, we
obtain the familiar elementary formula df = (∂f/∂xi)dxi. Furthermore, we see
that

dxi
( ∂

∂xj

)
=
∂xi

∂xj
= δi

j

so that {dxi} forms the basis dual to {∂/∂xi}.
In summary then, relative to the local coordinate system {xi}, we define a

basis {ei = ∂/∂xi} for a (tangent) space V along with the dual basis {ωj = dxj}
for the (cotangent) space V ∗.

If we now go to a new coordinate system {x̄i} in the same coordinate patch,
then from calculus we obtain

∂

∂x̄i
=
∂xj

∂x̄i

∂

∂xj

so the expression ēi = eja
j
i implies aj

i = ∂xj/∂x̄i. Similarly, we also have

dx̄i =
∂x̄i

∂xj
dxj

so that ω̄i = bijω
j implies bij = ∂x̄i/∂xj . Note that the chain rule from calculus

shows us that

ai
kb

k
j =

∂xi

∂x̄k

∂x̄k

∂xj
=
∂xi

∂xj
= δi

j
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and thus (bij) is indeed the inverse matrix to (ai
j).

Using these results in the above expression for T
pq

r, we see that

T
pq

r =
∂x̄p

∂xi

∂x̄q

∂xj

∂xk

∂x̄r
T ij

k

which is just the classical definition of the transformation law for a tensor of
type

(
2
1

)
.

We also remark that in older texts, a contravariant vector is defined to have
the same transformation properties as the expression dx̄i = (∂x̄i/∂xj)dxj , while
a covariant vector is defined to have the same transformation properties as the
expression ∂/∂x̄i = (∂xj/∂x̄i)∂/∂xj .

Finally, let us define a simple classical tensor operation that is frequently
quite useful. To begin with, we have seen that the result of operating on a vector
v = viei ∈ V with a dual vector α = αjω

j ∈ V ∗ is just 〈α, v〉 = αjv
i〈ωj , ei〉 =

αjv
iδj

i = αiv
i. This is sometimes called the contraction of α with v. We leave

it to the reader to show that the contraction is independent of the particular
coordinate system used (see Exercise 8.2.4). (This is just a generalization of the
fact that the elementary dot product gives a number (scalar) that is independent
of the coordinate system. Geometrically, the length of a vector doesn’t depend
on the coordinate system, nor does the angle between two vectors.)

If we start with tensors of higher order, then we can perform the same
sort of operation. For example, if we have S ∈ T 1

2 with components Si
jk and

T ∈ T 2 with components T pq, then we can form the
(
2
1

)
tensor with components

Si
jkT

jq, or a different
(
2
1

)
tensor with components Si

jkT
pj and so forth. This

operation is also called contraction. Note that if we start with a
(
1
1

)
tensor

T , then we can contract the components of T to obtain the scalar T i
i. This is

called the trace of T .

Example 8.4. Let us give an example of a tensor that occurs in classical
mechanics. Consider the rotation of a rigid body about an arbitrary axis of
rotation defined by an angular velocity vector ω as shown in the figure below.

��
��
��
��

x = x1

y = x2

z = x3

ω

r
dm
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(Don’t confuse this ω with a dual basis vector.) The vector r points to an
arbitary element of mass dm whose velocity is given by v = ω × r. (A particle
moving in a circle of radius a moves a distance ds = a dθ where θ is the angle
of rotation. Then its speed is v = ds/dt = a θ̇ = aω with a direction tangent
to the circle. Defining the angular velocity vector ω to have magnitude ω and
direction given by the right hand rule along the axis of rotation, we see that we
may write in general v = ω × r where ‖ω × r‖ = aω.)

The kinetic energy of the object is now given by

T =
1

2

∫
v2 dm =

1

2

∫
ρ(ω × r) · (ω × r) d3r

where ρ is the density of the object. We rewrite the dot product as follows:

(ω × r) · (ω × r) = (ω × r)i(ω × r)i = εijkεilmωjxkω
lxm

= (δj
l δ

k
m − δk

l δ
j
m)ωjxkω

lxm

= ωjxkω
jxk − ωjxkω

kxj

= ωjωkδjkr
2 − ωjωkxjxk

= ωj(δjkr
2 − xjxk)ωk.

If we define the 3× 3 symmetric matrix I = (Ijk) by

Ijk =

∫
ρ(δjkr

2 − xjxk) d3r

then the kinetic energy becomes

T =
1

2
ωjIjkω

k

which is often written in the form T = (1/2)ω · I ·ω. The matrix I is called the
inertia tensor. It is a geometric property of the object that depends only on
the coordinate system chosen and not on the angular velocity.

To see why I is called a tensor, first note that the kinetic energy T is just a
scalar. (The kinetic energy of an object clearly doesn’t depend on the coordinate
system chosen.) This means that under rotations of the coordinate system it
remains unchanged, i.e., T (x̄) = T (x) where x = xiei = x̄iēi is the same point
described with respect to two different coordinate systems.

Now ω is just a normal vector like x, and as we saw in Section 4.5, under
rotations ēi = ejp

j
i the components of a vector transform as ω̄i = (p−1)i

j ω
j .

Since T doesn’t depend on the coordinate system we may write

ω̄iĪijω̄
j = (p−1)i

kω
kĪij(p

−1)j
lω

l

= ωk
[
(p−1)i

k(p−1)j
lĪij
]
ωl

:= ωkIklω
l
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and therefore
Ikl = (p−1)i

k(p−1)j
lĪij .

Multiplying both sides of this equation by pk
rp

l
s and using (p−1)i

kp
k

r = δi
r and

(p−1)j
lp

l
s = δj

s we have
Īrs = pk

rp
l
sIkl

which is the transformation law for a second rank tensor. In other words, in
order that the kinetic energy be a scalar, it is necessary that the “matrix” I be
a tensor.

Finally, taking the derivative of xi = pi
j x̄

j shows that pi
j = ∂xi/∂x̄j and

we may write this in the classical form

Īrs =
∂xk

∂x̄r

∂xl

∂x̄s
Ikl.

Exercises

1. (a) Prove Theorem 8.4.
(b) Prove Theorem 8.5.

2. Prove the four associative and distributive properties of the tensor product
given in the text following Theorem 8.4.

3. Use v = viei = v̄j ēj and α = αiω
i = ᾱjω̄

j to show that equations (8.4)
and (8.5) follow from equations (8.2) and (8.3).

4. If v ∈ V and α ∈ V ∗, show that 〈α, v〉 is independent of the particular
basis chosen for V . Generalize this to arbitrary tensors.

5. Let Ai be a covariant vector field (i.e., Ai = Ai(x)) with the transforma-
tion rule

Āi =
∂xj

∂x̄i
Aj .

Show the quantity ∂jAi = ∂Ai/∂x
j does not define a tensor, but that

Fij = ∂iAj − ∂jAi is in fact a second-rank tensor.

8.3 Special Types of Tensors

In order to obtain some of the most useful results concerning tensors, we turn
our attention to the space Tr of covariant tensors on V . We say that a tensor
S ∈ Tr is symmetric if for each pair (i, j) with 1 ≤ i, j ≤ r and all vi ∈ V we
have

S(v1, . . . , vi, . . . , vj , . . . , vr) = S(v1, . . . , vj , . . . , vi, . . . , vr).
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Similarly, A ∈ Tr is said to be antisymmetric (or skew-symmetric or alter-

nating) if

A(v1, . . . , vi, . . . , vj , . . . , vr) = −A(v1, . . . , vj , . . . , vi, . . . , vr).

Note this definition implies that A(v1, . . . , vr) = 0 if any two of the vi are
identical. In fact, this was our original definition of an alternating bilinear form.
Furthermore, we also see that A(v1, . . . , vr) = 0 if any vi is a linear combination
of the rest of the vj . In particular, this means we must always have r ≤ dimV
if we are to have a nonzero antisymmetric tensor of type

(
0
r

)
on V .

It is easy to see that if S1, S2 ∈ Tr are symmetric, then so is aS1 + bS2

where a, b ∈ F . Similarly, aA1 +bA2 is antisymmetric. Therefore the symmetric
tensors form a subspace of Tr which we denote by

∑r
(V ), and the antisymmetric

tensors form another subspace of Tr which is denoted by
∧r

(V ) (some authors
denote this space by

∧r(V ∗)). Elements of
∧r(V ) are generally called exterior r-

forms, or simply r-forms. These are the r-tensors that are also antisymmetric.
According to this terminology, the basis vectors {ωi} for V ∗ are referred to as
basis 1-forms. Note that the only element common to both of these subspaces
is the zero tensor. Also note that a 0-form is just an ordinary function.

A particularly important example of an antisymmetric tensor is the determi-
nant function det ∈ Tn(Rn). Note also that the definition of a symmetric tensor
translates into the obvious requirement that (e.g., in the particular case of T2)
Sij = Sji, while an antisymmetric tensor obeys Aij = −Aji. These definitions
can also be extended to include contravariant tensors although we shall have
little need to do so.

We point out that even if S, T ∈∑r(V ) are both symmetric, it need not be
true that S⊗T be symmetric (i.e., S⊗T /∈∑r+r

(V )). For example, if Sij = Sji

and Tpq = Tqp, it does not necessarily follow that SijTpq = SipTjq. It is also

clear that if A, B ∈ ∧r(V ), then we do not necessarily have A⊗B ∈ ∧r+r(V ).

Example 8.5. Suppose α ∈ ∧n
(V ), let {e1, . . . , en} be a basis for V , and for

each i = 1, . . . , n let vi = eja
j
i where aj

i ∈ F . Then, using the multilinearity
of α, we may write

α(v1, . . . , vn) = aj1
1 · · · ajn

n α(ej1 , . . . , ejn
)

where the sums are over all 1 ≤ jk ≤ n. But α ∈ ∧n
(V ) is antisymmetric, and

hence (ej1 , . . . , ejn
) must be a permutation of (e1, . . . , en) in order that the ejk

all be distinct (or else α(ej1 , . . . , ejn
) = 0). In other words, α(ej1 , . . . , ejn

) =
εj1···jn

α(e1, . . . , en) and we are left with

α(v1, . . . , vn) = εj1···jn
aj1

1 · · · ajn
nα(e1, . . . , en)

= det(ai
j)α(e1, . . . , en). (8.6)

Let us consider the special case where α(e1, . . . , en) = 1. Note that if {ωj}
is a basis for V ∗, then

ωjr (vi) = ωjr (eka
k

i) = ak
i ω

jr (ek) = ak
i δ

jr

k = ajr
i.
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Using the definition of tensor product, we can therefore write equation (8.6) as

det(aj
i) = α(v1, . . . , vn) = εj1···jn

ωj1 ⊗ · · · ⊗ ωjn(v1, . . . , vn)

which implies that the determinant function is given by

α = εj1···jn
ωj1 ⊗ · · · ⊗ ωjn .

In other words, if A is a matrix with columns given by v1, . . . , vn then detA =
α(v1, . . . , vn). And in particular, the requirement that α(e1, . . . , en) = 1 is just
det I = 1 as it should.

Suppose Ai1··· ir
and T i1··· ir (where r ≤ n = dim V and 1 ≤ ik ≤ n) are

both antisymmetric tensors, and consider their contraction Ai1··· ir
T i1··· ir . For

any particular set of indices i1, . . . , ir there will be r! different ordered sets
(i1, . . . , ir). But by antisymmetry, the values of Ai1··· ir

corresponding to each
ordered set will differ only by a sign, and similarly for T i1··· ir . This means the
product of Ai1··· ir

times T i1··· ir summed over the r! ordered sets (i1, . . . , ir) is
the same as r! times a single product which we choose to be the indices i1, . . . , ir
taken in increasing order. In other words, we have

Ai1··· ir
T i1··· ir = r!A|i1··· ir |T

i1··· ir

where |i1 · · · ir| denotes the fact that we are summing over increasing sets of
indices only. For example, if we have antisymmetric tensors Aijk and T ijk in
R3, then

AijkT
ijk = 3!A|ijk|T

ijk = 6A123T
123

(where, in this case of course, Aijk and T ijk can only differ by a scalar).
We now want to show that the Levi-Civita symbol defined in Section 3.1 is

actually a special case of the Levi-Civita tensor. Consider the vector space R3

with the standard orthonormal basis {e1, e2, e3}. We define the antisymmetric

tensor ε ∈
∧3

(R3) by the requirement that

ε123 = ε(e1, e2, e3) = +1.

Since dim
∧3

(R3) = 1, this defines all the components of ε by antisymmetry:
ε213 = −ε231 = ε321 = −1 etc. In other words, if {ei} is the standard or-
thonormal basis for R3, then εijk := ε(ei, ej, ek) is just the usual Levi-Civita
symbol.

If {ēi = eja
j
i} is any other orthonormal basis for R3 related to the first

basis by an (orthogonal) transition matrix A = (aj
i) with determinant equal to

+1 (see Equation (4.5)), then we also have

ε(ē1, ē2, ē3) = ε(ei, ej, ek)ai
1a

j
2a

k
3 = εijka

i
1a

j
2a

k
3 = detA = +1.

So we see that in any orthonormal basis related to the standard basis by an
orthogonal transformation with determinant equal to +1, the Levi-Civita ten-
sor behaves just like the symbol. (One says that the new basis has the same
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“orientation” as the original basis. We will discuss orientations later in this
chapter.)

The tensor ε is called the Levi-Civita tensor. However, we stress that in a
non-orthonormal coordinate system, it will not generally be true that ε123 = +1.
And while we have defined the general εijk as the components of a tensor, it is
most common to see the Levi-Civita (or permutation) symbol εijk defined
simply as an antisymmetric symbol with ε123 = +1, and this is how we shall
use it. For notational consistency, we also define the permutation symbol εijk

to have the same values as εijk. (Again, for the general tensor, this is only true
in an orthonormal cartesian coordinate system.)

As we saw in Section 3.2, this definition can easily be extended to an arbi-
trary number of dimensions. In other words, we define

εi1··· in
=





+1 if (i1, . . . , in) is an even permutation of (1, 2, . . . , n)

−1 if (i1, . . . , in) is an odd permutation of (1, 2, . . . , n)

0 otherwise

where

εi1··· in
εi1··· in = n!.

8.4 The Exterior Product

We have seen that the tensor product of two elements of
∧r(V ) is not generally

another element of
∧r+r

(V ). However, we can define another product on
∧r

(V )
that turns out to be of great use. This product is a broad generalization of the
vector cross product in that it applies to an arbitrary number of dimensions
and to spaces with a nondegenerate inner product. We adopt the convention of
denoting elements of

∧r(V ) by Greek letters such as α, β etc.

Let us introduce some convenient notation for handling multiple indices.
Instead of writing the ordered set (i1, . . . , ir), we simply write I where the exact
range will be clear from the context. Furthermore, we write I−→ to denote the

increasing sequence (i1 < · · · < ir). Similarly, we shall also write vI instead of
(vi1 , . . . , vir

).
If α ∈ ∧r

(V ) and {e1, . . . , en} is a basis for V , then α is determined by its
nr components

aI = ai1··· ir
= α(ei1 , . . . , eir

) = α(eI).

For each distinct collection of r indices, the antisymmetry of α tells us that
the components will only differ by a sign, and hence we need only consider the
components where the indices are taken in increasing order. But the number
of ways we can pick r distinct indices from a collection of n possibilities is
n!/r!(n− r)! and therefore

dim
∧r

(V ) =
n!

r!(n− r)! .
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(This is just the usual binomial coefficient
(
n
r

)
. We have n choices for the first

index, n− 1 choices for the second, and on down to n− r+1 choices for the rth
index. Then the total number of choices is n(n− 1) · · · (n− r+1) = n!/(n− r)!.
But for each distinct collection of r indices there are r! different orderings, and
hence we have over counted each collection by r!. Dividing by this factor of r!
yields the desired result.)

In particular, note that if r > n then there is necessarily a repeated index
in α(ei1 , . . . , eir

) and in this case we have aI = 0 by antisymmetry. This means
that there are no nonzero r-forms on an n-dimensional space if r > n.

To take full advantage of this notation, we first define the generalized

permutation symbol ε by

εj1··· jr

i1··· ir
=





+1 if (j1, . . . , jr) is an even permutation of (i1, . . . , ir)

−1 if (j1, . . . , jr) is an odd permutation of (i1, . . . , ir)

0 otherwise

.

For example, ε352235 = +1, ε431341 = −1, ε142231 = 0 etc. In particular, if A = (aj
i) is

an n× n matrix, then

detA = εi1··· in

1···n a1
i1 · · ·an

in
= ε1···ni1··· in

ai1
1 · · · ain

n

because
εj1··· jn

1···n = εj1··· jn = εj1··· jn
.

Now, for α ∈ ∧r(V ), β ∈ ∧s(V ) and v1, . . . , vr, vr+1, . . . , vr+s ∈ V , we have
already defined their tensor product α⊗ β by

(α⊗ β)(v1, . . . , vr+s) = α(v1, . . . , vr)β(vr+1, . . . , vr+s).

But as we have pointed out, it is not generally true that α⊗β ∈ ∧r+s
(V ). What

we now wish to do is define a product
∧r

(V )×
∧s

(V )→
∧r+s

(V ) that preserves
antisymmetry. Recall the antisymmetrization process we defined in Section 3.1.
There we took an object like Tij and formed T[ij] = (1/2!)(Tij − Tji). In other
words, we added up all permutations of the indices with a coefficient in front
of each that is the sign of the permutation, and then divided by the number of
permutations. Now we want to do the same to the tensor product.

Consider the special case where α, β ∈ ∧1(V ) are just 1-forms. If we define
the product α ∧ β := α⊗ β − β ⊗ α which is clearly antisymmetric in α and β,
then acting on two vectors u, v ∈ V we have

(α ∧ β)(u, v) = (α⊗ β)(u, v)− (β ⊗ α)(u, v)

= α(u)β(v) − β(u)α(v)

= α(u)β(v) − α(v)β(u)

which is also clearly antisymmetric in u and v.
Generalizing this result, we define the exterior (or wedge or Grassmann)

product

∧ :
∧r

(V )×
∧s

(V )→
∧r+s

(V )
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as follows. Let α ∈ ∧r(V ) and β ∈ ∧s(V ). Then α ∧ β ∈ ∧r+s(V ) is defined on
(r + s)-tuples of vectors vI = (vi1 , . . . , vir+s

) by

(α ∧ β)(vI ) :=
∑

J−→

∑

K−→

εJK
I α(vJ )β(vK ). (8.7)

Written out in full this is

(α ∧ β)(vi1 , . . . , vir+s
)

=
∑

j1<···<jr

∑

k1<···<ks

εj1··· jrk1···ks

i1··· ir+s
α(vj1 , . . . , vjr

)β(vk1
, . . . , vks

).

Since α has components αI = α(eI) = α(e1, . . . , er) we can write the com-
ponents of the wedge product in terms of the components of α and β separately
as

(α ∧ β)I :=
∑

J−→

∑

K−→

εJK
I αJβK .

Note also that the wedge product of a 0-form f (i.e., a function) and an r-form
α is just f ∧ α = fα.

Example 8.6. Suppose dim V = 5 and {e1, . . . , e5} is a basis for V . If α ∈∧2
(V ) and β ∈

∧1
(V ), then

(α ∧ β)(e5, e2, e3) =
∑

j1<j2,k

εj1j2k
523 α(ej1 , ej2)β(ek)

= ε235523α(e2, e3)β(e5) + ε253523α(e2, e5)β(e3) + ε352523α(e3, e5)β(e2)

= α(e2, e3)β(e5)− α(e2, e5)β(e3) + α(e3, e5)β(e2).

Example 8.7. Let us show that the wedge product is not commutative in
general. If α ∈ ∧r(V ) and β ∈ ∧s(V ), we simply compute using components:

(α ∧ β)I =
∑

J−→

∑

K−→

εJK
I αJβK

= (−1)rs
∑

J−→

∑

K−→

εKJ
I βKαJ

where going from JK = j1 · · · jrk1 · · · ks to KJ = k1 · · · ksj1 · · · jr requires rs
transpositions. But then we have the important general formula

α ∧ β = (−1)rsβ ∧ α (8.8)
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In particular, we see that if either r or s is even, then α ∧ β = β ∧ α, but
if both r and s are odd, then α ∧ β = −β ∧ α. Therefore if r is odd we have
α∧α = 0, but if r is even, then α∧α is not necessarily zero. In particular, any
1-form α always has the property that α ∧ α = 0.

For instance, recall from Example 8.3 that the tangent space of a manifold M
has basis {∂/∂xi} and corresponding dual basis {dxj}. In R3 this dual basis is
{dx, dy, dz} and we see that, for example, dx∧dy = −dy∧dx while dx∧dx = 0.

Our next theorem is a useful result in many computations. It is simply a
contraction of indices in the permutation symbols.

Theorem 8.6. Let I = (i1, . . . , iq), J = (j1, . . . , jr+s), K = (k1, . . . , kr) and
L = (l1, . . . , ls). Then

∑

J−→

εIJ
1···q+r+sε

KL
J = εIKL

1···q+r+s

where I, K and L are fixed quantities, and J is summed over all increasing
subsets j1 < · · · < jr+s of {1, . . . , q + r + s}.

Proof. The only nonvanishing terms on the left hand side can occur when J is
a permutation of KL (or else εKL

J = 0), and of these possible permutations,
we only have one in the sum, and that is for the increasing set J−→. If J is an

even permutation of KL, then εKL
J = +1, and εIJ

1···q+r+s = εIKL
1···q+r+s since an

even number of permutations is required to go from J to KL. If J is an odd
permutation of KL, then εKL

J = −1, and εIJ
1···q+r+s = −εIKL

1···q+r+s since an odd
number of permutations is required to go from J to KL. The conclusion then
follows immediately.

Note that we could have let J = (j1, . . . , jr) and left out L entirely in
Theorem 8.6. The reason we included L is shown in the next example.

Example 8.8. Let us use Theorem 8.6 to give a simple proof of the associativity
of the wedge product. In other words, we want to show that

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ
for any α ∈

∧q
(V ), β ∈

∧r
(V ) and γ ∈

∧s
(V ). To see this, let I = (i1, . . . , iq),

J = (j1, . . . , jr+s), K = (k1, . . . , kr) and L = (l1, . . . , ls). Then we have

[α ∧ (β ∧ γ)](v1, . . . , vq+r+s) =
∑

I−→, J−→

εIJ
1···q+r+sα(vI)(β ∧ γ)(vJ )

=
∑

I−→, J−→

εIJ
1···q+r+sα(vI)

∑

K−→,L−→

εKL
J β(vK)γ(vL)
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=
∑

I−→,K−→, L−→

εIKL
1···q+r+sα(vI)β(vK)γ(vL).

