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Preface

This text grew out of the need to teach real (but practical and useful) linear
algebra to students with a wide range of backgrounds, desires and goals. It
is meant to provide a solid foundation in modern linear algebra as used by
mathematicians, physicists and engineers. While anyone reading this book has
probably had at least a passing exposure to the concepts of vector spaces and
matrices, we do not assume any prior rigorous coursework on the subject. In
the sense that the present text is a beginning treatment of linear algebra, it is
admittedly not an extremely elementary treatment, and is probably best suited
for an upper division course at most American universities. In other words,
we assume the student has had at least three semesters of calculus, and hence
possesses a certain amount of that intangible quantity called “mathematical
maturity.”

This book is not is a text on “applied linear algebra” or numerical methods.
We feel that it is impossible to cover adequately in a single (or even two) semester
course all of the linear algebra theory that students should know nowadays, as
well as numerical methods. To try to cover both does a disservice to both. It is
somewhat like trying to teach linear algebra and differential equations in a single
course — in our experience the students end up not knowing either subject very
well. We realize that there are only so many courses that the student has the
time to take, but it is better to have a firm understanding of the basics rather
than a cursory overview of many topics. If the student learns the foundations
well, then specializing to systems of differential equations or other numerical
techniques should be an easy transition.

As we just stated, it is our belief that many of the newer books on linear
algebra try to cover too much material in the sense that they treat both theory
as well as numerous applications. Unfortunately, the applications themselves
aren’t covered in sufficient detail for the student to learn them, and they may
lie in a subject far removed from the interests of any one particular student. The
net result is that the various applications become somewhat of a waste of time,
and amount to blindly plugging into equations. Furthermore, covering these ap-
plications detracts from the amount of time necessary to cover the foundational
material, all the more important since linear algebra is rarely more than a one
semester course. As a result, most students finish the semester without having a
real understanding of the fundamentals, and don’t really understand how linear
algebra aids in numerical calculations. Our opinion is that it is far better to
thoroughly cover the fundamentals, because this then enables the student to
later pick up a book on a more specialized subject or application and already
understand the underlying theory.

For example, physics students learn about Clebsch-Gordon coefficients when
studying the addition of angular momentum in quantum mechanics courses.
This gives the impression that Clebsch-Gordon coefficients are somehow unique
to quantum mechanics, whereas in reality they are simply the entries in the
unitary transition matrix that represents a change of basis in a finite-dimensional
space. Understanding this makes it far easier to grasp the concepts of just
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what is going on. Another example is the diagonalization of the inertia tensor
in classical mechanics. The student should realize that finding the principal
moments and principal axes of a solid object is just a straightforward application
of finding the eigenvalues and eigenvectors of a real symmetric matrix.

The point we are trying to emphasize is that the student that understands
the general mathematical framework will see much more clearly what is really
going on in applications that are covered in many varied courses in engineering,
physics and mathematics. By understanding the underlying mathematics thor-
oughly, it will make it much easier for the student to see how many apparently
unrelated topics are in fact completely equivalent problems in different guises.

There are a number of ways in which this text differs from most, if not
all, other linear algebra books on the market. We begin in Chapter 1 with
a treatment of vector spaces rather than matrices, and there are at least two
reasons for this. First, the concept of a vector space is used in many courses
much more than the concept of a matrix is used, and the student will likely need
to understand vector spaces as used in these other courses early in the semester.
And second, various properties of matrices (such as the rank) developed in
Chapter 2 are based on vector spaces. It seems to us that it is better to treat
matrices after the student learns about vector spaces, and not have to jump
back and forth between the topics. It is in Chapter 1 that we treat both the
direct sum of vector spaces and define general inner product spaces. We have
found that students don’t have a problem with the elementary “dot product”
that they learned in high school, but the concept of an abstract inner product
causes a lot of confusion, as does even the more general bracket notation for the
dot product.

The first really major difference is in our treatment of determinants given in
Chapter 3. While definitely useful in certain situations, determinants in and of
themselves aren’t as important as they once were. However, by developing them
from the standpoint of permutations using the Levi-Civita symbol, the student
gains an extremely important calculational tool that appears in a wide variety
of circumstances. The ability to work with this notation greatly facilitates
an understanding of much of modern differential geometry, which now finds
applications in engineering as well as many topics in modern physics, such as
general relativity, quantum gravity and strings. Understanding this formalism
will be particularly beneficial to those students who go on to graduate school in
engineering or the physical sciences.