It is easy to see that had we started with (α ∧ β) ∧ γ, we would have arrived at
the same sum. This could also have been done using components only.

As was the case with the tensor product, we simply write α∧β∧γ from now
on. Note also that a similar calculation can be done for the wedge product of
any number of terms.

Our next theorem summarizes some of the most important algebraic prop-
erties of the wedge product.

Theorem 8.7. Suppose α, α1, α2 ∈ Tq(V ), β, β1, β2 ∈ Tr(V ), γ ∈ Ts(V ) and
a ∈ F . Then

(i) The wedge product is bilinear. That is,

(α1 + α2) ∧ β = α1 ∧ β + α2 ∧ β
α ∧ (β1 + β2) = α ∧ β1 + α ∧ β2

(aα) ∧ β = α ∧ (aβ) = a(α ∧ β)

(ii) α ∧ β = (−1)qrβ ∧ α
(iii) The wedge product is associative. That is,

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

Proof. Parts (ii) and (iii) were proved in Examples 8.7 and 8.8. Part (i) is left
as an exercise (see Exercise 8.4.1).

Example 8.9. If α1, . . . , α5 are 1-forms on R5, let us define

β = α1 ∧ α3 + α3 ∧ α5

and
γ = 2α2 ∧ α4 ∧ α5 − α1 ∧ α2 ∧ α4.

Using the properties of the wedge product given in Theorem 8.7 we then have

β ∧ γ = (α1 ∧ α3 + α3 ∧ α5) ∧ (2α2 ∧ α4 ∧ α5 − α1 ∧ α2 ∧ α4)

= 2α1 ∧ α3 ∧ α2 ∧ α4 ∧ α5 − α1 ∧ α3 ∧ α1 ∧ α2 ∧ α4

+ 2α3 ∧ α5 ∧ α2 ∧ α4 ∧ α5 − α3 ∧ α5 ∧ α1 ∧ α2 ∧ α4

= −2α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5 − 0 + 0− α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5

= −3α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5.
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In Exercise 8.4.3 you will show that any α ∈ ∧r(V ) (where r ≤ n = dimV )
can be written as

α =
∑

I−→

α(eI)ω
I =

∑

i1<···<ir

α(ei1 , . . . , eir
)ωi1 ∧ · · · ∧ ωir

= α|i1··· in|ω
i1 ∧ · · · ∧ ωir .

This shows that the collection {ωi1∧· · ·∧ωir} where 1 ≤ ik ≤ n and i1 < · · · < ir
forms a basis for

∧r
(V ).

Example 8.10. Suppose α1, . . . , αr ∈
∧1

(V ) and v1, . . . , vr ∈ V . Using Theo-
rem 8.6, it is easy to generalize equation (8.7) to obtain (see Exercise 8.4.2)

(α1 ∧ · · · ∧ αr)(v1, . . . , vr) =
∑

i1··· ir

εi1··· ir

1···r α1(vi1 ) · · ·αr(vir
)

= det(αi(vj)).

(Note the sum is not over any increasing indices because each αi is only a
1-form.)

As a special case, suppose {ei} is a basis for V and {ωj} is the corresponding
dual basis. Then ωj(ei) = δj

i and hence

ωi1 ∧ · · · ∧ ωir(ej1 , . . . , ejr
) =

∑

k1··· kr

εk1···kr

j1··· jr
ωi1(ek1

) · · ·ωir(ekr
)

= εi1··· ir

j1··· jr
.

In particular, if dimV = n, choosing the indices (i1, . . . , in) = (1, . . . , n) =
(j1, . . . , jn), we see that

ω1 ∧ · · · ∧ ωn(e1, . . . , en) = 1.

Example 8.11. Another useful result is the following. Suppose dimV = n,
and let {ω1, . . . , ωn} be a basis for V ∗. If α1, . . . , αn are any other 1-forms in∧1(V ) = V ∗, then we may expand each αi in terms of the ωj as αi = ai

jω
j .

We then have

α1 ∧ · · · ∧ αn = a1
in
· · · an

in
ωi1 ∧ · · · ∧ ωin

= a1
in
· · · an

in
εi1··· in

1···n ω1 ∧ · · · ∧ ωn

= det(ai
j)ω

1 ∧ · · · ∧ ωn

Recalling Example 8.3, if {ωi = dxi} is a local basis for a cotangent space
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V ∗ and {αi = dyi} is any other local basis, then dyi = (∂yi/∂xj)dxj and

det(ai
j) = det

(
∂yi

∂xj

)
=
∂(y1 · · · yn)

∂(x1 · · ·xn)

is just the usual Jacobian of the transformation. We then have

dy1 ∧ · · · ∧ dyn =
∂(y1 · · · yn)

∂(x1 · · ·xn)
dx1 ∧ · · · ∧ dxn.

The reader may recognize dx1 ∧ · · · ∧ dxn as the volume element on Rn, and
hence differential forms are a natural way to describe the change of variables in
multiple integrals. (For an excellent treatment of tensors and differential forms
see [14].)

Theorem 8.8. If α1, . . . , αr ∈ ∧1
(V ), then {α1, . . . , αr} is a linearly dependent

set if and only if α1 ∧ · · · ∧ αr = 0.

Proof. If {α1, . . . , αr} is linearly dependent, then there exists at least one vector,
say α1, such that α1 =

∑
j 6=1 ajα

j . But then

α1 ∧ · · · ∧ αr =

(∑

j 6=1

ajα
j

)
∧ α2 ∧ · · · ∧ αr

=
∑

j 6=1

aj(α
j ∧ α2 ∧ · · · ∧ αr)

= 0

since every term in the sum contains a repeated 1-form and hence vanishes.

Conversely, suppose α1, . . . , αr are linearly independent. We can then extend
them to a basis {α1, . . . , αn} for V ∗ (Theorem 1.10). If {ei} is the corresponding
dual basis for V , then α1∧· · ·∧αn(e1, . . . , en) = 1 which implies α1∧· · ·∧αr 6= 0.
Therefore {α1, . . . , αr} must be linearly dependent if α1 ∧ · · · ∧ αr = 0.

Exercises

1. Prove Theorem 8.7(i).

2. Suppose α1, . . . , αr ∈
∧1

(V ) and v1, . . . , vr ∈ V . Show

(α1 ∧ · · · ∧ αr)(v1, . . . , vr) = det(αi(vj)).
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3. Suppose {e1, . . . , en} is a basis for V and {ω1, . . . , ωn} is the corresponding
dual basis. If α ∈ ∧r

(V ) (where r ≤ n), show

α =
∑

I−→

α(eI)ω
I =

∑

i1<···<ir

α(ei1 , . . . , eir
)ωi1 ∧ · · · ∧ ωir

by applying both sides to (ej1 , . . . , ejr
).

4. (Interior Product) Suppose α ∈ ∧r
(V ) and v, v2, . . . , vr ∈ V . We define

the (r − 1)-form ivα by

ivα = 0 if r = 0.
ivα = α(v) if r = 1.
ivα(v2, . . . , vr) = α(v, v2, . . . , vr) if r > 1.

(a) Prove iu+v = iu + iv.

(b) If α ∈ ∧r(V ) and β ∈ ∧s(V ), prove iv :
∧r+s(V ) → ∧r+s−1(V ) is an

anti-derivation, i.e.,

iv(α ∧ β) = (ivα) ∧ β + (−1)rα ∧ (ivβ).

(c) If v = viei and α =
∑

I−→
ai1··· ir

ωi1 ∧ · · · ∧ ωir where {ωi} is the basis

dual to {ei}, show

ivα =
∑

i2<···<ir

bi2···ir
ωi2 ∧ · · · ∧ ωir

where
bi2···ir

=
∑

j

vjaji2···ir
.

(d) If α = f1 ∧ · · · ∧ f r where each fk is a 1-form, show

ivα =

r∑

k=1

(−1)k−1fk(v)f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ f r

=

r∑

k=1

(−1)k−1fk(v)f1 ∧ · · · ∧ f̂k ∧ · · · ∧ f r

where the ̂ means the term fk is to be deleted from the expression.

5. Let V = Rn have the standard basis {ei}, and let the corresponding dual
basis for V ∗ be {ωi}.
(a) If u, v ∈ V , show

ωi ∧ ωj(u, v) =

∣∣∣∣
ui vi

uj vj

∣∣∣∣
and that this is ± the area of the parallelogram spanned by the pro-
jection of u and v onto the xixj-plane. What do you think is the
significance of the different signs?
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(b) Generalize this to ωi1 ∧ · · · ∧ ωir where r ≤ n.

6. Let I = (i1, . . . , iq), J = (j1, . . . , jp), and K = (k1, . . . , kq). Prove the
following generalization of equation (3.6):

∑

J−→

εJI
1···p+q ε

1···p+q
JK = εI

K = q!δ
[i1
k1
· · · δiq ]

kq
.

8.5 Volumes in R3

Instead of starting out with an abstract presentation of volumes, we shall first
go through an intuitive elementary discussion beginning with R2, then going to
R3, and finally generalizing to Rn in the next section.

First consider a parallelogram in R2 (with the usual norm) defined by the
vectors X and Y as shown.

X

X

Y
Y

h

b
θ

A1

A1

A2

Note that h = ‖Y ‖ sin θ and b = ‖Y ‖ cos θ, and also that the area of each
triangle is given by A1 = (1/2)bh. Then the area of the rectangle is given by
A2 = (‖X‖ − b)h, and the area of the entire parallelogram is given by

A = 2A1 +A2 = bh+ (‖X‖ − b)h = ‖X‖h = ‖X‖ ‖Y ‖ sin θ. (8.9)

The reader should recognize this as the magnitude of the elementary “vector
cross product” X × Y of the ordered pair of vectors (X,Y ) that is defined to
have a direction normal to the plane spanned by X and Y , and given by the
“right hand rule” (i.e., out of the plane in this case).

If we define the usual orthogonal coordinate system with the x-axis parallel
to the vector X , then

X = (x1, x2) = (‖X‖ , 0)

and
Y = (y1, y2) = (‖Y ‖ cos θ, ‖Y ‖ sin θ)

and hence we see that the determinant with columns formed from the vectors
X and Y is just

∣∣∣∣∣
x1 y1

x2 y2

∣∣∣∣∣ =
∣∣∣∣∣
‖X‖ ‖Y ‖ cos θ

0 ‖Y ‖ sin θ

∣∣∣∣∣ = ‖X‖ ‖Y ‖ sin θ = A. (8.10)

Notice that if we interchanged the vectors X and Y in the diagram, then the
determinant would change sign and the vector X × Y (which by definition has
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a direction dependent on the ordered pair (X,Y )) would point into the page.
Thus the area of a parallelogram (which is always positive by definition) defined
by two vectors in R2 is in general given by the absolute value of the determinant
in equation (8.10).

In terms of the usual inner product (or “dot product”) 〈· , ·〉 on R2, we have

〈X,X〉 = ‖X‖2 and 〈X,Y 〉 = 〈Y,X〉 = ‖X‖ ‖Y ‖ cos θ, and hence

A2 = ‖X‖2 ‖Y ‖2 sin2 θ

= ‖X‖2 ‖Y ‖2 (1− cos2 θ)

= ‖X‖2 ‖Y ‖2 − 〈X,Y 〉2.

Therefore we see that the area is also given by the positive square root of the
determinant

A2 =

∣∣∣∣∣
〈X,X〉 〈X,Y 〉
〈Y,X〉 〈Y, Y 〉

∣∣∣∣∣ . (8.11)

It is also worth noting that the inner product may be written in the form
〈X,Y 〉 = x1y1 + x2y2, and thus in terms of matrices we may write

[
〈X,X〉 〈X,Y 〉
〈Y,X〉 〈Y, Y 〉

]
=

[
x1 x2

y1 y2

] [
x1 y1

x2 y2

]
.

Hence taking the determinant of this equation (using Theorems 3.7 and 3.1),
we find (at least in R2) that the determinant in equation (8.11) also implies the
area is given by the absolute value of the determinant in equation (8.10).

It is now easy to extend this discussion to a parallelogram in R3. Indeed, if
X = (x1, x2, x3) and Y = (y1, y2, y3) are vectors in R3, then equation (8.9) is
unchanged because any two vectors in R3 define the plane R2 spanned by the
two vectors. Equation (8.11) also remains unchanged since its derivation did
not depend on the specific coordinates of X and Y in R2. However, the left
hand part of equation (8.10) does not apply (although we will see below that
the three-dimensional version determines a volume in R3).

As a final remark on parallelograms, note that if X and Y are linearly
dependent, then aX + bY = 0 so that Y = −(a/b)X , and hence X and Y are
co-linear. Therefore θ equals 0 or π so that all equations for the area in terms
of sin θ are equal to zero. Since X and Y are dependent, this also means that
the determinant in equation (8.10) equals zero, and everything is consistent.

We now take a look at volumes in R3. Consider three linearly independent
vectors X = (x1, x2, x3), Y = (y1, y2, y3) and Z = (z1, z2, z3), and consider
the parallelepiped with edges defined by these three vectors (in the given order
(X,Y, Z)).
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X

Y

Z U

We claim that the volume of this parallelepiped is given by both the positive
square root of the determinant

∣∣∣∣∣∣∣

〈X,X〉 〈X,Y 〉 〈X,Z〉
〈Y,X〉 〈Y, Y 〉 〈Y, Z〉
〈Z,X〉 〈Z, Y 〉 〈Z,Z〉

∣∣∣∣∣∣∣
(8.12)

and the absolute value of the determinant
∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
. (8.13)

To see this, first note that the volume of the parallelepiped is given by the
product of the area of the base times the height, where the area A of the base
is given by equation (8.11) and the height ‖U‖ is just the projection of Z onto
the orthogonal complement in R3 of the space spanned by X and Y . In other
words, if W is the subspace of V = R3 spanned by X and Y , then (by Theorem
1.22) V = W⊥ ⊕W , and hence by Theorem 1.12 we may write

Z = U + aX + bY

where U ∈ W⊥ and a, b ∈ R are uniquely determined (the uniqueness of a and
b actually follows from Theorem 1.3 together with Theorem 1.12).

By definition we have 〈X,U〉 = 〈Y, U〉 = 0, and therefore

〈X,Z〉 = a ‖X‖2 + b〈X,Y 〉 (8.14a)

〈Y, Z〉 = a〈Y,X〉+ b ‖Y ‖2 (8.14b)

〈U,Z〉 = ‖U‖2 . (8.14c)

We now wish to solve the first two of these equations for a and b by Cramer’s
rule (Theorem 3.11). Note the determinant of the matrix of coefficients is just
equation (8.11), and hence is just the square of the area A of the base of the
parallelepiped.

Applying Cramer’s rule we have

aA2 =

∣∣∣∣∣
〈X,Z〉 〈X,Y 〉
〈Y, Z〉 〈Y, Y 〉

∣∣∣∣∣ = −
∣∣∣∣∣
〈X,Y 〉 〈X,Z〉
〈Y, Y 〉 〈Y, Z〉

∣∣∣∣∣
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bA2 =

∣∣∣∣∣
〈X,X〉 〈X,Z〉
〈Y,X〉 〈Y, Z〉

∣∣∣∣∣ .

Denoting the volume by Vol(X,Y, Z), we now have (using equation (8.14c)
together with U = Z − aX − bY )

Vol2(X,Y, Z) = A2 ‖U‖2 = A2〈U,Z〉 = A2(〈Z,Z〉 − a〈X,Z〉 − b〈Y, Z〉)

so that substituting the expressions for A2, aA2 and bA2 we find

Vol2(X,Y, Z) = 〈Z,Z〉
∣∣∣∣∣
〈X,X〉 〈X,Y 〉
〈Y,X〉 〈Y, Y 〉

∣∣∣∣∣+ 〈X,Z〉
∣∣∣∣∣
〈X,Y 〉 〈X,Z〉
〈Y, Y 〉 〈Y, Z〉

∣∣∣∣∣

− 〈Y, Z〉
∣∣∣∣∣
〈X,X〉 〈X,Z〉
〈Y,X〉 〈Y, Z〉

∣∣∣∣∣ .

Using 〈X,Y 〉 = 〈Y,X〉 etc., we see this is just the expansion of a determinant
by minors of the third row, and hence (using detAT = detA)

Vol2(X,Y, Z) =

∣∣∣∣∣∣∣

〈X,X〉 〈Y,X〉 〈Z,X〉
〈X,Y 〉 〈Y, Y 〉 〈Z, Y 〉
〈X,Z〉 〈Y, Z〉 〈Z,Z〉

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣

∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣

2

.

We remark that if the collection {X,Y, Z} is linearly dependent, then the
volume of the parallelepiped degenerates to zero (since at least one of the paral-
lelograms that form the sides will have zero area). This agrees with the fact that
the determinant of equation (8.13) will vanish if two rows are linearly dependent.
We also note that the area of the base is given by

‖X × Y ‖ = ‖X‖ ‖Y ‖ sin ∠(X,Y )

where the direction of the vector X × Y is up (in this case). Therefore the
projection of Z in the direction of X × Y is just Z dotted into a unit vector
in the direction of X × Y , and hence the volume of the parallelepiped is given
by the number Z · (X × Y ). This is the so-called scalar triple product that
should be familiar from elementary courses. We leave it to the reader to show
the scalar triple product is given by the determinant of equation (8.13) (see
Exercise 8.5.1).

Finally, note that if any two of the vectors X , Y , Z in equation (8.13) are
interchanged, then the determinant changes sign even though the volume is
unaffected (since it must be positive). This observation will form the basis for
the concept of “orientation” to be defined later.
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Exercises

1. Show Z · (X × Y ) is given by the determinant in equation (8.13).

2. Find the area of the parallelogram whose vertices are:

(a) (0, 0), (1, 3), (−2, 1) and (−1, 4).
(b) (2, 4), (4, 5), (5, 2) and (7, 3).
(c) (−1, 3), (1, 5), (3, 2) and (5, 4).
(d) (0, 0, 0), (1,−2, 2), (3, 4, 2) and (4, 2, 4).
(e) (2, 2, 1), (3, 0, 6), (4, 1, 5) and (1, 1, 2).

3. Find the volume of the parallelepipeds whose adjacent edges are the vec-
tors:

(a) (1, 1, 2), (3,−1, 0) and (5, 2,−1).
(b) (1, 1, 0), (1, 0, 1) and (0, 1, 1).

4. Prove both algebraically and geometrically that the parallelogram with
edges X and Y has the same area as the parallelogram with edges X and
Y + aX for any scalar a.

5. Prove both algebraically and geometrically that the volume of the par-
allelepiped in R3 with edges X , Y and Z is equal to the volume of the
parallelepiped with edges X , Y and Z + aX + bY for any scalars a and b.

6. Show that the parallelepiped in R3 defined by the three vectors (2, 2, 1),
(1,−2, 2) and (−2, 1, 2) is a cube. Find the volume of this cube.

8.6 Volumes in Rn

Now that we have a feeling for volumes in R3 expressed as determinants, let us
prove the analogous results in Rn. To begin with, we note that parallelograms
defined by the vectors X and Y in either R2 or R3 contain all points (i.e.,
vectors) of the form aX + bY for any a, b ∈ [0, 1]. Similarly, given three linearly
independent vectors X,Y, Z ∈ R3, we may define the parallelepiped with these
vectors as edges to be that subset of R3 containing all vectors of the form
aX + bY + cZ where 0 ≤ a, b, c ≤ 1. The corners of the parallelepiped are the
points δ1X + δ2Y + δ3Z where each δi is either 0 or 1.

Generalizing these observations, given any r linearly independent vectors
X1, . . . , Xr ∈ Rn, we define an r-dimensional parallelepiped as the set of all
vectors of the form a1X1 + · · · + arXr where 0 ≤ ai ≤ 1 for each i = 1, . . . , r.
In R3, by a 1-volume we mean a length, a 2-volume means an area, and a
3-volume is just the usual volume.

To define the volume of an r-dimensional parallelepiped we proceed by in-
duction on r. In particular, if X is a nonzero vector (i.e., a 1-dimensional paral-
lelepiped) in Rn, we define its 1-volume to be its length 〈X,X〉1/2. Proceeding,
suppose the (r−1)-dimensional volume of an (r−1)-dimensional parallelepiped
has been defined. If we let Pr denote the r-dimensional parallelepiped defined
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by the r linearly independent vectors X1, . . . , Xr, then we say the base of Pr is
the (r−1)-dimensional parallelepiped defined by the r−1 vectors X1, . . . , Xr−1,
and the height of Pr is the length of the projection of Xr onto the orthogonal
complement in Rn of the space spanned by X1, . . . , Xr−1. According to our
induction hypothesis, the volume of an (r − 1)-dimensional parallelepiped has
already been defined. Therefore we define the r-volume of Pr to be the product
of its height times the (r − 1)-dimensional volume of its base.

The reader may wonder whether or not the r-volume of an r-dimensional
parallelepiped in any way depends on which of the r vectors is singled out for
projection. We proceed as if it does not and then, after the next theorem, we
shall show that this is indeed the case.

Theorem 8.9. Let Pr be the r-dimensional parallelepiped defined by the r lin-
early independent vectors X1, . . . , Xr ∈ Rn. Then the r-volume of Pr is the
positive square root of the determinant

∣∣∣∣∣∣∣∣∣

〈X1, X1〉 〈X1, X2〉 · · · 〈X1, Xr〉
〈X2, X1〉 〈X2, X2〉 · · · 〈X2, Xr〉

...
...

...

〈Xr, X1〉 〈Xr, X2〉 · · · 〈Xr, Xr〉

∣∣∣∣∣∣∣∣∣
. (8.15)

Proof. For the case r = 1 we see the theorem is true by the definition of length
(or 1-volume) of a vector. Proceeding by induction, we assume the theorem is
true for an (r − 1)-dimensional parallelepiped, and we show that it is also true
for an r-dimensional parallelepiped. Hence, let us write

A2 = Vol2(Pr−1) =

∣∣∣∣∣∣∣∣∣

〈X1, X1〉 〈X1, X2〉 · · · 〈X1, Xr−1〉
〈X2, X1〉 〈X2, X2〉 · · · 〈X2, Xr−1〉

...
...

...

〈Xr−1, X1〉 〈Xr−1, X2〉 · · · 〈Xr−1, Xr−1〉

∣∣∣∣∣∣∣∣∣

for the volume of the (r − 1)-dimensional base of Pr. Just as we did in our
discussion of volumes in R3, we write Xr in terms of its projection U onto the
orthogonal complement of the space spanned by the r − 1 vectors X1, . . . , Xr.
This means we can write

Xr = U + a1X1 + · · ·+ ar−1Xr−1

where 〈U,Xi〉 = 0 for i = 1, . . . , r − 1 and 〈U,Xr〉 = 〈U,U〉. We thus have the
system of equations

a1〈X1, X1〉 + a2〈X1, X2〉 + · · · + ar−1〈X1, Xr−1〉 = 〈X1, Xr〉
a1〈X2, X1〉 + a2〈X2, X2〉 + · · · + ar−1〈X2, Xr−1〉 = 〈X2, Xr〉

...
...

...
...

a1〈Xr−1, X1〉+ a2〈Xr−1, X2〉+ · · · + ar−1〈Xr−1, Xr−1〉= 〈Xr−1, Xr〉
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We write M1, . . . ,Mr−1 for the minors of the first r− 1 elements of the last row
in equation (8.15). Solving the above system for the ai using Cramers rule we
obtain

A2a1 = (−1)r−2M1

A2a2 = (−1)r−3M2

...

A2ar−1 = Mr−1

where the factors of (−1)r−k−1 in A2ak result from moving the last column of
equation (8.15) over to become the kth column of the kth minor matrix.

Using this result, we now have

A2U = A2(−a1X1 − a2X2 − · · · − ar−1Xr−1 +Xr)

= (−1)r−1M1X1 + (−1)r−2M2X2 + · · ·+ (−1)Mr−1Xr−1 +A2Xr

and hence, using ‖U‖2 = 〈U,U〉 = 〈U,Xr〉, we find that (since (−1)−k = (−1)k)

A2 ‖U‖2 = A2〈U,Xr〉
= (−1)r−1M1〈Xr, X1〉+ (−1)(−1)r−1M2〈Xr, X2〉+ · · ·+A2〈Xr, Xr〉
= (−1)r−1[M1〈Xr, X1〉 −M2〈Xr, X2〉+ · · ·+ (−1)r−1A2〈Xr, Xr〉].

Now note that the right hand side of this equation is precisely the expansion of
equation (8.15) by minors of the last row, and the left hand side is by definition
the square of the r-volume of the r-dimensional parallelepiped Pr. This also
shows that the determinant (8.15) is positive.

This result may also be expressed in terms of the matrix (〈Xi, Xj〉) as

Vol(Pr) = [det(〈Xi, Xj〉)]1/2.

The most useful form of this theorem is given in the following corollary.

Corollary. The n-volume of the n-dimensional parallelepiped in Rn defined
by the vectors X1, . . . , Xn where each Xi has coordinates (x1

i, . . . , x
n

i) is the
absolute value of the determinant of the matrix X given by

X =




x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

...
...

...

xn
1 xn

2 · · · xn
n


 .
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Proof. Note (detX)2 = (detX)(detXT ) = detXXT is just the determinant in
equation (8.15) of Theorem 8.9, which is the square of the volume. In other
words, Vol(Pn) = |detX |.

Prior to this theorem, we asked whether or not the r-volume depended on
which of the r vectors is singled out for projection. We can now easily show
that it does not.

Suppose we have an r-dimensional parallelepiped defined by r linearly in-
dependent vectors, and let us label these vectors X1, . . . , Xr. According to
Theorem 8.9, we project Xr onto the space orthogonal to the space spanned by
X1, . . . , Xr−1, and this leads to the determinant (8.15). If we wish to project
any other vector instead, then we may simply relabel these r vectors to put a
different one into position r. In other words, we have made some permutation
of the indices in equation (8.15). However, remember that any permutation is a
product of transpositions, and hence we need only consider the effect of a single
interchange of two indices.

Notice, for example, that the indices 1 and r only occur in rows 1 and r as
well as in columns 1 and r. And in general, indices i and j only occur in the
ith and jth rows and columns. But we also see that the matrix corresponding
to equation (8.15) is symmetric in these indices about the main diagonal, and
hence an interchange of the indices i and j has the effect of interchanging both
rows i and j as well as columns i and j in exactly the same manner. Therefore,
because we have interchanged the same rows and columns there will be no sign
change, and hence the determinant (8.15) remains unchanged. In particular,
it always remains positive. It now follows that the volume we have defined is
indeed independent of which of the r vectors is singled out to be the height of
the parallelepiped.

Now note that according to the above corollary, we know

Vol(Pn) = Vol(X1, . . . , Xn) = |detX |

which is always positive. While our discussion just showed that Vol(X1, . . . , Xn)
is independent of any permutation of indices, the actual value of detX can
change sign upon any such permutation. Because of this, we say that the vectors
(X1, . . . , Xn) are positively oriented if detX > 0, and negatively oriented

if detX < 0. Thus the orientation of a set of vectors depends on the order
in which they are written. To take into account the sign of detX , we define
the oriented volume Volo(X1, . . . , Xn) to be + Vol(X1, . . . , Xn) if detX ≥ 0,
and −Vol(X1, . . . , Xn) if detX < 0. We will return to a careful discussion of
orientation in Section 8.8. We also remark that detX is always nonzero as long
as the vectors (X1, . . . , Xn) are linearly independent. Thus the above corollary
may be expressed in the form

Volo(X1, . . . , Xn) = det(X1, . . . , Xn)

where det(X1, . . . , Xn) means the determinant as a function of the column vec-
tors Xi.
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Exercises

1. Find the 3-volume of the three-dimensional parallelepipeds in R4 defined
by the vectors:

(a) (2, 1, 0,−1), (3,−1, 5, 2) and (0, 4,−1, 2).
(b) (1, 1, 0, 0), (0, 2, 2, 0) and (0, 0, 3, 3).

2. Find the 2-volume of the parallelogram in R4 two of whose edges are the
vectors (1, 3,−1, 6) and (−1, 2, 4, 3).

3. Prove that if the vectors X1, X2, . . . , Xr are mutually orthogonal, the r-
volume of the parallelepiped defined by them is equal to the product of
their lengths.

4. Prove that r vectors X1, X2, . . . , Xr in Rn are linearly dependent if and
only if the determinant (8.15) is equal to zero.

8.7 Linear Transformations and Volumes

One of the most useful applications of Theorem 8.9 and its corollary relates to
linear mappings. In fact, this is the approach usually followed in deriving the
change of variables formula for multiple integrals. Let {ei} be an orthonormal
basis for Rn, and let Cn denote the unit cube in Rn. In other words,

Cn = {t1e1 + · · ·+ tnen ∈ Rn : 0 ≤ ti ≤ 1}.

This is similar to the definition of Pr given previously.
Now let A : Rn → Rn be a linear transformation. Then the matrix of A

relative to the basis {ei} is defined by A(ei) = eja
j
i. Let us write the image

of ei as Xi, so that Xi = A(ei) = eja
j
i. This means the column vector Xi

has components (a1
i, . . . , a

n
i). Under the transformation A, the image of Cn

becomes
A(Cn) = A

(∑
tiei

)
=
∑

tiA(ei) =
∑

tiXi

(where 0 ≤ ti ≤ 1) which is just the parallelepiped Pn spanned by the vectors
(X1, . . . , Xn). Therefore the volume of Pn = A(Cn) is given by

Vol(Pn) = Vol(A(Cn)) = det(X1, . . . , Xn) =
∣∣det(aj

i)
∣∣ .

Recalling that the determinant of a linear transformation is defined to be the
determinant of its matrix representation, we have proved the next result.

Theorem 8.10. Let Cn be the unit cube in Rn spanned by the orthonormal
basis vectors {ei}. If A : Rn → Rn is a linear transformation and Pn = A(Cn),
then Vol(Pn) = Vol(A(Cn)) = |detA|.
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It is quite simple to generalize this result somewhat to include the image of
an n-dimensional parallelepiped under a linear transformation A. First, we
note that any parallelepiped Pn is just the image of Cn under some linear
transformation B. Indeed, if Pn = {t1X1 + · · · + tnXn : 0 ≤ ti ≤ 1} for some
set of vectors Xi, then we may define the transformation B by B(ei) = Xi, and
hence Pn = B(Cn). Thus

A(Pn) = A(B(Cn)) = (A ◦B)(Cn)

and therefore (using Theorem 8.10 along with the fact that the matrix of the
composition of two transformations is the matrix product)

Vol(A(Pn)) = Vol[(A ◦B)(Cn)] = |det(A ◦B)| = |detA| |detB|
= |detA|Vol(Pn).

In other words, |detA| is a measure of how much the volume of the parallelepiped
changes under the linear transformation A. See the figure below for a picture
of this in R2.

e1

e2

C2

B A

X1

X2

P2

X1 = B(e1)

X2 = B(e2)

A(X1)

A(X2) A(P2)

−→−→

We summarize this discussion as a corollary to Theorem 8.10.

Corollary. Suppose Pn is an n-dimensional parallelepiped in Rn, and let A :
Rn → Rn be a linear transformation. Then Vol(A(Pn)) = |detA|Vol(Pn).

Now that we have an intuitive grasp of these concepts, let us look at this
material from the point of view of exterior algebra. This more sophisticated
approach is of great use in e.g., the theory of integration. We begin by showing
that a linear transformation T ∈ L(U, V ) induces a linear transformation T ∗ ∈
L(V ∗, U∗) in a natural way.

Let U and V be real vector spaces. Given a linear transformation T ∈
L(U, V ) we define the mapping T ∗ ∈ L(V ∗, U∗) by

T ∗φ = φ ◦ T

for all φ ∈ V ∗. (The mapping T ∗ is frequently written T t.) In other words, for
any u ∈ U we have

(T ∗φ)(u) = (φ ◦ T )(u) = φ(T (u)) ∈ F .



8.7. LINEAR TRANSFORMATIONS AND VOLUMES 371

To show T ∗φ is indeed an element of U∗, we simply note that for u1, u2 ∈ U
and a, b ∈ F we have (using the linearity of T and φ)

(T ∗φ)(au1 + bu2) = φ(T (au1 + bu2))

= φ(aT (u1) + bT (u2))

= aφ(T (u1)) + bφ(T (u2))

= a(T ∗φ)(u1) + b(T ∗φ)(u2)

Furthermore, it is easy to see the mapping T ∗ is linear since for any φ, θ ∈ V ∗

and a, b ∈ F we have

T ∗(aφ+ bθ) = (aφ+ bθ) ◦ T = a(φ ◦ T ) + b(θ ◦ T ) = a(T ∗φ) + b(T ∗θ).

Hence we have proved the next result.

Theorem 8.11. Suppose T ∈ L(U, V ), and define the mapping T ∗ : V ∗ → U∗

by T ∗φ = φ ◦ T for all φ ∈ V ∗. Then T ∗ ∈ L(V ∗, U∗).

The linear mapping T ∗ defined in this theorem is called the transpose of
the linear transformation T . The reason for the name transpose is shown in the
next theorem.

Theorem 8.12. Let T ∈ L(U, V ) have matrix representation A = (aij) with
respect to the bases {e1, . . . , em} for U and {f1, . . . , fn} for V . Let the dual
spaces U∗ and V ∗ have the corresponding dual bases {ei} and {f i}. Then the
matrix representation of T ∗ ∈ L(V ∗, U∗) with respect to these bases for V ∗ and
U∗ is given by AT .

Proof. By definition of A = (aij) we have

Tei =

n∑

j=1

fjaji

for each i = 1, . . . ,m. Define the matrix representation B = (bij) of T ∗ by

T ∗f i =

m∑

j=1

ejbji

for each i = 1, . . . , n. Applying the left side of this equation to an arbitrary
basis vector ek, we find

(T ∗f i)ek = f i(Tek) = f i
(∑

j

fjajk

)
=
∑

j

f i(fj)ajk =
∑

j

δi
jajk = aik
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while the right side yields
∑

j

bjie
j(ek) =

∑

j

bjiδ
j
k = bki.

Therefore bki = aik = aT
ki, and thus B = AT .

An alternative way to arrive at this same conclusion that also illustrates a
useful technique is to take the result (T ∗f i)ek = aik shown above and write

(T ∗f i)ek = aik =
∑

j

aijδjk =
∑

j

aije
j(ek) .

Because the {ek} form a basis, this implies directly that T ∗f i =
∑

j aije
j .

Since this now sums over the column index of (aij), it shows that the matrix
representation of T ∗ is the transpose of the representation of T .

Going back to the summation convention, Theorem 8.12 says that

T ∗f i = ai
je

j (8.16)

We will use this result frequently below. In fact, referring back to Example 8.1,
we know that the dual basis consists of row vectors. Then just as we showed
that a linear transformation T takes the ith basis vector ei to the ith column of
the matrix representation of T , we now see that

ai
je

j = ai
1

[
1 · · · 0

]
+ · · ·+ ai

n

[
0 · · · 1

]
=
[
ai

1 · · · ai
n

]

which is the ith row of the matrix representation of T . In other words, while
(ai

j) acts on the left of the basis vectors ei, it acts to the right of the basis
covectors ei: if ei = [0 · · · 1 · · · 0] has a 1 in the ith position, then

[
0 · · · 1 · · · 0

]


a1

1 · · · a1
n

...
...

an
1 · · · an

n


 =

[
ai

1 · · · ai
n

]
.

Summarizing, we see that T ∗ takes the ith basis covector to the ith row of
(ai

j).
Since AT is the matrix representation of T ∗, certain properties of T ∗ follow

naturally. For example, if T1 ∈ L(V,W ) and T2 ∈ L(U, V ), then (T1◦T2)
∗ = T ∗

2 ◦
T ∗

1 (Theorem 2.15), and if T is nonsingular, then (T−1)∗ = (T ∗)−1 (Corollary
4 of Theorem 2.20).

We now generalize our definition of the transpose. If φ ∈ L(U, V ) and
T ∈ Tr(V ), we define the pull-back φ∗ ∈ L(Tr(V ), Tr(U)) by

(φ∗T )(u1, . . . , ur) = T (φ(u1), . . . , φ(ur))

where u1, . . . , ur ∈ U . Note that in the particular case of r = 1, the mapping
φ∗ is just the transpose of φ. It should also be clear from the definition that φ∗

is indeed a linear transformation, and hence

φ∗(aT1 + bT2) = aφ∗T1 + bφ∗T2.
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We also emphasize that φ need not be an isomorphism for us to define φ∗.
The main properties of the pull-back are given in the next theorem.

Theorem 8.13. If φ ∈ L(U, V ) and ψ ∈ L(V,W ) then
(i) (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
(ii) If I ∈ L(U) is the identity map, then I∗ is the identity in L(Tr(U)).
(iii) If φ is an isomorphism, then so is φ∗, and (φ∗)−1 = (φ−1)∗.
(iv) If T1 ∈ Tr1

(V ) and T2 ∈ Tr2
(V ), then

φ∗(T1 ⊗ T2) = (φ∗T1)⊗ (φ∗T2).

(v) Let U have basis {e1, . . . , em}, V have basis {f1, . . . , fn} and suppose
that φ(ei) = fja

j
i. If T ∈ Tr(V ) has components Ti1··· ir

= T (fi1 , . . . , fir
), then

the components of φ∗T relative to the basis {ei} are given by

(φ∗T )j1··· jr
= Ti1··· ir

ai1
j1 · · · air

jr
.

Proof. (i) Note that ψ ◦φ : U →W , and hence (ψ ◦φ)∗ : Tr(W )→ Tr(U). Thus
for any T ∈ Tr(W ) and u1, . . . , ur ∈ U we have

((ψ ◦ φ)∗T )(u1, . . . , ur) = T (ψ(φ(u1)), . . . , ψ(φ(ur)))

= (ψ∗T )(φ(u1), . . . , φ(ur))

= ((φ∗ ◦ ψ∗)T )(u1, . . . , ur).

(ii) Obvious from the definition of I∗.
(iii) If φ is an isomorphism, then φ−1 exists and we have (using (i) and (ii))

φ∗ ◦ (φ−1)∗ = (φ−1 ◦ φ)∗ = I∗.

Similarly (φ−1)∗ ◦ φ∗ = I∗. Hence (φ∗)−1 exists and is equal to (φ−1)∗.
(iv) This follows directly from the definitions (see Exercise 8.7.1).
(v) Using the definitions, we have

(φ∗T )j1··· jr
= (φ∗T )(ej1 , . . . , ejr

)

= T (φ(ej1), . . . , φ(ejr
))

= T (fi1a
i1

j1 , . . . , fir
air

jr
)

= T (fi1 , . . . , fir
)ai1

j1 · · · air
jr

= Ti1··· ir
ai1

j1 · · · air
jr
.

Alternatively, if {ei}and {f j} are the bases dual to {ei} and {fj} respec-
tively, then T = Ti1··· ir

ei1 ⊗ · · · ⊗ eir and consequently (using the linearity of
φ∗, part (iv) and equation (8.16)),

φ∗T = Ti1··· ir
φ∗ei1 ⊗ · · · ⊗ φ∗eir

= Ti1··· ir
ai1

j1 · · · air
jr
f j1 ⊗ · · · ⊗ f jr

which therefore yields the same result.
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For our present purposes, we will only need to consider the pull-back as
defined on the space

∧r
(V ) rather than on Tr(V ). Therefore, if φ ∈ L(U, V )

then φ∗ ∈ L(Tr(V ), Tr(U)), and hence we see that for ω ∈
∧r

(V ) we have
(φ∗ω)(u1, . . . , ur) = ω(φ(u1), . . . , φ(ur)). This shows φ∗(

∧r
(V )) ⊂ ∧r

(U). Parts
(iv) and (v) of Theorem 8.13 applied to the space

∧r
(V ) yield the following

special cases. (Recall that |i1, . . . , ir| means the sum is over increasing indices
i1 < · · · < ir.)

Theorem 8.14. Suppose φ ∈ L(U, V ), α ∈
∧r

(V ) and β ∈
∧s

(V ). Then
(i) φ∗(α ∧ β) = (φ∗α) ∧ (φ∗β).
(ii) Let U and V have bases {ei} and {fi} respectively, and let U∗ and V ∗

have bases {ei} and {f i}. If we write φ(ei) = fja
j
i and φ∗(f i) = ai

je
j, and if

α = a|i1··· ir |f
i1 ∧ · · · ∧ f ir ∈ ∧r

(V ), then

φ∗α = â|k1··· kr |e
k1 ∧ · · · ∧ ekr

where
â|k1···kr | = a|i1··· ir |ε

j1··· jr

k1···kr
ai1

j1 · · · air
jr
.

Thus we may write
âk1···kr

= a|i1··· ir | det(aI
K)

where

det(aI
K) =

∣∣∣∣∣∣∣

ai1
k1
· · · ai1

kr

...
...

air
k1
· · · air

kr

∣∣∣∣∣∣∣

Proof. (i) For simplicity, we will write (φ∗α)(uJ) = α(φ(uJ )) instead of the
more complete (φ∗α)(u1, . . . , ur) = α(φ(u1), . . . , φ(ur)). Then we have

[φ∗(α ∧ β)](uI) = (α ∧ β)(φ(uI))

=
∑

J−→,K−→

εJK
I α(φ(uJ ))β(φ(uK ))

=
∑

J−→,K−→

εJK
I (φ∗α)(uJ)(φ∗β)(uK)

= [(φ∗α) ∧ (φ∗β)](uI).

By induction, this also obviously applies to the wedge product of a finite number
of forms.

(ii) From α = a|i1··· ir |f
i1 ∧ · · · ∧ f ir and φ∗(f i) = ai

je
j we have (using part

(i) and the linearity of φ∗)

φ∗α = a|i1··· ir |φ
∗(f i1) ∧ · · · ∧ φ∗(f ir )

= a|i1··· ir |a
i1

j1 · · · air
jr
ej1 ∧ · · · ∧ ejr .
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But
ej1 ∧ · · · ∧ ejr =

∑

K−→

εj1··· jr

k1···kr
ek1 ∧ · · · ∧ ekr

and hence we have

φ∗α = a|i1··· ir |
∑

K−→

εj1··· jr

k1···kr
ai1

j1 · · · air
jr
ek1 ∧ · · · ∧ ekr

= â|k1···kr |e
k1 ∧ · · · ∧ ekr

where
â|k1···kr | = a|i1··· ir |ε

j1··· jr

k1···kr
ai1

j1 · · · air
jr
.

Finally, from the definition of determinant we see that

εj1··· jr

k1··· kr
ai1

j1 · · · air
jr

=

∣∣∣∣∣∣∣

ai1
k1
· · · ai1

kr

...
...

air
k1
· · · air

kr

∣∣∣∣∣∣∣

Example 8.12. (This is a continuation of Example 8.3.) An important example
of φ∗α is related to the change of variables formula in multiple integrals. While
we are not in any position to present this material in detail, the idea is this.
Suppose we consider the spaces U = R3(u, v, w) and V = R3(x, y, z) where the
letters in parentheses tell us the coordinate system used for that particular copy
of R3. Note that if we write (x, y, z) = (x1, x2, x3) and (u, v, w) = (u1, u2, u3),
then from elementary calculus we know that dxi = (∂xi/∂uj)duj and ∂/∂ui =
(∂xj/∂ui)(∂/∂xj).

Now recall from Example 8.3 that at each point of R3(u, v, w) the tangent
space has the basis {ei} = {∂/∂ui} and the cotangent space has the correspond-
ing dual basis {ei} = {dui}, with a similar result for R3(x, y, z). Let us define
φ : R3(u, v, w)→ R3(x, y, z) by

φ

(
∂

∂ui

)
=

(
∂xj

∂ui

)(
∂

∂xj

)
= aj

i

(
∂

∂xj

)
.

It is then apparent that (see equation (8.16))

φ∗(dxi) = ai
jdu

j =

(
∂xi

∂uj

)
duj

as we should have expected.
We now apply this to the 3-form

α = a123 dx
1 ∧ dx2 ∧ dx3 = dx ∧ dy ∧ dz ∈

∧3
(V ).

Since we are dealing with a 3-form in a 3-dimensional space, we must have

φ∗α = â du ∧ dv ∧ dw
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where â = â123 consists of the single term given by the determinant

∣∣∣∣∣∣∣

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x1/∂u1 ∂x1/∂u2 ∂x1/∂u3

∂x2/∂u1 ∂x2/∂u2 ∂x2/∂u3

∂x3/∂u1 ∂x3/∂u2 ∂x3/∂u3

∣∣∣∣∣∣∣

which the reader may recognize as the so-called Jacobian of the transformation.
This determinant is usually written as ∂(x, y, z)/∂(u, v, w), and hence we see
that

φ∗(dx ∧ dy ∧ dx) =
∂(x, y, z)

∂(u, v, w)
du ∧ dv ∧ dw.

This is precisely how volume elements transform (at least locally), and hence
we have formulated the change of variables formula in quite general terms.

This formalism allows us to define the determinant of a linear transformation
in an interesting abstract manner. To see this, suppose φ ∈ L(V ) where dim V =
n. Since dim

∧n
(V ) = 1, we may choose any nonzero ω0 ∈

∧n
(V ) as a basis.