The second major difference is related to the first. In Chapter 8 we include
a reasonably complete treatment of the fundamentals of multilinear mappings,
tensors and exterior forms. While this is usually treated in books on differential
geometry, it is clear that the underlying fundamentals do not depend on the
concept of a manifold. As a result, after learning what is in this book, the
student should have no trouble specializing to the case of tangent spaces and
differential forms. And even without the more advanced applications of differen-
tial geometry, the basic concept of a tensor is used not only in classical physics
(for example, the inertia tensor and the electromagnetic field tensor), but also
in engineering (where second rank tensors are frequently called “dyadics.”).
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In Chapter 8 we also give a reasonably complete treatment of the volume of a
parallelepiped in R™, and how this volume transforms under linear transforma-
tions. This also leads to the rather abstract concept of “orientation” which we
try to motivate and explain in great detail. The chapter ends with a discussion
of the metric tensor, and shows how the usual vector gradient is related to the
differential of a function, working out the case of spherical polar coordinates in
detail.

Otherwise, most of the subjects we treat are fairly standard, although our
treatment is somewhat more detailed than most. Chapter 4 contains a careful
but practical treatment of linear transformations and their matrix representa-
tions. We have tried to emphasize that the ith column of a matrix representa-
tion is just the image of the ith basis vector. And of course this then leads to
a discussion of how the matrix representations change under a change of basis.

In Chapter 5 we give an overview of polynomials and their roots, emphasiz-
ing the distinction between algebraic and geometric multiplicities. From there
we proceed to our treatment of eigenvalues and eigenvectors. Because they are
so important in many applications, we give a careful discussion of invariant sub-
spaces, and show how diagonalizing a linear transformation amounts to finding
a new basis in which the matrix representation of a linear operator is the di-
rect sum of the invariant eigenspaces. This material is directly applicable to
physical applications such as quantum mechanics as well as more mathematical
applications such as the representations of finite groups. Indeed, the famous
Schur’s lemmas are nothing more than very simple applications of the concept
of invariant subspaces. And also in this chapter, we prove the extremely useful
result (the Schur canonical form) that any complex matrix can be put into up-
per triangular form. This also easily leads to a proof that any normal matrix
can be diagonalized by a unitary transformation.

Linear operators are treated in Chapter 6 which begins with a careful de-
velopment of the operator adjoint. From this point, we give a more detailed
treatment of normal operators in general, and hermitian (or orthogonal) oper-
ators in particular. We also discuss projections, the spectral theorem, positive
operators, and the matrix exponential series.

Bilinear forms are covered in Chapter 7, and much of the chapter deals
with the diagonalization of bilinear forms. In fact, we treat the simultaneous
diagonalization of two real symmetric bilinear forms in quite a bit of detail.
This is an interesting subject because there is more than one way to treat the
problem, and this ultimately leads to a much better understanding of all of
the approaches as well as clarifying what was really done when we covered the
standard eigenvalue problem. As a specific example, we give a thorough and
detailed treatment of coupled small oscillations. We develop the theory from
the conventional standpoint of differential equations (Lagrange’s equations for
coupled oscillators), and then show how this is really an eigenvalue problem
where simultaneously diagonalizing the kinetic and potential energy terms in
the Lagrangian gives the general solution as a linear combination of eigenvectors
with coefficients that are just the normal coordinates of the system.

Finally, we include an appendix that provides an overview of mappings,
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the real and complex numbers, and the process of mathematical induction.
While most students should be familiar with this material, it is there as an easy
reference for those who may need it.
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Chapter 1

Vector Spaces

Linear algebra is essentially a study of various transformation properties de-
fined on a vector space, and hence it is only natural that we carefully define
vector spaces. This chapter therefore presents a fairly rigorous development of
(finite-dimensional) vector spaces, and a discussion of their most important fun-
damental properties. While many linear algebra texts begin with a treatment
of matrices, we choose to start with vectors and vector spaces. Our reason for
this is that any discussion of matrices quickly leads to defining row and col-
umn spaces, and hence an understanding of vector spaces is needed in order to
properly characterize matrices.

1.1 Motivation

Basically, the general definition of a vector space is simply an axiomatization of
the elementary properties of ordinary three-dimensional Euclidean space that
you should already be familiar with. In order to motivate this definition we
consider motion in the two-dimensional plane. Let us start at what we call the
‘origin,” and let the positive z-axis be straight ahead and the y-axis to our left. If
we walk three feet straight ahead and then two feet to the left, we can represent
this motion graphically as follows. Let 71 represent our forward motion, let 7%
represent our turn to the left, and let 7 represent our net movement from the
origin to the end of our walk. Graphically we may display this as shown below.