Then φ∗ :
∧n

(V ) →
∧n

(V ) is linear, and hence for any ω = c0ω0 ∈
∧n

(V ) we
have

φ∗ω = φ∗(c0ω0) = c0φ
∗ω0 = c0 cω0 = c(c0ω0) = cω

for some scalar c (since φ∗ω0 ∈
∧n

(V ) is necessarily of the form cω0). Noting that
this result did not depend on the scalar c0 and hence is independent of ω = c0ω0,
we see the scalar c must be unique. We therefore define the determinant of φ
to be the unique scalar, denoted by detφ, such that

φ∗ω = (detφ)ω.

It is important to realize this definition of the determinant does not depend
on any choice of basis for V . However, let {ei} be a basis for V , and define the
matrix (ai

j) of φ by φ(ei) = eja
j
i. Then for any nonzero ω ∈ ∧n

(V ) we have

(φ∗ω)(e1, . . . , en) = (detφ)ω(e1, . . . , en).

On the other hand, Example 8.5 shows us that

(φ∗ω)(e1, . . . , en) = ω(φ(e1), . . . , φ(en))

= ai1
1 · · · ain

nω(ei1 , . . . , ein
)

= ai1
1 · · · ain

nεi1··· in
ω(e1, . . . , en)

= (det(ai
j))ω(e1, . . . , en) .

Since ω 6= 0, we have therefore proved the next result.
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Theorem 8.15. If V has basis {e1, . . . , en} and φ ∈ L(V ) has the matrix
representation (ai

j) defined by φ(ei) = eja
j
i, then detφ = det(ai

j).

In other words, our abstract definition of the determinant is exactly the same
as our earlier classical definition. In fact, it is now easy to derive some of the
properties of the determinant that were not exactly simple to prove in the more
traditional manner.

Theorem 8.16. If V is finite-dimensional and φ, ψ ∈ L(V, V ), then
(i) det(φ ◦ ψ) = (detφ)(detψ).
(ii) If φ is the identity transformation, then detφ = 1.
(iii) φ is an isomorphism if and only if detφ 6= 0, and if this is the case,

then detφ−1 = (detφ)−1.

Proof. (i) By definition we have (φ ◦ ψ)∗ω = det(φ ◦ ψ)ω. On the other hand,
by Theorem 8.13(i) we know that (φ ◦ ψ)∗ = ψ∗ ◦ φ∗, and hence

(φ ◦ ψ)∗ω = ψ∗(φ∗ω) = ψ∗[(detφ)ω] = (detφ)ψ∗ω

= (detφ)(detψ)ω.

(ii) If φ = 1 then φ∗ = 1 also (by Theorem 8.13(ii)), and therefore ω =
φ∗ω = (detφ)ω implies detφ = 1.

(iii) First assume φ is an isomorphism so that φ−1 exists. Then by parts (i)
and (ii) we see that

1 = det(φφ−1) = (detφ)(detφ−1)

which implies detφ 6= 0 and detφ−1 = (detφ)−1. Conversely, suppose φ is not
an isomorphism. Then Kerφ 6= 0 and there exists a nonzero e1 ∈ V such that
φ(e1) = 0. By Theorem 1.10, we can extend this to a basis {e1, . . . , en} for V .
But then for any nonzero ω ∈ ∧n

(V ) we have

(detφ)ω(e1, . . . , en) = (φ∗ω)(e1, . . . , en)

= ω(φ(e1), . . . , φ(en))

= ω(0, φ(e2), . . . , φ(en))

= 0

and hence we must have detφ = 0.
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Exercises

1. Prove Theorem 8.13(iv).

The next three exercises are related. For notational consistency, let αi ∈
U∗, βi ∈ V ∗, γ∗ ∈ W ∗, and let ui ∈ U, vi ∈ V and wi ∈W .

2. Let φ ∈ L(U, V ) be an isomorphism, and suppose T ∈ T s
r (U). Define the

push-forward φ∗ ∈ L(T s
r (U), T s

r (V )) by

(φ∗T )(β1, . . . , βs, v1, . . . , vr) = T (φ∗β1, . . . , φ∗βs, φ−1v1, . . . , φ
−1vr)

where β1, . . . , βs ∈ V ∗ and v1, . . . , vr ∈ V . If ψ ∈ L(V,W ) is also an
isomorphism, prove the following:

(a) (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.
(b) If I ∈ L(U) is the identity map, then so is I∗ ∈ L(T s

r (U)).
(c) φ∗ is an isomorphism, and (φ∗)−1 = (φ−1)∗.
(d) Since (φ−1)∗ maps “backward,” we denote it by φ∗. Show that in

the particular case of T ∈ Tr(V ), this definition of φ∗ agrees with our
previous definition of pull-back.

(e) If T1 ∈ T s1
r1

and T2 ∈ T s2
r2

, then

φ∗(T1 ⊗ T2) = (φ∗T1)⊗ (φ∗T2).

3. Let φ ∈ L(U, V ) be an isomorphism, and let U and V have bases {ei} and
{fi} respectively, with corresponding dual bases {ei} and {f i}. Define the
matrices (ai

j) and (bij) by φ(ei) = fja
j
i and φ−1(fi) = ejb

j
i. Suppose

T ∈ T s
r (U) has components T i1··· is

j1··· jr
relative to {ei}, and S ∈ T s

r (V )
has components Si1··· is

j1··· jr
relative to {fi}.

(a) Show that (bij) = (a−1)i
j .

(b) Show that the components of φ∗T are given by

(φ∗T )i1··· is

j1··· jr
= ai1

k1
· · · ais

ks
T k1··· ks

l1··· lrb
l1

j1 · · · blrjr
.

(c) Show that the components of φ∗S are given by

(φ∗S)i1··· is

j1··· jr
= bi1k1

· · · bis
ks
Sk1···ks

l1··· lra
l1

j1 · · · alr
jr

Hint : You will need to find the matrix representation of (φ−1)∗.

4. (a) Let U have basis {ei} and dual basis {ei}. If φ ∈ L(U), show that

φ∗ei = eja
j
i = φ(ei)

and
φ∗e

i = bike
k .
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(b) Let {ei} be the basis dual to the standard basis {ei} for R2. Let
T ∈ T 2(R2) be defined by

T = e1 ⊗ e1 + 2e1 ⊗ e2 − e2 ⊗ e1 + 3e2 ⊗ e2

and let φ ∈ L(R2) have the matrix representation

A =

[
2 1

1 1

]
.

Compute φ∗T using Problem 3(c).
(c) Let T ∈ T 1

1 (R2) be defined by

T = e1 ⊗ e2 − 2e2 ⊗ e2

and let φ be as in part (a). Compute φ∗T using Problem 2(e).

(d) Let {ei} be the standard basis for R2 with corresponding dual basis
{ei}. Let {fi} be the standard basis for R3 with dual basis {f i}.
Let T = −2e1 ⊗ e2 ∈ T2(R2), and let φ ∈ L(R3,R2) have matrix
representation

A =

[
1 0 2

0 −1 1

]
.

Compute φ∗T using Theorem 8.13(iv).

8.8 Orientations and Volumes

Suppose dimV = n and consider the space
∧n

(V ). Since this space is 1-
dimensional, we consider the n-form

ω = e1 ∧ · · · ∧ en ∈
∧n

(V )

where the basis {ei} for V ∗ is dual to the basis {ei} for V . If {vi = ejv
j
i} is

any set of n linearly independent vectors in V then, according to Examples 8.5
and 8.10, we have

ω(v1, . . . , vn) = det(vj
i)ω(e1, . . . , en) = det(vj

i).

However, from the corollary to Theorem 8.9, this is just the oriented n-volume of
the n-dimensional parallelepiped in Rn spanned by the vectors {vi}. Therefore,
we see that an n-form in some sense represents volumes in an n-dimensional
space. We now proceed to make this definition precise, beginning with a careful
definition of the notion of orientation on a vector space.

In order to try and make the basic idea clear, let us first consider the space R2

with all possible orthogonal coordinate systems. For example, we may consider
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the usual “right-handed” coordinate system {e1, e2} shown below, or we may
consider the alternative “left-handed” system {e′1, e′2} also shown.

e1

e2

e′2

e′1

In the first case, we see that rotating e1 into e2 through the smallest angle
between them involves a counterclockwise rotation, while in the second case,
rotating e′1 into e′2 entails a clockwise rotation. This effect is shown in the
elementary vector cross product, where the direction of e1× e2 is defined by the
“right-hand rule” to point out of the page, while e′1 × e′2 points into the page.

We now ask whether or not it is possible to continuously rotate e′1 into e1
and e′2 into e2 while maintaining a basis at all times. In other words, we ask
if these two bases are in some sense equivalent. Without being rigorous, it
should be clear that this can not be done because there will always be one point
where the vectors e′1 and e′2 will be co-linear, and hence linearly dependent. This
observation suggests that we consider the determinant of the matrix representing
this change of basis.

To formulate this idea precisely, let us take a look at the matrix relating our
two bases {ei} and {e′i} for R2. We thus write e′i = eja

j
i and investigate the

determinant det(ai
j). From the above figure, we see geometrically that

e′1 = e1a
1
1 + e2a

2
1 where a1

1 < 0 and a2
1 > 0

e′2 = e1a
1
2 + e2a

2
2 where a1

2 > 0 and a2
2 > 0

and hence det(ai
j) = a1

1a
2
2 − a1

2a
2
1 < 0.

Now suppose that we view this transformation as a continuous modification
of the identity transformation. This means we consider the basis vectors e′i to
be continuous functions e′i(t) of the matrix aj

i(t) for 0 ≤ t ≤ 1 where aj
i(0) =

δj
i and aj

i(1) = aj
i, so that e′i(0) = ei and e′i(1) = e′i. In other words, we

write e′i(t) = eja
j
i(t) for 0 ≤ t ≤ 1. Now note that det(ai

j(0)) = det(δi
j) =

1 > 0, while det(ai
j(1)) = det(ai

j) < 0. Therefore, since the determinant
is a continuous function of its entries, there must be some value t0 ∈ (0, 1)
where det(ai

j(t0)) = 0. It then follows that the vectors e′i(t0) will be linearly
dependent.

What we have just shown is that if we start with any pair of linearly in-
dependent vectors, and then transform this pair into another pair of linearly
independent vectors by moving along any continuous path of linear transfor-
mations that always maintains the linear independence of the pair, then every
linear transformation along this path must have positive determinant. Another
way of saying this is that if we have two bases that are related by a transforma-
tion with negative determinant, then it is impossible to continuously transform
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one into the other while maintaining their independence. This argument clearly
applies to Rn and is not restricted to R2.

Conversely, suppose we had assumed that e′i = eja
j
i, but this time with

det(ai
j) > 0. We want to show that {ei} may be continuously transformed into

{e′i} while maintaining linear independence all the way. We first assume that
both {ei} and {e′i} are orthonormal bases. After treating this special case, we
will show how to take care of arbitrary bases.

(Unfortunately, the argument we are about to give relies on the topological
concept of path connectedness. Since this discussion is only motivation, the
reader should not get too bogged down in the details of this argument. Those
readers who know some topology should have no trouble filling in the necessary
details if desired.)

Since {ei} and {e′i} are orthonormal, it follows from Theorem 6.6 (applied to
R rather than C) that the transformation matrix A = (ai

j) defined by e′i = eja
j
i

must be orthogonal, and hence det A = +1 (by Theorem 5.16(i) and the fact
that we are assuming {ei} and {e′i} are related by a transformation with positive
determinant). Now, it is a consequence of Theorem 6.15 that there exists a
nonsingular matrix S such that S−1AS = Mθ where Mθ is the block diagonal
form consisting of 2× 2 rotation matrices R(θi) given by

R(θi) =

[
cos θi − sin θi

sin θi cos θi

]

and at most a single +1 and/or a single −1. The fact that there can be at most
a single +1 or −1 is due to the fact that a pair of +1’s can be written in the
form of a rotation matrix with θ = 0, and a pair of −1’s can be written as a
rotation matrix with θ = π.

Since detR(θi) = +1 for any θi, we see that (using Theorem 5.10) detMθ =
+1 if there is no −1, and detMθ = −1 if there is a single−1. From A = SMθS

−1

we have detA = detMθ, and since we are requiring detA > 0, we must have
the case where there is no −1 in Mθ.

Since cos θi and sin θi are continuous functions of θi ∈ [0, 2π) (where the
interval [0, 2π) is a path connected set), we note that by parametrizing each
θi by θi(t) = (1 − t)θi, the matrix Mθ may be continuously connected to the
identity matrix I (i.e., at t = 1). In other words, we consider the matrix Mθ(t)

where Mθ(0) = Mθ and Mθ(1) = I. Hence every such Mθ (i.e., any matrix of
the same form as our particular Mθ, but with a different set of θi’s) may be
continuously connected to the identity matrix. (For those readers who know
some topology, note all we have said is that the torus [0, 2π) × · · · × [0, 2π) is
path connected, and hence so is its continuous image which is the set of all such
Mθ.)

We may write the (infinite) collection of all such Mθ as M = {Mθ}. Clearly
M is a path connected set. Since A = SMθS

−1 and I = SIS−1, we see that both
A and I are contained in the collection SMS−1 = {SMθS

−1}. But SMS−1 is
also path connected since it is just the continuous image of a path connected set
(matrix multiplication is obviously continuous). Thus we have shown that both
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A and I lie in the path connected set SMS−1, and hence A may be continuously
connected to I. Note also that every transformation along this path has positive
determinant since detSMθS

−1 = detMθ = 1 > 0 for every Mθ ∈M .
If we now take any path in SMS−1 that starts at I and goes to A, then

applying this path to the basis {ei} we obtain a continuous transformation from
{ei} to {e′i} with everywhere positive determinant. This completes the proof
for the special case of orthonormal bases.

Now suppose {vi} and {v′i} are arbitrary bases related by a transforma-
tion with positive determinant. Starting with the basis {vi}, we first apply the
Gram-Schmidt process (Theorem 1.21) to {vi} to obtain an orthonormal basis
{ei} = {vjb

j
i}. This orthonormalization process may be visualized as a se-

quence vi(t) = vjb
j
i(t) (for 0 ≤ t ≤ 1) of continuous scalings and rotations that

always maintain linear independence such that vi(0) = vi (i.e., bji(0) = δj
i)

and vi(1) = ei (i.e., bji(1) = bji). Hence we have a continuous transformation
bji(t) taking {vi} into {ei} with det(bji(t)) > 0 (the transformation starts with
det(bji(0)) = det I > 0, and since the vectors are always independent, it must
maintain det((bj i(t)) 6= 0).

Similarly, we may transform {v′i} into an orthonormal basis {e′i} by a con-
tinuous transformation with positive determinant. (Alternatively, it was shown
in Exercise 4.4.12 that the Gram-Schmidt process is represented by an upper-
triangular matrix with all positive diagonal elements, and hence its determinant
is positive.) Now {ei} and {e′i} are related by an orthogonal transformation that
must also have determinant equal to +1 because {vi} and {v′i} are related by
a transformation with positive determinant, and both of the Gram-Schmidt
transformations have positive determinant. This reduces the general case to the
special case treated above.

With this discussion as motivation, we make the following definition. Let
{v1, . . . , vn} and {v′1, . . . , v′n} be two ordered bases for a real vector space V ,
and assume that v′i = vja

j
i. These two bases are said to be similarly oriented

if det(ai
j) > 0, and we write this as {vi} ≈ {v′i}. In other words, {vi} ≈ {v′i}

if v′i = φ(vi) with detφ > 0. We leave it to the reader to show this defines an
equivalence relation on the set of all ordered bases for V (see Exercise 8.8.1).
We denote the equivalence class of the basis {vi} by [vi].

It is worth pointing out that had we instead required det(ai
j) < 0, then

this would not have defined an equivalence relation. This is because if (bij) is
another such transformation with det(bij) < 0, then

det(ai
jb

j
k) = det(ai

j) det(bjk) > 0.

Intuitively this is quite reasonable since a combination of two reflections (each
of which has negative determinant) is not another reflection.

We now define an orientation of V to be an equivalence class of ordered
bases. The space V together with an orientation [vi] is called an oriented

vector space (V, [vi]). Since the determinant of a linear transformation that
relates any two bases must be either positive or negative, we see that V has
exactly two orientations. In particular, if {vi} is any given basis, then every
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other basis belonging to the equivalence class [vi] of {vi} will be related to {vi}
by a transformation with positive determinant, while those bases related to {vi}
by a transformation with negative determinant will be related to each other by
a transformation with positive determinant (see Exercise 8.8.1).

Now recall we have seen that n-forms seem to be related to n-volumes in
an n-dimensional space V . To precisely define this relationship, we formulate
orientations in terms of n-forms.

To begin with, the nonzero elements of the 1-dimensional space
∧n

(V ) are
called volume forms (or sometimes volume elements) on V . If ω1 and ω2

are volume forms, then ω1 is said to be equivalent to ω2 if ω1 = c ω2 for some
real c > 0, and in this case we also write ω1 ≈ ω2. Since every element of

∧n
(V )

is related to every other element by a relationship of the form ω1 = aω2 for
some real a (i.e., −∞ < a <∞), it is clear that this equivalence relation divides
the set of all nonzero volume forms into two distinct groups (i.e., equivalence
classes). We can relate any ordered basis {vi} for V to a specific volume form
by defining

ω = v1 ∧ · · · ∧ vn

where {vi} is the basis dual to {vi}. That this association is meaningful is
shown in the next result.

Theorem 8.17. Let {vi} and {v̄i} be bases for V , and let {vi} and {v̄i} be the
corresponding dual bases. Define the volume forms

ω = v1 ∧ · · · ∧ vn

and
ω̄ = v̄1 ∧ · · · ∧ v̄n.

Then {vi} ≈ {v̄i} if and only if ω ≈ ω̄.

Proof. First suppose {vi} ≈ {v̄i}. Then v̄i = φ(vi) where detφ > 0, and hence
using the result

ω(v1, . . . , vn) = v1 ∧ · · · ∧ vn(v1, . . . , vn) = 1

shown in Example 8.10, we have

ω(v̄1, . . . , v̄n) = ω(φ(v1), . . . , φ(vn))

= (φ∗ω)(v1, . . . , vn)

= (detφ)ω(v1, . . . , vn)

= detφ

If we assume that ω = c ω̄ for some −∞ < c <∞, then using ω̄(v̄1, . . . , v̄n) = 1
we see that our result implies c = detφ > 0 and therefore ω ≈ ω̄.

Conversely, if ω = c ω̄ where c > 0, then assuming v̄i = φ(vi), the above
calculation shows that detφ = c > 0, and hence {vi} ≈ {v̄i}.
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What this theorem shows us is that an equivalence class of bases uniquely
determines an equivalence class of volume forms and conversely. Therefore it
is consistent with our earlier definitions to say that an equivalence class [ω] of
volume forms on V defines an orientation on V , and the space V together with
an orientation [ω] is called an oriented vector space (V, [ω]). A basis {vi}
for (V, [ω]) is now said to be positively oriented if ω(v1, . . . , vn) > 0. Not
surprisingly, the equivalence class [−ω] is called the reverse orientation, and
the basis {vi} is said to be negatively oriented if ω(v1, . . . , vn) < 0.

Note that if the ordered basis {v1, v2, . . . , vn} is negatively oriented, then
the basis {v2, v1, . . . , vn} will be positively oriented because ω(v2, v1, . . . , vn) =
−ω(v1, v2, . . . , vn) > 0. By way of additional terminology, the standard ori-

entation on Rn is that orientation defined by either the standard ordered basis
{e1, . . . , en}, or the corresponding volume form e1 ∧ · · · ∧ en.

In order to proceed any further, we must introduce the notion of a metric
on V . This is the subject of the next section.

Exercises

1. (a) Show the collection of all similarly oriented bases for V defines an
equivalence relation on the set of all ordered bases for V .

(b) Let {vi} be a basis for V . Show that all other bases related to {vi}
by a transformation with negative determinant will be related to each
other by a transformation with positive determinant.

2. Let (U, ω) and (V, µ) be oriented vector spaces with chosen volume ele-
ments. We say that φ ∈ L(U, V ) is volume preserving if φ∗µ = ω. If
dimU = dimV is finite, show φ is an isomorphism.

3. Let (U, [ω]) and (V, [µ]) be oriented vector spaces. We say that φ ∈ L(U, V )
is orientation preserving if φ∗µ ∈ [ω]. If dimU = dimV is finite,
show φ is an isomorphism. If U = V = R3, give an example of a linear
transformation that is orientation preserving but not volume preserving.

8.9 The Metric Tensor and Volume Forms

We now generalize slightly our definition of inner products on V . In particular,
recall from Section 1.5 (and Section 8.1) that property (IP3) of an inner product
requires that 〈u, u〉 ≥ 0 for all u ∈ V and 〈u, u〉 = 0 if and only if u = 0. If we
drop this condition entirely, then we obtain an indefinite inner product on V .
(In fact, some authors define an inner product as obeying only (IP1) and (IP2),
and then refer to what we have called an inner product as a “positive definite
inner product.”) If we replace (IP3) by the weaker requirement

(IP3′) 〈u, v〉 = 0 for all v ∈ V if and only if u = 0

then our inner product is said to be nondegenerate. (Note that every example
of an inner product given in this book up to now has been nondegenerate.)
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Thus a real nondegenerate indefinite inner product is just a real nondegenerate
symmetric bilinear map. We will soon see an example of an inner product with
the property that 〈u, u〉 = 0 for some u 6= 0 (see Example 8.16 below).

Throughout the remainder of this chapter, we will assume that our inner
products are indefinite and nondegenerate unless otherwise noted. We further-
more assume that we are dealing exclusively with real vector spaces.

Let {ei} be a basis for an inner product space V . Since in general we will
not have 〈ei, ej〉 = δij , we define the scalars gij by

gij = 〈ei, ej〉.

In terms of the gij , we have for any X,Y ∈ V

〈X,Y 〉 = 〈xiei, y
jej〉 = xiyj〈ei, ej〉 = gijx

iyj .

If {ēi} is another basis for V , then we will have ēi = eja
j
i for some nonsingular

transition matrix A = (aj
i). Hence, writing ḡij = 〈ēi, ēj〉 we see that

ḡij = 〈ēi, ēj〉 = 〈era
r
i, esa

s
j〉 = ar

ia
s
j〈er, es〉 = ar

ia
s
jgrs

which shows that the gij transform like the components of a second-rank co-
variant tensor. Indeed, defining the tensor g ∈ T2(V ) by

g(X,Y ) = 〈X,Y 〉

results in
g(ei, ej) = 〈ei, ej〉 = gij

as it should.
We are therefore justified in defining the (covariant) metric tensor

g = gijω
i ⊗ ωj ∈ T2(V )

(where {ωi} is the basis dual to {ei}) by g(X,Y ) = 〈X,Y 〉. In fact, since the
inner product is nondegenerate and symmetric (i.e., 〈X,Y 〉 = 〈Y,X〉), we see
that g is a nondegenerate symmetric tensor (i.e., gij = gji).