76 1

1 2 3

We describe each segment of our walk by a pair of numbers (z,y) that
describes how far we travel in each direction relative to the starting point of
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each segment. Using this notation we have the vectors 7 = (3,0) and 7 =
(0,2), and our net motion can be described by the vector ¥ = (3,2). The
number 3 is called the xz-coordinate of 7, and the number 2 is called the y-
coordinate. Since this is only motivation, we don’t have to be too careful to
define all of our manipulations precisely, and we note that we can obtain this net
motion by adding the displacements in the x and y directions independently:
™+ 72 = (3,0) 4+ (0,2) = (3,2) = 7. In other words, ¥ = 7 + 7%.

The distance we end up from the origin is the length (or norm) of the vector
and is just v/32 + 22 = /13 as given by the Pythagorean theorem. However,
in order to describe our exact location, knowing our distance from the origin
obviously isn’t enough — this would only specify that we are somewhere on a
circle of radius v/13. In order to precisely locate our position, we also need to
give a direction relative to some reference direction which we take to be the
x-axis. Thus our direction is given by the angle 6 defined by tané = 2/3. This
is why in elementary courses a vector is sometimes loosely described by saying
it is an object that has length and direction.

Now suppose we take another walk from our present position. We travel
first a distance in the = direction given by 75 = (1,0) and then a distance in the
y direction given by 74 = (0, 3). Relative to the start of this trip we are now at
the location 7 = 7% + 74 = (1,3), and we have the following total path taken:

Yy
5,
4
34 B/
.
T3
24
~ (\
7
1+ T
6 ™
T — T X
1 2 3 4

Observe that our final position is given by the vector B = (4,5) = (34+1,2+3) =
(3,2) + (1,3) = 7+ 17, and hence we see that arbitrary vectors in the plane
can be added together to obtain another vector in the plane. It should also
bﬂe clear th{it if we repeat the entire trip again, then we will be at the point
R+ R=2R=(3,0)+(0,2) + (1,0) + (0,3) + (3,0) + (0,2) + (1,0) + (0,3) =
2[(3,0) + (0, 2)] +2[(1,0) + (0, 3)] = 27+ 2r and hence 2R = 2(7+717) = 27+ 2.

In summary, vectors can be added together to obtain another vector, and
multiplying the sum of two vectors by a number (called a scalar) is just the
sum of the individual vectors each multiplied by the scalar. In this text, almost
all of the scalars we shall deal with will be either elements of the real number
field R or the complex number field C. We will refer to these two fields by the
generic symbol F. Essentially, we think of a field as a set of ‘numbers’ that we
can add and multiply together to obtain another ‘number’ (closure) in a way
such that for all a,b,c € F we have (a +b) + ¢ =a+ (b+ ¢) and (ab)c = a(bc)
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(associativity), a + b = b+ a and ab = ba (commutativity), a(b+ ¢) = ab + ac
(distributivity over addition), and where every number has an additive inverse
(i.e., for each a € F there exists —a € F such that a + (—a) = 0 where 0 is
defined by 0 +a =a+ 0 = a for all a € F), and every nonzero number has a
multiplicative inverse (i.e., for every nonzero a € F there exists a=! € F such
that aa=! = a~'a = 1, where 1 € F is defined by 1la = al = a). In other words,
a field behaves the way we are used to the real numbers behaving. However,
fields are much more general than R and C, and the interested reader may
wish to read some of the books listed in the bibliography for a more thorough
treatment of fields in general.

With this simple picture as motivation, we now turn to a careful definition
of vector spaces.

1.2 Definitions

A nonempty set V is said to be a vector space over a field F if: (i) there
exists an operation called addition that associates to each pair x,y € V a new
vector  + y € V called the sum of x and y; (ii) there exists an operation
called scalar multiplication that associates to each a € F and z € V' a new
vector ax € V called the product of a and z; (iii) these operations satisfy the
following axioms:

(VS1) a+y=y+zxforalz,yeV.

(VS2) (x+y)+z=a+(y+=2) forall z,y,z€ V.

(VS3) There exists an element 0 € V such that 0+ 2 =z for all x € V.
(VS4) For all z € V there exists an element —z € V such that + (—xz) = 0.
(VS5) a(zx +y) =ax+ay for all z,y € V and all a € F.