Next, we notice that given any vector A ∈ V , we may define a linear func-
tional 〈A, ·〉 on V by the assignment B 7→ 〈A,B〉. In other words, for any
A ∈ V , we associate the 1-form α defined by α(B) = 〈A,B〉 for every B ∈ V .
Note the kernel of the mapping A 7→ 〈A, ·〉 (which is easily seen to be a vector
space homomorphism) consists of only the zero vector (since 〈A,B〉 = 0 for
every B ∈ V implies A = 0), and hence this association is an isomorphism.

Given any basis {ei} for V , the components ai of α ∈ V ∗ are given in terms
of those of A = aiei ∈ V by

ai = α(ei) = 〈A, ei〉 = 〈ajej, ei〉 = aj〈ej, ei〉 = ajgji.

Thus, to any contravariant vector A = aiei ∈ V , we can associate a unique
covariant vector α ∈ V ∗ by

α = aiω
i = (ajgji)ω

i
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where {ωi} is the basis for V ∗ dual to the basis {ei} for V . In other words, we
write

ai = ajgji

and we say that ai arises by lowering the index j of aj .

Example 8.13. If we consider the space Rn with a Cartesian coordinate system
{ei}, then we have gij = 〈ei, ej〉 = δij , and hence ai = δija

j = ai. Therefore, in
a Cartesian coordinate system, there is no distinction between the components
of covariant and contravariant vectors. This explains why 1-forms never arise
in elementary treatments of vector analysis.

Since the metric tensor is nondegenerate, the matrix (gij) must be nonsin-
gular (or else the mapping aj 7→ ai would not be an isomorphism). We can
therefore define the inverse matrix (gij) by

gijgjk = gkjg
ji = δi

k.

Using (gij), we see the inverse of the mapping aj 7→ ai is given by

gijaj = ai.

This is called, naturally enough, raising an index. We will show below that
the gij do indeed form the components of a tensor.

It is worth remarking that the “tensor” gi
j = gikgkj = δi

j(= δj
i) is unique

in that it has the same components in any coordinate system. Indeed, if {ei}
and {ēi} are two bases for a space V with corresponding dual bases {ωi} and

{ω̄i}, then ēi = eja
j
i and ω̄j = bjiω

i = (a−1)
j
iω

i (see the discussion following
Theorem 8.5). Therefore, if we define the tensor δ to have the same values in
the first coordinate system as the Kronecker delta, then δi

j = δ(ωi, ej). If we
now define the symbol δ̄i

j by δ̄i
j = δ(ω̄i, ēj), then we see that

δ̄i
j = δ(ω̄i, ēj) = δ((a−1)i

kω
k, era

r
j) = (a−1)i

ka
r
jδ(ω

k, er)

= (a−1)i
ka

r
jδ

k
r = (a−1)i

ka
k

j = δi
j .

This shows the δi
j are in fact the components of a tensor, and these components

are the same in any coordinate system.
We would now like to show that the scalars gij are indeed the components of

a tensor. There are several ways this can be done. First, let us write gijg
jk = δk

i

where we know that both gij and δk
i are tensors. Multiplying both sides of this

equation by (a−1)r
ka

i
s and using (a−1)r

ka
i
sδ

k
i = δr

s we find

gijg
jk(a−1)r

ka
i
s = δr

s.

Now substitute gij = gitδ
t
j = gita

t
q(a

−1)q
j to obtain

[ai
sa

t
qgit][(a

−1)q
j(a

−1)r
kg

jk] = δr
s.
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Since git is a tensor, we know that ai
sa

t
qgit = ḡsq. If we write

ḡqr = (a−1)q
j(a

−1)r
kg

jk

then we will have defined the gjk to transform as the components of a tensor,
and furthermore, they have the requisite property that ḡsq ḡ

qr = δr
s. Therefore

we have defined the (contravariant) metric tensor G ∈ T 2
0 (V ) by

G = gijei ⊗ ej

where gijgjk = δi
k.

There is another interesting way for us to define the tensor G. We have
already seen that a vector A = aiei ∈ V defines a unique linear form α = ajω

j ∈
V ∗ by the association α = gija

iωj. If we denote the inverse of the matrix (gij)
by (gij) so that gijgjk = δi

k, then to any linear form α = aiω
i ∈ V ∗ there

corresponds a unique vector A = aiei ∈ V defined by A = gijaiej. We can now
use this isomorphism to define an inner product on V ∗. In other words, if 〈· , ·〉
is an inner product on V , we define an inner product 〈· , ·〉 on V ∗ by

〈α, β〉 = 〈A,B〉

where A, B ∈ V are the vectors corresponding to the 1-forms α, β ∈ V ∗.
Let us write an arbitrary basis vector ei in terms of its components relative

to the basis {ei} as ei = δj
iej . Therefore, in the above isomorphism, we may

define the linear form êi ∈ V ∗ corresponding to the basis vector ei by

êi = gjkδ
j
iω

k = gikω
k

and hence using the inverse matrix we find

ωk = gkiêi.

Applying our definition of the inner product in V ∗ we have 〈êi, êj〉 = 〈ei, ej〉 =
gij , and therefore we obtain

〈ωi, ωj〉 = 〈gir êr, g
jsês〉 = girgjs〈êr, ês〉 = girgjsgrs = girδj

r = gij

which is the analogue in V ∗ of the definition gij = 〈ei, ej〉 in V .

Lastly, since ω̄j = (a−1)j
iω

i, we see that

ḡij = 〈ω̄i, ω̄j〉 = 〈(a−1)i
rω

r, (a−1)j
sω

s〉 = (a−1)i
r(a

−1)j
s〈ωr, ωs〉

= (a−1)i
r(a

−1)j
sg

rs

so the scalars gij may be considered to be the components of a symmetric tensor
G ∈ T 0

2 (V ) defined as above by G = gijei ⊗ ej .
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Example 8.14. Let us compute both (gij) and (gij) for the usual spherical
coordinate system (r, θ, φ) as shown below.

x

y

z

θ

φ

r

r̂

θ̂

φ̂

Consider an infinitesimal displacement dx. To write this in terms of the
three unit vectors, first suppose that θ and φ are held constant and we vary r.
Then the displacement is just dr r̂. Now hold r and φ constant and vary θ. This
gives a displacement rdθ θ̂. Finally, holding r and θ constant and varying φ we
have the displacement r sin θdφ φ̂. Putting this together, we see that a general
displacement dx is given by

dx = dr r̂ + rdθ θ̂ + r sin θ dφ φ̂

where r̂, θ̂, φ̂ are orthonormal unit vectors.
The square of the magnitude of this displacement is ‖dx‖2 and is conven-

tionally denoted by ds2. Writing this out we have

ds2 = 〈dx, dx〉 = dr2 + r2dθ2 + r2 sin2 θ dφ2.

If we write dx = dxiei (where dx1 = dr, dx2 = dθ and dx3 = dφ so that
e1 = r̂, e2 = rθ̂ and e3 = r sin θφ̂), then

ds2 = 〈dxiei, dx
jej〉 = dxidxj〈ei, ej〉 = gijdx

idxj

= grrdr
2 + gθθdθ

2 + gφφdφ
2.

where g11 := grr, g22 := gθθ and g33 := gφφ.
Comparing these last two equations shows that grr = 1, gθθ = r2 and gφφ =

r2 sin2 θ which we can write in (diagonal) matrix form as

(gij) =




1
r2

r2 sin2 θ


 .

Since this is diagonal, the inverse matrix is clearly given by

(gij) =




1
1/r2

1/r2 sin2 θ
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so that the nonzero elements are given by gij = 1/gij.

Example 8.15. We now show how the gradient of a function depends on the
metric for its definition. In particular, we will see that the gradient is the
contravariant version of the usual differential. This is exactly the same as the
association between vectors and 1-forms that we made earlier when we discussed
raising and lowering indices.

Referring again to Example 8.3, let {∂/∂r, ∂/∂θ, ∂/∂φ} be a basis for our
space R3 with the standard spherical coordinate system. This is an example
of what is called a coordinate basis, i.e., a basis of the form {∂i} = {∂/∂xi}
where {xi} is a (local) coordinate system.

Recalling that the differential of a function is defined by its action on a
vector (i.e., df(v) = v(f) = vi∂f/∂xi), we see that the corresponding dual
basis is {dxi} = {dr, dθ, dφ} (so that dxi(∂/∂xj) = ∂xi/∂xj = δi

j). Since

dxi(v) = v(xi) = vj∂jx
i = vi we have df(v) = (∂f/∂xi)dxi(v) and therefore

df = (∂f/∂xi)dxi. For our spherical coordinates this becomes

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂φ
dφ. (8.17)

We now define the gradient of a function f by

df(v) = 〈∇f, v〉. (8.18)

If we write ∇f = (∇f)i∂i then 〈∇f, v〉 = (∇f)ivj〈∂i, ∂j〉 = (∇f)ivjgij which
by definition is equal to df(v) = (∂f/∂xj)vj . Since v was arbitrary, equating
these shows that (∇f)igij = ∂f/∂xi. Using the inverse metric, this may be
written

(∇f)i = gij ∂f

∂xj
= gij∂jf.

Since (gij) is diagonal, it is now easy to use the previous example to write
the gradient in spherical coordinates as

∇f = (grr∂rf)∂r + (gθθ∂θf)∂θ + (gφφ∂φf)∂φ

or

∇f =
∂f

∂r
∂r +

1

r2
∂f

∂θ
∂θ +

1

r2 sin2 θ

∂f

∂φ
∂φ (8.19)

Note however, that the ∂i are not unit vectors in general because 〈∂i, ∂j〉 =
gij 6= δij . Therefore we define a non-coordinate orthonormal basis {ēi} by

ēi =
∂i

‖∂i‖
.
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But ‖∂i‖ = 〈∂i, ∂i〉1/2 =
√
gii := hi and we have

ēi =
1

hi
∂i.

In particular, from the previous example these orthonormal basis vectors become

ēr =
∂

∂r
ēθ =

1

r

∂

∂θ
ēφ =

1

r sin θ

∂

∂φ
.

Actually, these are just what are referred to as r̂, θ̂ and φ̂ in elementary
courses. To see this, note that a point x has coordinates given by

x = (r sin θ cosφ, r sin θ sinφ, r cos θ)

so that

∂x

∂r
= (sin θ cosφ, sin θ sinφ, cos θ)

∂x

∂θ
= (r cos θ cosφ, r cos θ sinφ,−r sin θ)

∂x

∂φ
= (−r sin θ sinφ, r sin θ cosφ, 0).

Therefore

r̂ =
∂x/∂r

‖∂x/∂r‖ =
∂x

∂r

θ̂ =
∂x/∂θ

‖∂x/∂θ‖ =
1

r

∂x

∂θ

φ̂ =
∂x/∂φ

‖∂x/∂φ‖ =
1

r sin θ

∂x

∂φ

and what we have written as ∂/∂xi is classically written as ∂x/∂xi.
Anyway, writing an arbitrary vector v in terms of both bases we have

v = vi∂i = v̄iēi = v̄i 1

hi
∂i

and hence (with obviously no sum)

vi =
v̄i

hi
or v̄i = hiv

i. (8.20)

The corresponding dual basis is defined by ωi(ēj) = δi
j = (1/hj)ω

i(∂j) and

comparing this with dxi(∂j) = δi
j we see that ωi = hidx

i (no sum). This yields

ωr = dr ωθ = r dθ ωφ = r sin θ dφ
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and we can now use these to write df in terms of the non-coordinate basis as

df =
∂f

∂r
ωr +

1

r

∂f

∂θ
ωθ +

1

r sin θ

∂f

∂φ
ωφ. (8.21)

Since the gradient is just a vector, to find its components in terms of the
orthonormal basis we use equation (8.20) to write (∇f)i = hi(∇f)i so that

∇f =
∂f

∂r
ēr +

1

r

∂f

∂θ
ēθ +

1

r sin θ

∂f

∂φ
ēφ (8.22)

or

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂.

Equations (8.19) and (8.22) express the gradient in terms of coordinate and (or-
thonormal) non-coordinate bases respectively, while equations (8.17) and (8.21)
express the differential of a function in terms of these bases.

Now let g = 〈· , ·〉 be an arbitrary (i.e., possibly degenerate) real symmetric
bilinear form on the inner product space V . It follows from Sylvester’s theorem
(the corollary to Theorem 7.6) that there exists a basis {ei} for V in which the
matrix (gij) of g takes the unique diagonal form

gij =



Ir
−Is

0t




where r + s+ t = dimV = n. Thus

g(ei, ei) =





1 for 1 ≤ i ≤ r
−1 for r + 1 ≤ i ≤ r + s

0 for r + s+ 1 ≤ i ≤ n
.

If r + s < n, the inner product is degenerate and we say the space V is
singular (with respect to the given inner product). If r+ s = n, then the inner
product is nondegenerate, and the basis {ei} is orthonormal. In the orthonormal
case, if either r = 0 or r = n, the space is said to be ordinary Euclidean,
and if 0 < r < n, then the space is called pseudo-Euclidean. Recall that the
number r − s = r − (n − r) = 2r − n is called the signature of g (which is
therefore just the trace of (gij)). Moreover, the number of −1’s is called the
index of g and is denoted by Ind(g). If g = 〈· , ·〉 is to be a metric on V , then by
definition we must have r + s = n so that the inner product is nondegenerate.
In this case, the basis {ei} is called g-orthonormal.
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Example 8.16. If the metric g represents a positive definite inner product on
V , then we must have Ind(g) = 0, and such a metric is said to be Riemannian.
Alternatively, another well-known metric is the Lorentz metric used in the the-
ory of special relativity. By definition, a Lorentz metric η has Ind(η) = 1.
Therefore, if η is a Lorentz metric, an η-orthonormal basis {e1, . . . , en} ordered
in such a way that η(ei, ei) = +1 for i = 1, . . . , n − 1 and η(en, en) = −1 is
called a Lorentz frame.

Thus, in terms of a g-orthonormal basis, a Riemannian metric has the form

(gij) =




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1




while in a Lorentz frame, a Lorentz metric takes the form

(ηij) =




1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · −1


 .

It is worth remarking that a Lorentz metric is also frequently defined as
having Ind(η) = n − 1. In this case we have η(e1, e1) = 1 and η(ei, ei) = −1
for each i = 2, . . . , n. We also point out that a vector v ∈ V is called timelike

if η(v, v) < 0, lightlike (or null) if η(v, v) = 0, and spacelike if η(v, v) > 0.
Note that a Lorentz inner product is clearly indefinite since, for example, the
nonzero vector v with components v = (0, 0, 1, 1) has the property that 〈v, v〉 =
η(v, v) = 0.

We now show that introducing a metric on V leads to a unique volume form
on V .

Theorem 8.18. Let g be a metric on an n-dimensional oriented vector space
(V, [ω]). Then corresponding to the metric g there exists a unique volume form
µ = µ(g) ∈ [ω] such that µ(e1, . . . , en) = 1 for every positively oriented g-
orthonormal basis {ei} for V . Moreover, if {vi} is any (not necessarily g-
orthonormal) positively oriented basis for V with dual basis {vi}, then

µ = |det(g(vi, vj))|1/2 v1 ∧ · · · ∧ vn.

In particular, if {vi} = {ei} is a g-orthonormal basis, then µ = e1 ∧ · · · ∧ en.
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Proof. Since ω 6= 0, there exists a positively oriented g-orthonormal basis {ei}
such that ω(e1, . . . , en) > 0 (we can multiply e1 by −1 if necessary in order that
{ei} be positively oriented). We now define µ ∈ [ω] by

µ(e1, . . . , en) = 1.

That this defines a unique µ follows by multilinearity. We claim that if {fi} is
any other positively oriented g-orthonormal basis, then µ(f1, . . . , fn) = 1 also.
To show this, we first prove a simple general result.

Suppose {vi} is any other basis for V related to the g-orthonormal basis {ei}
by vi = φ(ei) = eja

j
i where, by Theorem 8.15, we have detφ = det(ai

j). We
then have g(vi, vj) = ar

ia
s
jg(er, es) which in matrix notation is [g]v = AT [g]eA,

and hence
det(g(vi, vj)) = (detφ)2 det(g(er, es)). (8.23)

However, since {ei} is g-orthonormal we have g(er, es) = ±δrs, and therefore
|det(g(er, es))| = 1. In other words

|det(g(vi, vj))|1/2
= |detφ| (8.24)

Returning to our problem, we have det(g(fi, fj)) = ±1 also since {fi} =
{φ(ei)} is g-orthonormal. Thus equation (8.24) implies that detφ = 1. But
{fi} is positively oriented so that µ(f1, . . . , fn) > 0 by definition. Therefore

0 < µ(f1, . . . , fn) = µ(φ(e1), . . . , φ(en)) = (φ∗µ)(e1, . . . , en)

= (detφ)µ(e1, . . . , en) = detφ

so that we must in fact have detφ = +1. In other words, µ(f1, . . . , fn) = 1 as
claimed.

Now suppose {vi} is an arbitrary positively oriented basis for V such that
vi = φ(ei). Then, analogously to what we have just shown, we see that
µ(v1, . . . , vn) = detφ > 0. Hence equation (8.24) shows that (using Example
8.10)

µ(v1, . . . , vn) = detφ

= |det(g(vi, vj))|1/2

= |det(g(vi, vj))|1/2
v1 ∧ · · · ∧ vn(v1, . . . , vn)

which implies

µ = |det(g(vi, vj))|1/2 v1 ∧ · · · ∧ vn.

The unique volume form µ defined in Theorem 8.18 is called the g-volume,
or sometimes the metric volume form. A common (although rather careless)
notation is to write det(g(vi, vj))

1/2 =
√
|g|. In this notation, the g-volume is

written as √
|g|v1 ∧ · · · ∧ vn

where {v1, . . . , vn} must be positively oriented.
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If the basis {v1, v2, . . . , vn} is negatively oriented, then clearly {v2, v1, . . . , vn}
will be positively oriented. Furthermore, even though the matrix of g relative
to each of these oriented bases will be different, the determinant actually re-
mains unchanged (see the discussion following the corollary to Theorem 8.9).
Therefore, for this negatively oriented basis, the g-volume is

√
|g|v2 ∧ v1 ∧ · · · ∧ vn = −

√
|g|v1 ∧ v2 ∧ · · · ∧ vn.

We thus have the following corollary to Theorem 8.18.

Corollary. Let {vi} be any basis for the n-dimensional oriented vector space
(V, [ω]) with metric g. Then the g-volume form on V is given by

±
√
|g|v1 ∧ · · · ∧ vn

where the “ +” sign is for {vi} positively oriented, and the “−” sign is for {vi}
negatively oriented.

Example 8.17. From Example 8.16, we see that for a Riemannian metric g
and g-orthonormal basis {ei} we have det(g(ei, ej)) = +1. Hence, from equation
(8.23), we see that det(g(vi, vj)) > 0 for any basis {vi = φ(ei)}. Thus the g-
volume form on a Riemannian space is given by ±√gv1 ∧ · · · ∧ vn.

For a Lorentz metric we have det(η(ei, ej)) = −1 in a Lorentz frame, and
therefore det(g(vi, vj)) < 0 in an arbitrary frame. Thus the g-volume in a
Lorentz space is given by ±√−gv1 ∧ · · · ∧ vn.

Let us point out that had we defined Ind(η) = n− 1 instead of Ind(η) = 1,
then det(η(ei, ej)) < 0 only in an even dimensional space. In this case, we would
have to write the g-volume as in the above corollary.

Example 8.18. (This example is a continuation of Example 8.12.) We remark
that these volume elements are of great practical use in the theory of integration
on manifolds. To see an example of how this is done, let us use Examples 8.3
and 8.12 to write the volume element as (remember this applies only locally,
and hence the metric depends on the coordinates)

dτ =
√
|g| dx1 ∧ · · · ∧ dxn.

If we go to a new coordinate system {x̄i}, then

ḡij =
∂xr

∂x̄i

∂xs

∂x̄j
grs

so that |ḡ| = (J−1)2 |g| where J−1 = det(∂xr/∂x̄i) is the determinant of the
inverse Jacobian matrix of the transformation. But using dx̄i = (∂x̄i/∂xj)dxj
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and the properties of the wedge product, it is easy to see that

dx̄1 ∧ · · · ∧ dx̄n =
∂x̄1

∂xi1
· · · ∂x̄

n

∂xin
dxi1 ∧ · · · ∧ dxin

= det

(
∂x̄i

∂xj

)
dx1 ∧ · · · ∧ dxn

and hence
dx̄1 ∧ · · · ∧ dx̄n = Jdx1 ∧ · · · ∧ dxn

where J is the determinant of the Jacobian matrix. (Note that the proper trans-
formation formula for the volume element in multiple integrals arises naturally
in the algebra of exterior forms.) We now have

dτ̄ =
√
|ḡ| dx̄1 ∧ · · · ∧ dx̄n = J−1

√
|g|Jdx1 ∧ · · · ∧ dxn

=
√
|g|dx1 ∧ · · · ∧ dxn = dτ

and hence dτ is a scalar called the invariant volume element. In the case of
R4 as a Lorentz space, this result is used in the theory of relativity.

Exercises

1. Suppose V has a metric gij defined on it. Show that for any A, B ∈ V we
have 〈A,B〉 = aib

i = aibi.

2. According to the special theory of relativity, the speed of light is the same
for all unaccelerated observers regardless of the motion of the source of
light relative to the observer. Consider two observers moving at a constant
velocity β with respect to each other, and assume that the origins of their
respective coordinate systems coincide at t = 0. If a spherical pulse of light
is emitted from the origin at t = 0, then (in units where the speed of light
is equal to 1) this pulse satisfies the equation x2 + y2 + z2− t2 = 0 for the
first observer, and x̄2 + ȳ2 + z̄2− t̄2 = 0 for the second observer. We shall
use the common notation (t, x, y, z) = (x0, x1, x2, x3) for our coordinates,
and hence the Lorentz metric takes the form

ηµν =




−1
1

1
1




where 0 ≤ µ, ν ≤ 3.

(a) Let the Lorentz transformation matrix be Λ so that x̄µ = Λµ
νx

ν .
Show the Lorentz transformation must satisfy ΛT ηΛ = η.
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(b) If the {x̄µ} system moves along the x1-axis with velocity β, then it
turns out the Lorentz transformation is given by

x̄0 = γ(x0 − βx1)

x̄1 = γ(x1 − βx0)

x̄2 = x2

x̄3 = x3

where γ2 = 1/(1 − β2). Using Λµ
ν = ∂x̄µ/∂xν , write out the matrix

(Λµ
ν), and verify explicitly that ΛT ηΛ = η.

(c) The electromagnetic field tensor is given by

Fµν =




0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 .

Using this, find the components of the electric field ~E and magnetic
field ~B in the {x̄µ} coordinate system. In other words, find Fµν .
(The actual definition of Fµν is given by Fµν = ∂µAν − ∂νAµ where

∂µ = ∂/∂xµ and Aµ = (φ,A1, A2, A3) is related to ~E and ~B through

the classical equations ~E = −∇φ − ∂ ~A/∂t and ~B = ∇× ~A. See also
Exercise 8.2.5.)

3. Let V be an n-dimensional vector space with a Lorentz metric η, and let
W be an (n− 1)-dimensional subspace of V . Note that

W⊥ = {v ∈ V : η(v, w) = 0 for all w ∈ W}

is the 1-dimensional subspace of all normal vectors for W . We say that W
is timelike if every normal vector is spacelike, null if every normal vector
is null, and spacelike if every normal vector is timelike. Prove that η
restricted to W is

(a) Positive definite if W is spacelike.
(b) A Lorentz metric if W is timelike.
(c) Degenerate if W is null.

4. (a) Let D be a 3 × 3 determinant considered as a function of three con-
travariant vectors A(1), A(2) and A(3). Show that under a change of
coordinates with positive Jacobian determinant, D does not transform
as a scalar, but that D

√
det g := D

√
|g| does transform as a proper

scalar. (Assume that Ind(g) = 0 throughout this problem.)

(b) According to Theorem 3.3, for any matrix A = (ai
j) ∈ Mn(F) we

have
εj1···jn

detA = εi1···in
ai1

j1 · · · ain
jn
.
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If we apply this to the Jacobian matrix (∂xi/∂x̄j) we obtain

εj1··· jn
det

(
∂x

∂x̄

)
= εi1··· in

∂xi1

∂x̄j1
· · · ∂x

in

∂x̄jn

or

εj1··· jn
= εi1··· in

∂xi1

∂x̄j1
· · · ∂x

in

∂x̄jn
det

(
∂x̄

∂x

)

where the matrix (∂x̄/∂x) is the inverse to (∂x/∂x̄). Except for the
determinant factor on the right, this looks like the transformation rule
for a tensor going from the coordinate system xi to the coordinate sys-
tem x̄j . We may denote the left-hand side by ε̄j1··· jn

, but be sure to
realize that by definition of the Levi-Civita symbol this has the same
values as εi1··· in

.

If we take this result as defining the transformation law for the Levi-
Civita symbol, show that the quantity

ej1··· jn
:= εj1··· jn

√
|g|

transforms like a tensor. (This is the Levi-Civita tensor in general
coordinates. Note that in a g-orthonormal coordinate system this re-
duces to the Levi-Civita symbol.)

(c) Using the metric to raise the components of the tensor ej1··· jn
, what

is the contravariant version of the tensor in part (b)?
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Appendix A

Elementary Real Analysis

In this appendix, we briefly go through some elementary concepts from analy-
sis dealing with numbers and functions. While most readers will probably be
familiar with this material, it is worth summarizing the basic definitions that
we will be using throughout this text, and thus ensure that everyone is on an
equal footing to begin with. This has the additional advantage in that it also
makes this text virtually self-contained and all the more useful for self-study.
The reader should feel free to skim this appendix now, and return to certain
sections if and when the need arises.

A.1 Sets

For our purposes, it suffices to assume that the concept of a set is intuitively
clear, as is the notion of the set of integers. In other words, a set is a collection
of objects, each of which is called a point or an element of the set. For
example, the set of integers consists of the numbers 0,±1,±2, . . . and will be
denoted by Z. Furthermore, the set Z+ consisting of the numbers 1, 2, . . . will
be called the set of positive integers, while the collection 0, 1, 2, . . . is called
the set of natural numbers (or nonnegative integers). If m and n 6= 0 are
integers, then the set of all numbers of the form m/n is called the set of rational

numbers and will be denoted by Q. We shall shortly show that there exist real
numbers not of this form. The most important sets of numbers that we shall be
concerned with are the set R of real numbers and the set C of complex numbers
(both of these sets will be discussed below).

If S and T are sets, then S is said to be a subset of T if every element of
S is also an element of T , i.e., x ∈ S implies x ∈ T . If in addition S 6= T , then
S is said to be a proper subset of T . To denote the fact that S is a subset
of T , we write S ⊂ T (or sometimes T ⊃ S in which case T is said to be a
superset of S). Note that if S ⊂ T and T ⊂ S, then S = T . This fact will be
extremely useful in many proofs. The set containing no elements at all is called

399
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the empty set and will be denoted by ∅.

Next, consider the set of all elements which are members of T but not mem-
bers of S. This defines the set denoted by T −S and called the complement of
S in T . (Many authors denote this set by T \S, but we shall not use this nota-
tion.) In other words, x ∈ T − S means that x ∈ T but x /∈ S. If (as is usually
the case) the set T is understood and S ⊂ T , then we write the complement of
S as Sc.

Example A.1. Let us prove the useful fact that if A,B ∈ X with Ac ⊂ B,
then it is true that Bc ⊂ A. To show this, we simply note that x ∈ Bc implies
x /∈ B, which then implies x /∈ Ac, and hence x ∈ A. This observation is quite
useful in proving many identities involving sets.

Now let S1, S2, . . . be a collection of sets. (Such a collection is called a
family of sets.) For simplicity we write this collection as {Si}, i ∈ I. The set
I is called an index set, and is most frequently taken to be the set Z+. The
union ∪i∈ISi of the collection {Si} is the set of all elements that are members
of at least one of the Si. Since the index set is usually understood, we will
simply write this as ∪Si. In other words, we write

∪Si = {x : x ∈ Si for at least one i ∈ I}.

This notation will be used throughout this text, and is to be read as “the set of
all x such that x is an element of Si for at least one i ∈ I.”

Similarly, the intersection ∩Si of the Si is given by

∩Si = {x : x ∈ Si for all i ∈ I}.

For example, if S, T ⊂ X , then S−T = S∩T c where T c = X−T . Furthermore,
two sets S1 and S2 are said to be disjoint if S1 ∩ S2 = ∅.

We now use these concepts to prove the extremely useful “De Morgan

Formulas.”

Theorem A.1. Let {Si} be a family of subsets of some set T . Then
(i) ∪Si

c = (∩Si)
c.

(ii) ∩Si
c = (∪Si)

c.

Proof. (i) x ∈ ∪Si
c if and only if x is an element of some Si

c, hence if and only
if x is not an element of some Si, hence if and only if x is not an element of
∩Si, and therefore if and only if x ∈ (∩Si)

c.

(ii) x ∈ ∩Si
c if and only if x is an element of every Si

c, hence if and only if
x is not an element of any Si, and therefore if and only if x ∈ (∪Si)

c.



A.2. MAPPINGS 401

While this may seem like a rather technical result, it is in fact directly useful
not only in mathematics, but also in many engineering fields such as digital
electronics where it may be used to simplify various logic circuits.

Finally, if S1, S2, . . . , Sn is a collection of sets, we may form the (ordered) set
of all n-tuples (x1, . . . , xn) where each xi ∈ Si. This very useful set is denoted
by S1 × · · · × Sn and called the Cartesian product of the Si.

Example A.2. Probably the most common example of the Cartesian product
is the plane R2 = R × R. Each point ~x ∈ R2 has coordinates (x, y) where
x, y ∈ R. In order to facilitate the generalization to Rn, we will generally
write ~x = (x1, x2) or ~x = (x1, x2). This latter notation is used extensively in
more advanced topics such as tensor analysis, and there is usually no confusion
between writing the components of ~x as superscripts and their being interpreted
as exponents (see Chapter 8)

Exercises

1. Let A,B and C be sets. Prove that

(a) (A−B) ∩C = (A ∩ C)− (B ∩ C).
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(c) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C).
(d) (A−B)− C = A− (B ∪ C).
(e) A− (B ∪ C) = (A−B) ∩ (A− C).

2. The symmetric difference A△B of two sets A and B is defined by

A△B = (A−B) ∪ (B −A).

Show that

(a) A△ B = (A ∪B)− (A ∩B) = B △A.
(b) A ∩ (B △ C) = (A ∩B)△ (A ∩C).
(c) A ∪B = (A△B)△ (A ∩B).
(d) A− B = A△ (A ∩B).

3. Let R be a nonempty collection of sets with the property that A,B ∈ R
implies that both A ∩ B and A △ B are also in R. Show that R must
contain the empty set, A ∪ B and A − B. (The collection R is called a
ring of sets, and is of fundamental importance in measure theory and
Lebesgue integration.)

A.2 Mappings

Given two sets S and T , a mapping or function f from S to T is a rule which
assigns a unique element y ∈ T to each element x ∈ S. Symbolically, we write
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this mapping as f : S → T or f : x 7→ f(x) (this use of the colon should not be
confused with its usage meaning “such that”). The set S is called the domain

of f and T is called the range of f . Each point f(x) ∈ T is called the image

of x under f (or the value of f at x), and the collection f(x) ∈ T : x ∈ S of all
such image points is called the image of f .

In general, whenever a new mapping is given, we must check to see that it
is in fact well-defined. This means that a given point x ∈ S is mapped into a
unique point f(x) ∈ T . In other words, we must verify that f(x) 6= f(y) implies
x 6= y. An equivalent way of saying this is the contrapositive statement
that x = y implies f(x) = f(y). We will use this requirement several times
throughout the text.

If A ⊂ S, the set f(x) : x ∈ A is called the image ofA under f and is denoted
by f(A). If f is a mapping from S to T and A ⊂ S, then the restriction of f
to A, denoted by f |A (or sometimes fA), is the function from A to T defined by
f |A : x ∈ A 7→ f(x) ∈ T . If x′ ∈ T , then any element x ∈ S such that f(x) = x′

is called an inverse image of x′ (this is sometimes also called a preimage of
x′). Note that in general there may be more than one inverse image for any
particular x′ ∈ T . Similarly, if A′ ⊂ T , then the inverse image of A′ is the
subset of S given by x ∈ S : f(x) ∈ A′. We will denote the inverse image of A′

by f−1(A′).

Let f be a mapping from S to T . Note that every element of T need not
necessarily be the image of some element of S. However, if f(S) = T , then f
is said to be onto or surjective. In other words, f is surjective if given any
x′ ∈ T there exists x ∈ S such that f(x) = x′. In addition, f is said to be
one-to-one or injective if x 6= y implies that f(x) 6= f(y). An alternative
characterization is to say that f is injective if f(x) = f(y) implies that x = y.

If f is both injective and surjective, then f is said to be bijective. In this
case, given any x′ ∈ T there exists a unique x ∈ S such that x′ = f(x). If
f is bijective, then we may define the inverse mapping f−1 : T → S in the
following way. For any x′ ∈ T , we let f−1(x′) be that (unique) element x ∈ S
such that f(x) = x′.

Example A.3. Consider the function f : R → R defined by f(x) = x2. This
mapping is clearly not surjective since f(x) ≥ 0 for any x ∈ R. Furthermore,
it is also not injective. Indeed, it is clear that 2 6= −2 but f(2) = f(−2) = 4.
Note also that both the domain and range of f are the whole set R, but that
the image of f is just the subset of all nonnegative real numbers (i.e., the set of
all x ∈ R with x ≥ 0).

On the other hand, it is easy to see that the mapping g : R → R defined
by g(x) = ax + b for any a, b ∈ R (with a 6= 0) is a bijection. In this case the
inverse mapping is simply given by g−1(x′) = (x′ − b)/a.
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Example A.4. If f is a mapping defined on the collections {Ai} and {Bi} of
sets, then we claim that

f(∪Ai) = ∪f(Ai)

and
f−1(∪Bi) = ∪f−1(Bi).

To prove these relationships we proceed in our usual manner. Thus we have
x′ ∈ f(∪Ai) if and only if x′ = f(x) for some x ∈ ∪Ai, hence if and only if x′

is in some f(Ai), and therefore if and only if x′ ∈ ∪f(Ai). This proves the first
statement. As to the second statement, we have x ∈ f−1(∪Bi) if and only if
f(x) ∈ ∪Bi, hence if and only if f(x) is in some Bi, hence if and only if x is in
some f−1(Bi), and therefore if and only if x ∈ ∪f−1(Bi).

Several similar relationships that will be referred to again are given in the
exercises.

Now consider the sets S, T and U along with the mappings f : S → T and
g : T → U . We define the composite mapping (sometimes also called the
product) g ◦ f : S → U by

(g ◦ f)(x) = g(f(x))

for all x ∈ S. In general, f ◦ g 6= g ◦ f , and we say that the composition of two
functions is not commutative. However, if we also have a mapping h : U → V ,
then for any x ∈ S we have

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x))

= ((h ◦ g) ◦ f)(x)

This means that

h ◦ (g ◦ f) = (h ◦ g) ◦ f

and hence the composition of mappings is associative.
As a particular case of the composition of mappings, note that if f : S → T

is a bijection and f(x) = x′ ∈ T where x ∈ S, then

(f ◦ f−1)(x′) = f(f−1(x′)) = f(x) = x′

and

(f−1 ◦ f)(x) = f−1(f(x)) = f−1(x′) = x.

If we write f ◦f−1 = IT , then the mapping IT has the property that IT (x′) = x′

for every x′ ∈ T . We call IT the identity mapping on T . Similarly, the
composition mapping f−1 ◦ f = IS is called the identity mapping on S. In
the particular case that S = T , then f ◦ f−1 = f−1 ◦ f = I is also called the
identity mapping.
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An extremely important result follows by noting that (even if S 6= T )

(f−1 ◦ g−1)(g ◦ f)(x) = (f−1 ◦ g−1)(g(f(x))) = f−1(g−1(g(f(x))))

= f−1(f(x)) = x

Since it is also easy to see that (g ◦ f)(f−1 ◦ g−1)(x′) = x′, we have shown that

(g ◦ f)−1 = f−1 ◦ g−1.

Exercises

1. Let f be a mapping of sets. For each of the following, state any conditions
on f that may be required (e.g., surjective or injective), and then prove
the statement:

(a) A1 ⊂ A2 implies f(A1) ⊂ f(A2).
(b) f(A)c ⊂ f(Ac) is true if and only if f is surjective.
(c) f(∩Ai) ⊂ ∩f(Ai).
(d) B1 ⊂ B2 implies f−1(B1) ⊂ f−1(B2).
(e) f−1(∩Bi) = ∩f−1(Bi).
(f) f−1(Bc) = f−1(B)c.

2. Given a nonempty set A, we define the identity mapping iA : A → A
by iA(a) = a for every a ∈ A. Let f : A→ A be any mapping.

(a) Show that f ◦ iA = iA ◦ f = f .
(b) If f is bijective (so that f−1 exists), show that f ◦f−1 = f−1 ◦f = iA.
(c) Let f be a bijection, and suppose that g is any other mapping with

the property that g ◦ f = f ◦ g = iA. Show that g = f−1.

A.3 Orderings and Equivalence Relations

Given any two sets S and T , a subset R of S × T is said to be a relation

between S and T . If R ⊂ S × T and (x, y) ∈ R, then it is common to write
xRy to show that x and y are “R-related.” In particular, consider the relation
symbolized by � and defined as having the following properties on a set S:

(a) x � x (reflexivity);
(b) x � y and y � x implies x = y for all x, y ∈ S (antisymmetry);
(c) x � y and y � z implies x � z for all x, y, z ∈ S (transitivity).

Any relation on a non-empty set S having these three properties is said to be
a partial ordering, and S is said to be a partially ordered set. We will
sometimes write y � x instead of the equivalent notation x � y. The reason for
including the qualifying term “partial” in this definition is shown in our next
example.
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Example A.5. Let S be any set, and let P(S) be the collection of all subsets
of S (this is sometimes called the power set of S). If A,B and C are subsets
of S, then clearly A ⊂ A so that (a) is satisfied; A ⊂ B and B ⊂ A implies
A = B then satisfies (b); and A ⊂ B and B ⊂ C implies A ⊂ C satisfies (c).
Therefore ⊂ defines a partial ordering on P(S), and the subsets of S are said to
be ordered by inclusion. Note however, that if A ⊂ S and B ⊂ S but A 6⊂ B
and B 6⊂ A, then there is no relation between A and B, and we say that A and
B are not comparable.

The terminology used in this example is easily generalized as follows. If S is
any partially ordered set and x, y ∈ S, then we say that x and y are comparable

if either x � y or y � x.
If, in addition to properties (a)–(c), a relation R also has the property that

any two elements are comparable, then R is said to be a total ordering. In
other words, a total ordering also has the property that

(d) either x � y or y � x for all x, y ∈ S.

Let S be a set partially ordered by � and suppose A ⊂ S. It should be
clear that A may be considered to be a partially ordered set by defining a � b
for all a, b ∈ A if a � b where a and b are considered to be elements of S.
(This is similar to the restriction of a mapping.) We then say that A has a
partial ordering � induced by the ordering on S. If A is totally ordered by the
ordering induced by �, then A is frequently called a chain in S.

Let A be a non-empty subset of a partially ordered set S. An element x ∈ S
is called an upper bound for A if a � x for all a ∈ A. If it so happens that
x is an element of A, then x is said to be a largest element of A. Similarly,
y ∈ S is called a lower bound for A if y � a for all a ∈ A, and y is a smallest

element of A if y ∈ A. If A has an upper (lower) bound, then we say that A
is bounded above (below). Note that largest and smallest elements need not
be unique.

Suppose that A is bounded above by α ∈ S, and in addition, suppose that
for any other upper bound x of A we have α � x. Then we say that α is a
least upper bound (or supremum) of A, and we write α = lubA = supA.
As expected, if A is bounded below by β ∈ S, and if y � β for all other lower
bounds y ∈ S, then β is called a greatest lower bound (or infimum), and we
write β = glbA = inf A. In other words, if it exists, the least upper (greatest
lower) bound for A is a smallest (largest) element of the set of all upper (lower)
bounds for A.

From property (b) above and the definitions of inf and sup we see that, if
they exist, the least upper bound and the greatest lower bound are unique. (For
example, if β and β′ are both greatest lower bounds, then β � β′ and β′ � β
implies that β = β′.) Hence it is meaningful to talk about the least upper bound
and the greatest lower bound.
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Let S be a partially ordered set, and suppose A ⊂ S. An element α ∈ A is
said to be maximal in A if for any element a ∈ A with α � a, we have a = α.
In other words, no element of A other than α itself is greater than or equal to
α. Similarly, an element β ∈ A is said to be minimal in A if for any b ∈ A
with b � β, we have b = β. Note that a maximal element may not be a largest
element (since two elements of a partially ordered set need not be comparable),
and there may be many maximal elements in A.

We now state Zorn’s lemma, one of the most fundamental results in set the-
ory, and hence in all of mathematics. While the reader can hardly be expected
to appreciate the significance of this lemma at the present time, it is in fact
extremely powerful.

Zorn’s Lemma. Let S be a partially ordered set in which every chain has an
upper bound. Then S contains a maximal element.

It can be shown (see any book on set theory) that Zorn’s lemma is logically
equivalent to the axiom of choice, which states that given any non-empty
family of non-empty disjoint sets, a set can be formed which contains precisely
one element taken from each set in the family. Although this seems like a rather
obvious statement, it is important to realize that either the axiom of choice or
some other statement equivalent to it must be postulated in the formulation of
the theory of sets, and thus Zorn’s lemma is not really provable in the usual
sense. In other words, Zorn’s lemma is frequently taken as an axiom of set
theory. However, it is an indispensable part of some of what follows although
we shall have little occasion to refer to it directly.

Up to this point, we have only talked about one type of relation, the partial
ordering. We now consider another equally important relation. Let S be any
set. A relation ≈ on S is said to be an equivalence relation if it has the
following properties for all x, y, z ∈ S:

(a) x ≈ x for all x ∈ S (reflexivity);
(b) x ≈ y implies y ≈ x (symmetry);
(c) x ≈ y and y ≈ z implies x ≈ z for all x, y, z ∈ S (transitivity).

Note that only (b) differs from the defining relations for a partial ordering.
A partition of a set S is a family {Si} of non-empty subsets of S such

that ∪Si = S and Si ∩ Sj 6= ∅ implies Si = Sj . Suppose x ∈ S and let ≈ be
an equivalence relation on S. The subset of S defined by [x] = {y : y ≈ x} is
called the equivalence class of x. The most important property of equivalence
relations is contained in the following theorem.

Theorem A.2. The family of all distinct equivalence classes of a set S forms a
partition of S. (This is called the partition induced by ≈.) Moreover, given any
partition of S, there is an equivalence relation on S that induces this partition.
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Proof. Let ≈ be an equivalence relation on a set S, and let x be any element of
S. Since x ≈ x, it is obvious that x ∈ [x]. Thus each element of S lies in at least
one non-empty equivalence class. We now show that any two equivalence classes
are either disjoint or are identical. Let [x1] and [x2] be two equivalence classes,
and let y be a member of both classes. In other words, y ≈ x1 and y ≈ x2. Now
choose any z ∈ [x1] so that z ≈ x1. But this means that z ≈ x1 ≈ y ≈ x2 so
that any element of [x1] is also an element of [x2], and hence [x1] ⊂ [x2]. Had
we chosen z ∈ [x2] we would have found that [x2] ⊂ [x1]. Therefore [x1] = [x2],
and we have shown that if two equivalence classes have any element in common,
then they must in fact be identical. Let {Si} be any partition of S. We define an
equivalence relation on S by letting x ≈ y if x, y ∈ Si for any x, y ∈ S. It should
be clear that this does indeed satisfy the three conditions for an equivalence
relation, and that this equivalence relation induces the partition {Si}.

Exercises

1. Let Z+ denote the set of positive integers. We write m|n to denote the
fact that m divides n, i.e., n = km for some k ∈ Z+.

(a) Show that | defines a partial ordering on Z+.
(b) Does Z+ contain either a maximal or minimal element relative to this

partial ordering?
(c) Prove that any subset of Z+ containing exactly two elements has a

greatest lower bound and a least upper bound.
(d) For each of the following subsets of Z+, determine whether or not it

is a chain in Z+, find a maximal and minimal element, an upper and
lower bound, and a least upper bound:

(i) {1, 2, 4, 6, 8}.
(ii) {1, 2, 3, 4, 5}.
(iii) {3, 6, 9, 12, 15, 18}.
(iv) {4, 8, 16, 32, 64, 128}.

2. Define a relation ≈ on R by requiring that a ≈ b if |a| = |b|. Show that
this defines an equivalence relation on R.

3. For any a, b ∈ R, let a ∼ b mean ab > 0. Does ∼ define an equivalence
relation? What happens if we use ab ≥ 0 instead of ab > 0?

A.4 Cardinality and the Real Number System

We all have an intuitive sense of what it means to say that two finite sets
have the same number of elements, but our intuition leads us astray when we
come to consider infinite sets. For example, there are as many perfect squares
{1, 4, 9, 16, . . .} among the positive integers as there are positive integers. That
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this is true can easily be seen by writing each positive integer paired with its
square:

1, 2, 3, 4, . . .
12, 22, 32, 42, . . .

While it seems that the perfect squares are only sparsely placed throughout the
integers, we have in fact constructed a bijection of all positive integers with all
of the perfect squares of integers, and we are forced to conclude that in this
sense they both have the “same number of elements.”

In general, two sets S and T are said to have the same cardinality, or to
possess the same number of elements, if there exists a bijection from S to T . A
set S is finite if it has the same cardinality as either ∅ or the set {1, 2, . . . , n} for
some positive integer n; otherwise, S is said to be infinite. However, there are
varying degrees of “infinity.” A set S is countable if it has the same cardinality
as a subset of the set Z+ of positive integers. If this is not the case, then we say
that S is uncountable. Any infinite set which is numerically equivalent to (i.e.,
has the same cardinality as) Z+ is said to be countably infinite. We therefore
say that a set is countable if it is countably infinite or if it is non-empty and
finite.

It is somewhat surprising (as was first discovered by Cantor) that the set
Q+ of all positive rational numbers is in fact countable. The elements of Q+

can not be listed in order of increasing size because there is no smallest such
number, and between any two rational numbers there are infinitely many others
(see Theorem A.4 below). To show that Q+ is countable, we shall construct a
bijection from Z+ to Q+ .

To do this, we first consider all positive rationals whose numerator and
denominator add up to 2. In this case we have only 1/1 = 1. Next we list those
positive rationals whose numerator and denominator add up to 3. If we agree
to always list our rationals with numerators in increasing order, then we have
1/2 and 2/1 = 2. Those rationals whose numerator and denominator add up
to 4 are then given by 1/3, 2/2 = 1, 3/1 = 3. Going on to 5 we obtain 1/4,
2/3, 3/2, 4/1 = 4. For 6 we have 1/5, 2/4 = 1/2, 3/3 = 1, 4/2 = 2, 5/1 = 5.
Continuing with this procedure, we list together all of our rationals, omitting
any number already listed. This gives us the sequence

1, 1/2, 2, 1/3, 3, 1/4, 2/3, 3/2, 4, 1/5, 5, . . .

which contains each positive rational number exactly once, and provides our
desired bijection.

We have constructed several countably infinite sets of real numbers, and it
is natural to wonder whether there are in fact any uncountably infinite sets. It
was another of Cantors discoveries that the set R of all real numbers is actually
uncountable. To prove this, let us assume that we have listed (in some manner
similar to that used for the set Q+) all the real numbers in decimal form. What
we shall do is construct a decimal .d1d2d3 · · · that is not on our list, thus showing
that the list can not be complete.
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Consider only the portion of the numbers on our list to the right of the
decimal point, and look at the first number on the list. If the first digit after
the decimal point of the first number is a 1, we let d1 = 2; otherwise we let
d1 = 1. No matter how we choose the remaining d’s, our number will be different
from the first on our list. Now look at the second digit after the decimal point
of the second number on our list. Again, if this second digit is a 1, we let
d2 = 2; otherwise we let d2 = 1. We have now constructed a number that
differs from the first two numbers on our list. Continuing in this manner, we
construct a decimal .d1d2d3 · · · that differs from every other number on our list,
contradicting the assumption that all real numbers can be listed, and proving
that R is actually uncountable.

Since it follows from what we showed above that the set Q of all rational
numbers on the real line is countable, and since we just proved that the set R
is uncountable, it follows that a set of irrational numbers must exist and be
uncountably infinite.

From now on we will assume that the reader understands what is meant by
the real number system, and we proceed to investigate some of its most useful
properties. A complete axiomatic treatment that justifies what we already know
would take us too far afield, and the interested reader is referred to, e.g., [45].

Let S be any ordered set, and let A ⊂ S be non-empty and bounded above.
We say that S has the least upper bound property if supA exists in S. In
the special case of S = R, we have the following extremely important axiom.

Archimedean Axiom. Every non-empty set of real numbers which has an
upper (lower) bound has a least upper bound (greatest lower bound).

The usefulness of this axiom is demonstrated in the next rather obvious
though important result, sometimes called the Archimedean property of the
real number line.

Theorem A.3. Let a, b ∈ R and suppose a > 0. Then there exists n ∈ Z+ such
that na > b.

Proof. Let S be the set of all real numbers of the form na where n is a positive
integer. If the theorem were false, then b would be an upper bound for S. But
by the Archimedean axiom, S has a least upper bound α = supS. Since a > 0,
we have α− a < α and α− a can not be an upper bound of S (by definition of
α). Therefore, there exists an m ∈ Z+ such that ma ∈ S and α− a < ma. But
then α < (m+ 1)a ∈ S which contradicts the fact that α = supS.

One of the most useful facts about the real line is that the set Q of all
rational numbers is dense in R. By this we mean that given any two distinct
real numbers, we can always find a rational number between them. This means
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that any real number may be approximated to an arbitrary degree of accuracy
by a rational number. It is worth proving this using Theorem A.3.

Theorem A.4. Suppose x, y ∈ R and assume that x < y. Then there exists a
rational number p ∈ Q such that x < p < y.

Proof. Since x < y we have y − x > 0. In Theorem A.3, choose a = y − x and
b = 1 so there exists n ∈ Z+ such that n(y − x) > 1 or, alternatively,

1 + nx < ny.

Applying Theorem A.3 again, we let a = 1 and both b = nx and b = −nx to
find integers m1,m2 ∈ Z+ such that m1 > nx and m2 > −nx. Rewriting the
second of these as −m2 < nx, we combine the two inequalities to obtain

−m2 < nx < m1

so that nx lies between two integers. But if nx lies between two integers, it
must lie between two consecutive integers m− 1 and m for some m ∈ Z where
−m2 ≤ m ≤ m1. Thus m− 1 ≤ nx < m implies that m ≤ 1 + nx and nx < m.
We therefore obtain

nx < m ≤ 1 + nx < ny

or, equivalently (since n 6= 0), x < m/n < y.

Corollary. Suppose x, y ∈ R and assume that x < y. Then there exist integers
m ∈ Z and k ≥ 0 such that x < m/2k < y.

Proof. Simply note that the proof of Theorem A.4 could be carried through
if we choose an integer k ≥ 0 so that 2k(y − x) > 1, and replace n by 2k
throughout.

In addition to the real number system R we have been discussing, it is
convenient to introduce the extended real number system as follows. To
the real number system R, we adjoin the symbols +∞ and −∞ which are
defined to have the property that −∞ < x < +∞ for all x ∈ R. This is of
great notational convenience. We stress however, that neither +∞ or −∞ are
considered to be elements of R.

Suppose A is a non-empty set of real numbers. We have already defined
supA in the case where A has an upper bound. If A is non-empty and has no
upper bound, then we say that supA = +∞, and if A = ∅, then supA = −∞.
Similarly, if A 6= ∅ and has no lower bound, then inf A = −∞, and if A = ∅,
then inf A = +∞.
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Suppose a, b ∈ R with a ≤ b. Then the closed interval [a, b] from a to b is
the subset of R defined by

[a, b] = {x ∈ R : a ≤ x ≤ b}.

Similarly, the open interval (a, b) is defined to be the subset

(a, b) = {x : a < x < b}.

We may also define the open-closed and closed-open intervals in the obvious
way. The infinity symbols ±∞ thus allow us to talk about intervals of the
form (−∞, b], [a,+∞) and (−∞,+∞).

Another property of the sup that will be needed later on is contained in the
following theorem. By way of notation, we define R+ to be the set of all real
numbers > 0, and R+ = R+ ∪ {0} to be the set of all real numbers ≥ 0.

Theorem A.5. Let A and B be non-empty bounded sets of real numbers, and
define the sets

A+B = {x+ y : x ∈ A and y ∈ B}
and

AB = {xy : x ∈ A and y ∈ B}.
Then

(i) For all A,B ⊂ R we have sup(A+B) = supA+ supB.
(ii) For all A,B ∈ R + we have sup(AB) ≤ (supA)(supB).

Proof. (i) Let α = supA, β = supB, and suppose x+ y ∈ A+B. Then

x+ y ≤ α+ y ≤ α+ β

so that α+β is an upper bound forA+B. Now note that given ε > 0, there exists
x ∈ A such that α − ε/2 < x (or else α would not be the least upper bound).
Similarly, there exists y ∈ B such that β − ε/2 < y. Then α+ β − ε < x+ y so
that α+ β must be the least upper bound for A+B.

(ii) If x ∈ A ⊂ R+ we must have x ≤ supA, and if y ∈ B ⊂ R+ we have
y ≤ supB. Hence xy ≤ (supA)(supB) for all xy ∈ AB, and therefore A 6= ∅
and B 6= ∅ implies

sup(AB) ≤ (supA)(supB).

The reader should verify that strict equality holds if A ⊂ R+ and B ⊂ R+.

The last topic in our treatment of real numbers that we wish to discuss is
the absolute value. Note that if x ∈ R and x2 = a, then we also have (−x)2 = a.
We define

√
a, for a ≥ 0, to be the unique positive number x such that x2 = a,

and we call x the square root of a.
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Suppose x, y ≥ 0 and let x2 = a and y2 = b. Then x =
√
a, y =

√
b and we

have (
√
a
√
b)2 = (xy)2 = x2y2 = ab which implies that

√
ab =

√
a
√
b.

For any a ∈ R, we define its absolute value |a| by |a| =
√
a2. It then

follows that |−a| = |a|, and hence

|a| =
{

a if a ≥ 0

−a if a < 0

This clearly implies that
a ≤ |a| .

In addition, if a, b ≥ 0 and a ≤ b, then we have (
√
a)2 = a ≤ b = (

√
b)2 so that√

a ≤
√
b.

The absolute value has two other useful properties. First, we note that

|ab| =
√

(ab)2 =
√
a2b2 =

√
a2
√
b2 = |a| |b| .

Second, we see that

|a+ b|2 = (a+ b)
2

= a2 + b2 + 2ab

≤ |a|2 + |b|2 + 2 |ab|
= |a|2 + |b|2 + 2 |a| |b|
= (|a|+ |b|)2

and therefore
|a+ b| ≤ |a|+ |b| .

Using these results, many other useful relationships may be obtained. For
example, |a| = |a+ b− b| ≤ |a+ b|+ | − b| = |a+ b|+ |b| so that

|a| − |b| ≤ |a+ b| .

Others are to be found in the exercises.

Example A.6. Let us show that if ε > 0, then |x| < ε if and only if −ε < x < ε.
Indeed, we see that if x > 0, then |x| = x < ε, and if x < 0, then |x| = −x < ε
which implies −ε < x < 0 (we again use the fact that a < b implies −b < −a).
Combining these results shows that |x| < ε implies −ε < x < ε. We leave it to
the reader to reverse the argument and complete the proof.

A particular case of this result that will be of use later on comes from letting
x = a−b. We then see that |a− b| < ε if and only if−ε < a−b < ε. Rearranging,
this may be written in the form b − ε < a < b + ε. The reader should draw a
picture of this relationship.
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Exercises

1. Prove that if A and B are countable sets, then A×B is countable.

2. (a) A real number x is said to be algebraic (over the rationals) if it
satisfies some polynomial equation of positive degree with rational
coefficients:

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

Given the fact (see Section 5.1) that each polynomial equation has
only finitely many roots, show that the set of all algebraic numbers is
countable.

(b) We say that a real number x is transcendental if it is not algebraic
(the most common transcendental numbers are π and e). Using the
fact that the reals are uncountable, show that the set of all transcen-
dental numbers is also uncountable.

3. If a, b ≥ 0, show that
√
ab ≤ (a+ b)/2.

4. For any a, b ∈ R, show that:

(a)
∣∣∣ |a| − |b|

∣∣∣ ≤ |a+ b| .

(b)
∣∣∣ |a| − |b|

∣∣∣ ≤ |a− b| .

5. (a) If A ⊂ R is nonempty and bounded below, show sup(−A) = − inf A.
(b) If A ⊂ R is nonempty and bounded above, show inf(−A) = − supA.

A.5 Induction

Another important concept in the theory of sets is called “well-ordering.” In
particular, we say that a totally ordered set S is well-ordered if every non-
empty subset A of S has a smallest element. For example, consider the set S
of all rational numbers in the interval [0, 1]. It is clear that 0 is the smallest
element of S, but the subset of S consisting of all rational numbers > 0 has no
smallest element (this is a consequence of Theorem A.4).

For our purposes, it is an (apparently obvious) axiom that every non-empty
set of natural numbers has a smallest element. In other words, the natural
numbers are well-ordered. The usefulness of this axiom is that it allows us to
prove an important property called induction.

Theorem A.6. Assume that for all n ∈ Z+ we are given an assertion A(n),
and assume it can be shown that:

(i) A(1) is true;
(ii) If A(n) is true, then A(n+ 1) is true.

Then A(n) is true for all n ∈ Z+.



414 APPENDIX A. ELEMENTARY REAL ANALYSIS

Proof. If we let S be that subset of Z+ for which A(n) is not true, then we
must show that S = ∅. According to our well-ordering axiom, if S 6= ∅ then
S contains a least element which we denote by N . By assumption (1), we must
have N 6= 1 and hence N > 1. Since N is a least element, N − 1 /∈ S so that
A(N − 1) must be true. But then (ii) implies that A(N) must be true which
contradicts the definition of N .

Example A.7. Let n > 0 be an integer. We define n-factorial, written n!, to
be the number

n! = n(n− 1)(n− 2) · · · (2)(1)

with 0! defined to be 1. The binomial coefficient
(
n
k

)
is defined by

(
n

k

)
=

n!

k!(n− k)!
where n and k are nonnegative integers. We leave it to the reader (see Exercise
A.6.1) to show that (

n

k

)
=

(
n

n− k

)

and (
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)

What we wish to prove is the binomial theorem:

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k.

We proceed by induction as follows.
For n = 1, we have

(
1

0

)
x0y1 +

(
1

1

)
x1y0 = (x+ y)1

so the assertion is true for n = 1. We now assume the theorem holds for n, and
proceed to show that it also holds for n+ 1. We have

(x+ y)n+1 = (x + y)(x+ y)n = (x+ y)

[
n∑

k=0

(
n

k

)
xkyn−k

]

=

n∑

k=0

(
n

k

)
xk+1yn−k +

n∑

k=0

(
n

k

)
xkyn−k+1 (*)

By relabelling the summation index, we see that for any function f with domain
equal to {0, 1, . . . , n} we have

n∑

k=0

f(k) = f(0) + f(1) + · · ·+ f(n) =

n+1∑

k=1

f(k − 1).
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We use this fact in the first sum in (*), and separate out the k = 0 term in the
second to obtain

(x+ y)n+1 =
n+1∑

k=1

(
n

k − 1

)
xkyn−k+1 + yn+1 +

n∑

k=1

(
n

k

)
xk+1yn−k+1.

We now separate out the k = n + 1 term from the first sum in this expression
and group terms to find

(x+ y)n+1 = xn+1 + yn+1 +

n∑

k=1

[(
n

k − 1

)
+

(
n

k

)]
xkyn−k+1

= xn+1 + yn+1 +

n∑

k=1

(
n+ 1

k

)
xkyn+1−k

=

n+1∑

k=0

(
n+ 1

k

)
xkyn+1−k

as was to be shown.

A.6 Complex Numbers

At this time we wish to formally define the complex number system C, al-
though most readers should already be familiar with its basic properties. The
motivation for the introduction of such numbers comes from the desire to solve
equations such as x2 + 1 = 0 which leads to the square root of a negative num-
ber. We may proceed by manipulating square roots of negative numbers as if
they were square roots of positive numbers. However, a consequence of this is
that on the one hand, (

√
−1)2 = −1, while on the other hand

(
√
−1)2 =

√
−1
√
−1 =

√
(−1)(−1) =

√
+1 = 1.

In order to avoid paradoxical manipulations of this type, the symbol i was
introduced by Euler (in 1779) with the defining property that i2 = −1. Then,
if a > 0, we have

√
−a = i

√
a. Using this notation, a complex number z ∈ C

is a number of the form z = x + iy where x ∈ R is called the real part of z
(written Re z), and y ∈ R is called the imaginary part of z (written Im z).

Two complex numbers x + iy and u + iv are said to be equal if x = u and
y = v. Algebraic operations in C are defined as follows:

addition: (x+ iy) + (u+ iv) = (x+ u) + i(y + v).

subtraction: (x+ iy)− (u+ iv) = (x− u) + i(y − v).
multiplication: (x+ iy)(u+ iv) = (xu − yv) + i(xv + yu).
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division:
(x+ iy)

(u+ iv)
=

(x+ iy)(u− iv)
(u + iv)(u− iv)

=
(xu + yv) + i(yu− vx)

u2 + v2
.

It should be clear that the results for multiplication and division may be ob-
tained by formally multiplying out the terms and using the fact that i2 = −1.

The complex conjugate z∗ (or sometimes z̄) of a complex number z =
x + iy is defined to be the complex number z∗ = x − iy. Note that if z, w ∈ C
we have

(z + w)∗ = z∗ + w∗

(zw)∗ = z∗w∗

z + z∗ = 2 Re z

z − z∗ = 2i Im z

The absolute value (or modulus) |z| of a complex number z = x + iy is
defined to be the real number

|z| =
√
x2 + y2 = (zz∗)1/2.

By analogy to the similar result for real numbers, if z, w ∈ C then (using the

fact that z = x+ iy implies Re z = x ≤
√
x2 + y2 = |z|)

|z + w|2 = (z + w)(z + w)∗

= zz∗ + zw∗ + z∗w + ww∗

= |z|2 + 2 Re(zw∗) + |w|2

≤ |z|2 + 2 |zw∗|+ |w|2

= |z|2 + 2 |z| |w|+ |w|2

= (|z|+ |w|)2

and hence taking the square root of both sides yields

|z + w| ≤ |z|+ |w| .

Let the sum z1 + · · ·+ zn be denoted by
∑n

i=1 zi. The following theorem is
known as Schwartz’s inequality.

Theorem A.7 (Schwartz’s Inequality). Let a1, . . . , an and b1, . . . , bn be com-
plex numbers. Then

∣∣∣∣∣
n∑

j=1

ajb
∗
j

∣∣∣∣∣ ≤
(

n∑

j=1

|aj |2
)1/2( n∑

j=1

|bj|2
)1/2
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Proof. Write (suppressing the limits on the sum) A =
∑

j |aj |2, B =
∑

j |bj |2
and C =

∑
j ajb

∗
j . If B = 0, then bj = 0 for all j = 1, . . . , n and there is nothing

to prove, so we assume that B 6= 0. We then have

0 ≤
∑

i

|Bai − Cbi|2

=
∑

i

(Bai − Cbi)(Ba∗i − C∗b∗i )

= B2
∑

i

|ai|2 −BC∗
∑

i

aib
∗
i −BC

∑

i

a∗i bi + |C|2
∑

i

|bi|2

= B2A−B |C|2 −B |C|2 + |C|2B
= B(AB − |C|2).

But B ≥ 0 so that AB − |C|2 ≥ 0 and hence |C|2 ≤ AB. Taking the square
root completes the proof.

It is worth our going through some additional elementary properties of com-
plex numbers that will be needed on occasion throughout this text. Purely for
the sake of logical consistency, let us first prove some basic trigonometric re-
lationships. Our starting point will be the so-called “law of cosines” which
states that c2 = a2 + b2 − 2ab cos θ (see the figure below).

a

b

c

θ

A special case of this occurs when θ = π/2, in which case we obtain the
famous Pythagorean theorem a2 + b2 = c2. (While most readers should
already be familiar with these results, we prove them in Section 1.5.)

Now consider a triangle inscribed in a unit circle as shown below:

x

y

P

Q
1 α

β



418 APPENDIX A. ELEMENTARY REAL ANALYSIS

The point P has coordinates (xP , yP ) = (cosα, sinα), and Q has coordinates
(xQ, yQ) = (cosβ, sinβ). Applying the Pythagorean theorem to the right tri-
angle with hypotenuse defined by the points P and Q (and noting x2

Q + y2
Q =

x2
P + y2

P = 1), we see that the square of the distance between the points P and
Q is given by

(PQ)2 = (xQ − xP )2 + (yQ − yP )2

= (x2
Q + y2

Q) + (x2
P + y2

P )− 2(xPxQ + yP yQ)

= 2− 2(cosα cosβ + sinα sinβ).

On the other hand, we can apply the law of cosines to obtain the distance PQ,
in which case we find that (PQ)2 = 2−2 cos(α−β). Equating these expressions
yields the basic result

cos(α− β) = cosα cosβ + sinα sinβ.

Replacing β by −β we obtain

cos(α+ β) = cosα cosβ − sinα sinβ.

If we let α = π/2, then we have cos(π/2− β) = sinβ, and if we now replace
β by π/2− β, we find that cosβ = sin(π/2− β). Finally, we can use these last
results to obtain formulas for sin(α ± β). In particular, we replace β by α + β
to obtain

sin(α+ β) = cos(π/2− (α + β))

= cos(π/2− α− β)

= cos(π/2− α) cos β + sin(π/2− α) sinβ

= sinα cosβ + cosα sinβ

Again, replacing β by −β yields

sin(α− β) = sinα cosβ − cosα sinβ.

(The reader may already know that these results are simple to derive using the
Euler formula exp(±iθ) = cos θ ± i sin θ which follows from the Taylor series
expansions of expx, sinx and cosx, along with the definition i2 = −1.)

It is often of great use to think of a complex number z = x + iy as a point
in the xy-plane. If we define

r = |z| =
√
x2 + y2

and
tan θ = y/x
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then a complex number may also be written in the form

z = x+ iy = r(cos θ + i sin θ) = r exp(iθ)

(see the figure below).

x

y

z = x + iy

θ

r

Given two complex numbers

z1 = r1(cos θ1 + i sin θ1)

and
z2 = r2(cos θ2 + i sin θ2)

we can use the trigonometric addition formulas derived above to show that

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

In fact, by induction it should be clear that this can be generalized to (see
Exercise A.6.5)

z1z2 · · · zn = r1r2 · · · rn[cos(θ1 + θ2 + · · ·+ θn) + i sin(θ1 + θ2 + · · ·+ θn)].

In the particular case where z1 = · · · = zn, we find that

zn = rn(cosnθ + i sinnθ).

This is often called De Moivre’s theorem.
One of the main uses of this theorem is as follows. Let w be a complex

number, and let z = wn (where n is a positive integer). We say that w is
an nth root of z, and we write this as w = z1/n. Next, we observe from De
Moivre’s theorem that writing z = r(cos θ + i sin θ) and w = s(cosφ + i sinφ)
yields (assuming that z 6= 0)

r(cos θ + i sin θ) = sn(cosnφ+ i sinnφ).

But cos θ = cos(θ ± 2kπ) for k = 0,±1,±2, . . . , and therefore r = sn and nφ =
θ ± 2kπ. (This follows from the fact that if z1 = x1 + iy1 = r1(cos θ1 + i sin θ1)
and z2 = x2 + iy2 = r2(cos θ2 + i sin θ2), then z1 = z2 implies x1 = x2 and
y1 = y2 so that r1 = r2, and hence θ1 = θ2.) Then s is the real positive nth
root of r, and φ = θ/n ± 2kπ/n. Since this expression for φ is the same if any



420 APPENDIX A. ELEMENTARY REAL ANALYSIS

two integers k differ by a multiple of n, we see that there are precisely n distinct
solutions of z = wn (when z ± 0), and these are given by

w = r1/n[cos(θ + 2kπ)/n+ i sin(θ + 2kπ)/n]

where k = 0, 1, . . . , n− 1.

Exercises

1. (a) Show (
n

k

)
=

(
n

n− k

)
.

(b) Show (
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

2. Prove by induction the formula 1 + 2 + · · ·+ n = n(n+ 1)/2.

3. Prove by induction the formula

1 + x+ x2 + · · ·+ xn−1 =
1− xn

1− x

where x is any real number 6= 1.

4. Prove by induction that for any complex numbers z1, . . . , zn we have:

(a)
|z1z2 · · · zn| = |z1| |z2| · · · |zn| .

(b) ∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≤
n∑

i=1

|zi| .

(c)

1√
n

n∑

i=1

|zi| ≤
(

n∑

i=1

|zi|2
)1/2

≤
n∑

i=1

|zi| .

[Hint : For the first half of this inequality you will need to show that

2 |z1| |z2| ≤ |z1|2 + |z2|2.]

5. Prove by induction that for any complex numbers z1, . . . , zn we have

z1z2 · · · zn

= r1r2 · · · rn[cos(θ1 + θ2 + · · ·+ θn) + i sin(θ1 + θ2 + · · ·+ θn)]

where zj = rj exp(iθj).
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A.7 Additional Properties of the Integers

The material of this section is generalized to the theory of polynomials in Section
5.1. Most of what we cover here should be familiar to the reader from very
elementary courses.

Our first topic is the division of an arbitrary integer a ∈ Z by a positive
integer b ∈ Z+. For example, we can divide 11 by 4 to obtain 11 = 2 · 4 + 3.
As another example, −7 divided by 2 yields −7 = −4 · 2 + 1. Note that each
of these examples may be written in the form a = qb + r where q ∈ Z and
0 ≤ r < b. The number q is called the quotient, and the number r is called the
remainder in the division of a by b. In the particular case that r = 0, we say
that b divides a and we write this as b | a. If r 6= 0, then b does not divide a,
and this is written as b ∤ a. If an integer p ∈ Z+ is not divisible by any positive
integer other than 1 and p itself, then p is said to be prime.

It is probably worth pointing out the elementary fact that if a | b and a | c,
then a | (mb + nc) for any m,n ∈ Z. This is because a | b implies b = q1a, and
a | c implies c = q2a. Thus mb+ nc = (mq1 + nq2)a so that a | (mb + nc).

Theorem A.8 (Division Algorithm). If a ∈ Z and b ∈ Z+, then there exist
unique integers q and r such that a = qb+ r where 0 ≤ r < b.

Proof. Define S = {a − nb ≥ 0 : n ∈ Z}. In other words, S consists of all
nonnegative integers of the form a − bn. It is easy to see that S 6= ∅. Indeed,
if a ≥ 0 we simply choose n = 0 so that a ∈ S, and if a < 0 we choose n = a so
that a− ba = a(1 − b) ∈ S (since a < 0 and 1 − b ≤ 0). Since S is a nonempty
subset of the natural numbers, we may apply the well-ordering property of the
natural numbers to conclude that S contains a least element r ≥ 0. If we let q
be the value of n corresponding to this r, then we have a− qb = r or a = qb+ r
where 0 ≤ r. We must show that r < b. To see this, suppose that r ≥ b. Then

a− (q + 1)b = a− qb− b = r − b ≥ 0

so that a− (q + 1)b ∈ S. But b > 0 so that

a− (q + 1)b = (a− qb)− b < a− qb = r

which contradicts the definition of r as the least element of S. Hence r < b.
To prove uniqueness, we suppose that we may write a = q1b + r1 and a =

q2b + r2 where 0 ≤ r1 < b and 0 ≤ r2 < b. Equating these two formulas yields
q1b+ r1 = q2b+ r2 or (q1− q2)b = r2 − r1, and therefore b | (r2 − r1). Using the
fact that 0 ≤ r1 < b and 0 ≤ r2 < b, we see that r2 − r1 < b− r1 ≤ b. Similarly
we have r1− r2 < b− r2 ≤ b or −b < r2− r1. This means that −b < r2− r1 < b.
Therefore r2 − r1 is a multiple of b that lies strictly between −b and b, and
thus we must have r2 − r1 = 0. Then (q1 − q2)b = 0 with b 6= 0, and hence
q1−q2 = 0 also. This shows that r1 = r2 and q1 = q2 which completes the proof
of uniqueness.



422 APPENDIX A. ELEMENTARY REAL ANALYSIS

Suppose we are given two integers a, b ∈ Z where we assume that a and b
are not both zero. We say that an integer d ∈ Z+ is the greatest common

divisor of a and b if d | a and d | b, and if c is any other integer with the
property that c | a and c | b, then c | d. We denote the greatest common divisor
of a and b by gcd{a, b}. Our next theorem shows that the gcd always exists and
is unique. Furthermore, the method of proof shows us how to actually compute
the gcd.

Theorem A.9 (Euclidean Algorithm). If a, b ∈ Z are not both zero, then
there exists a unique positive integer d ∈ Z+ such that

(i) d | a and d | b.
(ii) If c ∈ Z is such that c | a and c | b, then c | d.

Proof. First assume b > 0. Applying the division algorithm, there exist unique
integers q1 and r1 such that

a = q1b+ r1 with 0 ≤ r1 < b.

If r1 = 0, then b | a and we may take d = b to satisfy both parts of the theorem.
If r1 6= 0, then we apply the division algorithm again to b and r1, obtaining

b = q2r1 + r2 with 0 ≤ r2 < r1.

Continuing this procedure, we obtain a sequence of nonzero remainders r1, r2,
. . . , rk where

a = q1b+ r1 with 0 ≤ r1 < b

b = q2r1 + r2 with 0 ≤ r2 < r1

r1 = q3r2 + r3 with 0 ≤ r3 < r2

... (*)

rk−2 = qkrk−1 + rk with 0 ≤ rk < rk−1

rk−1 = qk+1rk

That this process must terminate with a zero remainder as shown is due to the
fact that each remainder is a nonnegative integer with r1 > r2 > · · · . We have
denoted the last nonzero remainder by rk.

We now claim that d = rk. Since rk−1 = qk+1rk, we have rk | rk−1. Then,
using rk−2 = qkrk−1 + rk along with rk | rk and rk | rk−1, we have rk | rk−2.
Continuing in this manner, we see that rk | rk−1, rk | rk−2, . . . , rk | r1, rk | b and
rk | a. This shows that rk is a common divisor of a and b. To show that rk is in
fact the greatest common divisor, we first note that if c | a and c | b, then c | r1
because r1 = a− q1b. But now we see in the same way that c | r2, and working
our way through the above set of equations we eventually arrive at c | rk. Thus
rk is a gcd as claimed.
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If b < 0, we repeat the above process with a and −b rather than a and b.
Since b and −b have the same divisors, it follows that a gcd of {a,−b} will be a
gcd of {a, b}. (Note we have not yet shown the uniqueness of the gcd.) If b = 0,
then we can simply let d = |a| to satisfy both statements in the theorem.

As to uniqueness of the gcd, suppose we have integers d1 and d2 that satisfy
both statements of the theorem. Then applying statement (ii) to both d1 and
d2, we must have d1 | d2 and d2 | d1. But both d1 and d2 are positive, and
hence d1 = d2.

Corollary. If d = gcd{a, b} where a and b are not both zero, then d = am+ bn
for some m,n ∈ Z.

Proof. Referring to equations (*) in the proof of Theorem A.9, we note that the
equation for rk − 2 may be solved for rk to obtain rk = rk−2 − rk−1qk. Next,
the equation rk−3 = qk−1rk−2 + rk−1 may be solved for rk−1, and this is then
substituted into the previous equation to obtain rk = rk−2(1+qk−1qk)−rk−3qk.
Working our way up equations (*), we next eliminate rk−2 to obtain rk in terms
of rk−3 and rk−4. Continuing in this manner, we eventually obtain rk in terms
of b and a.

If a, b ∈ Z and gcd{a, b} = 1, then we say that a and b are relatively prime

(or sometimes coprime). The last result on integers that we wish to prove is
the result that if p is prime and p | ab (where a, b ∈ Z), then either p | a or p | b.

Theorem A.10. (i) Suppose a, b, c ∈ Z where a | bc and a and b are relatively
prime. Then a | c.

(ii) If p is prime and a1, . . . , an ∈ Z with p | a1 · · · an, then p | ai for some
i = 1, . . . , n.

Proof. (i) By the corollary to Theorem A.9 we have gcd{a, b} = 1 = am + bn
for some m,n ∈ Z. Multiplying this equation by c we obtain c = amc + bnc.
But a | bc by hypothesis so clearly a | bnc. Since it is also obvious that a | amc,
we see that a | c.

(ii) We proceed by induction on n, the case n = 1 being trivial. We therefore
assume that n > 1 and p | a1 · · ·an. If p | a1 · · ·an−1, then p | ai for some
i = 1, . . . , n−1 by our induction hypothesis. On the other hand, if p ∤ a1 · · · an−1

then gcd{p, a1, . . . , an−1} = 1 since p is prime. We then apply part (i) with
a = p, b = a1 · · · an−1 and c = an to conclude that p | an.

Exercises

1. Find the gcd of the following sets of integers:
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(a) {6, 14}.
(b) {−75, 105}.
(c) {14, 21, 35}.

2. Find the gcd of each set and write it in terms of the given integers:

(a) {1001, 33}.
(b) {−90, 1386}.
(c) {−2860,−2310}.

3. Suppose p is prime and p ∤ a where a ∈ Z. Prove that a and p are relatively
prime.

4. Prove that if gcd{a, b} = 1 and c mod a, then gcd{b, c} = 1.

5. If a, b ∈ Z+, then m ∈ Z+ is called the least common multiple (abbre-
viated lcm) if a | m and b | m, and if c ∈ Z is such that a | c and b | c, then
m | c. Suppose a = p1

s1 · · · pk
sk and b = p1

t1 · · · pk
tk where p1, . . . , pk are

distinct primes and each si and ti are ≥ 0.

(a) Prove that a | b if and only if si ≤ ti for all i = 1, . . . , k.
(b) For each i = 1, . . . , k let ui = min{si, ti} and vi = max{si, ti}. Prove

that gcd{a, b} = p1
u1 · · · pk

uk and lcm{a, b} = p1
v1 · · · pk

vk .

6. Prove the Fundamental Theorem of Arithmetic: Every integer > 1
can be written as a unique (except for order) product of primes. Here is
an outline of the proof:

(a) Let

S = {a ∈ Z : a > 1 and a can not be written as a product of primes.}

(In particular, note that S contains no primes.) Show that S = ∅
by assuming the contrary and using the well-ordered property of the
natural numbers.

(b) To prove uniqueness, assume that n > 1 is an integer that has two
different expansions as n = p1 · · · ps = q1 · · · qt where all the pi and
qj are prime. Show that p1 | qj for some j = 1, . . . , t and hence
that p1 = qj . Thus p1 and qj can be canceled from each side of the
equation. Continue this argument to cancel one pi with one qj , and
then finally concluding that s = t.
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bilinear functional, 337
bilinear map, 293

nondegenerate, 293
binomial coefficient, 414
binomial theorem, 414
block matrix, 209
bounded above, 405

cancellation law, 5
cardinality, 408
Cartesian product, 401
Cauchy-Schwartz inequality, 33
Cayley transform, 262
chain, 405
characteristic equation, 202
characteristic matrix, 202
characteristic polynomial, 203
characteristic root, 196
characteristic value, 196
characteristic vector, 197
Chasles’ theorem, 184
classical adjoint, 134
cofactor, 130
column rank, 59
column space, 59
commutative, 403
commutator, 80, 289
commute, 79
comparable (in a partial ordering), 405
completeness relation, 46
completing the square, 302
complex conjugate, 416

428
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complex number, 415
congruent, 297
constant term, 48
contraction, 116, 348
contrapositive, 402
contravariant vector, 341
coordinate basis, 389
coordinates, 13
coprime, 423
countable, 408
countably infinite, 408
covariant vector, 341
covector, 341
Cramer’s rule, 140
cross product, 108

De Moivre’s theorem, 419
De Morgan Formulas, 400
degree of a polynomial, 191
dense, 409
determinant

of a linear transformation, 376
order of, 118

diagonalizable, 206
differential, 347
dimension, 11
dimension theorem, 77, 155
direct sum, 23

external, 22
internal, 21
of matrices, 215
of operators, 214

distance
in a metric space, 37

distinguished elements, 55
divisible by, 193
division algorithm, 192, 421
domain, 402
double dual, 152, 339
dual basis, 152, 294, 336
dual space, 151, 294, 335

eigenspace, 200
eigenvalue, 196
eigenvector, 197
Einstein summation convention, 112

elementary matrix, 86
elementary row operations, 52
empty set, 400
equivalence class, 406
equivalence relation, 406
Euclidean algorithm, 422
Euclidean space, 32, 257
evaluation mapping, 339
expansion by cofactors, 129
expansion by minors, 129
extended real number system, 410
exterior forms, 351
exterior product, 354

factor theorem, 193
factorial, 414
field, 2
finite-dimensional, 11
forward substitution, 97
Fourier coefficients, 39
free variables, 66
function, 401
Fundamental Theorem of Algebra, 194
Fundamental Theorem of Arithmetic,

424

g-volume, 393
Gauss-Jordan elimination, 56
Gaussian elimination, 56
generalized permutation symbol, 354
geometric multiplicity, 219
Gershgorin’s Theorem, 201
Gram-Schmidt process, 42
Gramian, 138
Grassmann product, 354
greatest common divisor

integer, 422
greatest lower bound, 405
group, 216

abelian, 217
multiplication, 216
representation, 217

equivalent, 217
invariant, 217

Hermitian adjoint, 224
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Hermitian form, 311
associated quadratic form, 311
nonnegative semidefinite, 311
positive definite, 311

homogeneous system, 63
nontrivial solution, 63
trivial solution, 63

homomorphism
vector space, 13

idempotent, 160, 267
identity mapping, 403
identity matrix, 61
image, 402
indeterminate, 48
index set, 400
induction, 413
inertia tensor, 349
infinity symbol, 411
inhomogeneous system, 63
inner product, 31

Hermitian, 31
indefinite, 384
nondegenerate, 384
standard, 32

inner product space, 32
oridnary Euclidean, 391
pseudo-Euclidean, 391
singular, 391

interior product, 360
intersection, 400
interval

closed, 411
open, 411

invariant subspace, 169, 212
invariant volume element, 395
inverse image, 402
inverse mapping, 402
invertible, 81
irrational numbers, 409
isometric operator, 252, 253
isometry, 45, 182, 252
isomorphism, 13

Jacobian, 376

kernel, 14, 77

Kronecker delta, 38

Lagrange interpolation formula, 196, 279
Lagrangian, 318
Laplace expansion, 129
law of cosines, 28, 417
law of inertia, 308
least common multiple, 424
least upper bound, 405
least upper bound property, 409
Levi-Civita symbol, 111, 353
Levi-Civita tensor, 353
lightlike vector, 392
linear combination, 7
linear equation, 48
linear equations

system of, 48
equivalent, 50

linear functional, 151
linear mappings, 150
linear operator, 156

determinant of, 175
diagonalizable, 206
trace of, 175

linear span, 7
linear transformation, 13, 145

image of, 154
inverse, 156
invertible, 156
kernel of, 154
nonsingular, 157
null space, 154
orientation preserving, 384
rank of, 155
volume preserving, 384

linearly dependent, 9
linearly independent, 9
Lorentz frame, 392
lower bound, 405
lowering an index, 386

magic hat, 130
mapping, 401

associative, 403
bijective, 402
composite, 403
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injective, 402
inverse, 402
negative, 149
one-to-one, 402
onto, 402
surjective, 402

matrix, 49
adjoint, 127, 134, 224
antisymmetric, 80, 300
commutator, 79
diagonal, 79, 87, 92
diagonalizable, 206
Hermitian, 224, 312
idempotent, 80, 208
inverse, 81
lower triangular, 80, 92
nilpotent, 127
nonsingular, 61
normal, 225
orthogonal, 104, 127, 179, 226
product, 72
rank, 60
similar, 171
singular, 61
size, 49
skewsymmetric, 80
special lower triangular, 93
square, 72
symmetric, 80, 226, 301
triangular, 124
unit lower triangular, 93
unitary, 127, 225
upper triangular, 80, 92

matrix exponential series, 285
matrix of coefficients, 49
matrix representation, 162
metric, 37, 182

index of, 391
Lorentz, 392
Riemannian, 392
signature, 391

metric space, 37
metric tensor

contravariant, 387
covariant, 385

metric volume form, 393

minor, 130
minor matrix, 130
modal matrix, 322
multilinear form, 340
multilinear map, 340
multiplicity

algebraic, 219
geometric, 219

mutually orthogonal, 38

natural mapping, 339
natural numbers, 399
negatively oriented, 384
nilpotent, 161, 200
non-coordinate basis, 389
nonhomogeneous, 63
nonnegative integers, 399
nonsingular, 81, 157
norm, 32
normal coordinates, 321, 324
normal frequency, 319
normal modes, 318
normal operator, 258
normed vector space, 34
null space, 77
null vector, 392

operator, 156
anti-Hermitian, 257
antisymmetric, 259
Hermitian, 249
isometric, 252, 253
matrix elements of, 246
normal, 258
orthogonal, 253
positive, 257
positive definite, 257
positive semidefinite, 257
reducible, 215
self-adjoint, 249
skew-Hermitian, 257
symmetric, 259
unitary, 253

ordered by inclusion, 405
orientation, 382, 384
oriented
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vectors, 368
volume, 368

oriented vector space, 382, 384
orthogonal, 35
orthogonal complement, 37
orthogonal matrix, 177, 255
orthogonal operator, 253
orthogonal projection, 146, 269
orthogonal transformation, 179, 183, 255
orthonormal set, 38

parallelogram law, 36
partial isometry, 262
partial ordering, 404

induced by, 405
partially ordered set, 404
partition, 406

induced by, 406
passive transformation, 180
Pauli spin matrix, 80
permutation, 111

even and odd, 111
sign of, 111, 112

permutation group, 111
permutation matrix, 99
permutation symbol, 80, 111, 353
permuted LU factorization, 100
pivot, 55
polar decomposition, 281
polar form, 303, 311
polar form identities, 36
polynomial

factor of, 193
monic, 194
root of, 193
zero of, 193

polynomial equation
solution of, 193

positive definite operator, 257
positive integers, 399
positive transformation, 280
power set, 405
preimage, 402
prime integer, 421
principal axis theorem, 308
projection, 267

projection operator, 160
pull-back, 372
push-forward, 378
Pythagorean theorem, 27, 36, 417

quadratic form, 301
diagonal representation, 307

quadratic polynomial, 302
quotient, 191, 421

r-dimensional parallelepiped, 365
r-linear form, 340
raising an index, 386
range, 402
rank, 60, 155
rank theorem, 77, 155
rational numbers, 399
Rayleigh quotient, 263
reducible, 215
reducible matrix, 215
reflection, 185, 263
relation, 404
relatively prime

integers, 423
remainder, 191, 421
remainder theorem, 193
resolution of the identity, 274
restriction, 402
restriction of an operator, 212
reverse orientation, 384
rigid motion, 182
ring of sets, 401
root

multiplicity of, 199
simple, 199

rotation, 263
row canonical form, 56
row echelon form, 55

reduced, 55
row equivalent, 54
row rank, 59
row space, 59
row-column-equivalent, 91
row-reduced, 56

Sarrus’s rule, 118
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scalar, 3
scalar product, 27
scalar triple product, 110, 364
Schur canonical form, 229
Schur’s lemma, 217
second dual, 152, 339
secular equation, 202
sequence of matrices

limit of, 283
series of matrices, 283

sum of, 283
set, 399

complement, 400
disjoint, 400
family of, 400

signature, 307
similar matrices, 128, 171
similarity transformation, 128, 171
similarly oriented, 382
singular, 157
singular value decomposition (SVD), 235
singular values, 234
singular vectors, 234
skew-Hermitian, 232, 257
solution set, 48
solution vector, 48
space of linear functionals, 151
space of linear transformations, 150
spacelike vector, 392
spectral decomposition, 274
spectrum, 219, 274

degenerate, 219
square root, 411
standard basis, 13
standard inner product, 32
standard orientation, 384
subdeterminant, 128
submatrix, 128
subset, 399

proper, 399
subspace, 6

intersection of, 20
invariant, 169
proper, 6
spanned by a set, 7
sum of, 19

trivial, 6
sum, 19
superdiagonal, 79
superset, 399
Sylvester’s theorem, 308
symmetric difference, 401

tensor, 341
alternating, 351
antisymmetric, 351
classical transformation law, 345
components, 342, 343
contravariant order, 341
covariant order, 341
rank, 341
skew-symmetric, 351
symmetric, 350
trace, 348

tensor product, 294, 296, 343
timelike vector, 392
total ordering, 405
trace, 79, 175
transition matrix, 170
transpose

of a linear transformation, 371
of a matrix, 75

transposition, 111
triangle inequalty, 34

uncountable, 408
union, 400
unit cube, 369
unit vector, 32
unitarily similar, 230
unitary, 225
unitary matrix, 255
unitary operator, 253
unitary space, 32, 257
unknowns, 48
upper bound, 405

Vandermonde matrix, 137
vector, 3
vector field, 347
vector product, 108
vector space, 3
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complex, 3
oriented, 382
real, 3

volume elements, 383
volume forms, 383

equivalent, 383

wedge product, 294, 354
well-defined, 402
Weyl’s formula, 290
Wronskian, 58

zero divisor, 86
zero mapping, 149
Zorn’s Lemma, 406