(VS6) (a+0b)x = ax +bx for all x € V and all a,b € F.

(VST7) a(bz) = (ab)zx for all x € V and all a,b € F.

(

VS8) 1z =« for all © € V where 1 is the (multlphcative) identity in F.

The members of V' are called vectors, and the members of F are called scalars.
The vector 0 € V is called the zero vector, and the vector —z is called the
negative of the vector z.

Throughout this chapter, V' will always denote a vector space, and the cor-
responding field F will be understood even if it is not explicitly mentioned. If
F is the real field R, then we obtain a real vector space while if F is the
complex field C, then we obtain a complex vector space.

Example 1.1. Probably the best known example of a vector space is the set
Fr=F x ---x F of all n-tuples (aq,...,ay,) where each a; € F. (See Section
A.1 of the appendix for a discussion of the Cartesian product of sets.) To make
F" into a vector space, we define the sum of two elements (a1, ...,a,) € F"
and (by,...,b,) € F" by

(al,...,an)—l—(bl,...,bn):(al—i—bl,...,an—i—bn)
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and scalar multiplication for any k& € F by
k(ai,...,an) = (kay, ..., kay).

If A= (a,...,a,) and B = (by,...,b,), then we say that A = B if and only if
a; = b; for each i = 1,...,n. Defining 0 = (0,...,0) and —A = (—ay,...,—ay)
as the identity and inverse elements respectively of F", the reader should have
no trouble verifying properties (VS1)—(VS8).

The most common examples of the space F" come from considering the
fields R and C. For instance, the space R?® is (with the Pythagorean notion
of distance defined on it) just the ordinary three-dimensional Euclidean space
(z,y,2) of elementary physics and geometry. Furthermore, it is standard to
consider vectors in F™ as columns. For example, the vector X = (z,vy,2) € R3
should really be written as

az
X=1ly
z

but it is typographically easier to write them as rows, and we will continue with
this practice unless we need to explicitly show their column structure.

We shall soon see that any finite-dimensional vector space V over a field
F is essentially the same as the space F". In particular, we will prove that
V' is isomorphic to F™ for some positive integer n. (The term “isomorphic”
will be defined carefully in the next section. But to put it briefly, two sets are
isomorphic if there is a one-to-one correspondence between them.)

Example 1.2. Another very useful vector space is the space F[z] of all poly-
nomials in the indeterminate = over the field F. In other words, every element
in F|z] is a polynomial of the form ag + a1z + - - - + a,a™ where each a; € F
and n is any positive integer (called the degree of the polynomial). Addition
and scalar multiplication are defined in the obvious way by

and

(If we wish to add together two polynomials Y ;a;z* and >~ b;z’ where
m > n, then we simply define a; =0 fori =n+1,...,m.)

Since we have not yet defined the multiplication of vectors, we ignore the
fact that polynomials can be multiplied together. It should be clear that F|x]
does indeed form a vector space.



1.2. DEFINITIONS 5

Example 1.3. We can also view the field C as a vector space over R. In fact,
we may generally consider the set of n-tuples (21, ..., 2z,), where each z; € C, to
be a vector space over R by defining addition and scalar multiplication (by real
numbers) as in Example 1.1. We thus obtain a real vector space that is quite
distinct from the space C™ (in which we can multiply by complex numbers).

We now prove several useful properties of vector spaces.

Theorem 1.1. Let V' be a vector space over F. Then for all x,y,z € V and
every a € F we have

(i) x +y=z+y implies x = z.

(ii) ax = 0 if and only if a =0 or x = 0.

(i11) —(azx) = (—a)x = a(—x).

Proof. We first remark that there is a certain amount of sloppiness in our no-
tation since the symbol 0 is used both as an element of V' and as an element
of F. However, there should never be any confusion as to which of these sets 0
lies in, and we will continue with this common practice.

(i) Ifz+y =24y, then

(+y)+(-y)=(=+y) +(-y)

implies
e+ W+ (=) =2+ @y +(-y)
which implies * + 0 = z + 0 and hence x = z. This is frequently called the
(right) cancellation law. It is also clear that  +y = 2 + z implies y = z (left
cancellation).
(ii) If a = 0, then
0z = (0+0)z = 0z + Oz.

But 0z = 0 4 Oz so that 0 4+ Oz = Oz + Oz, and hence (i) implies 0 = Oxz. If
x = 0, then
a0 = a(0+0) = a0 + a0.

But a0 = 0+ a0 so that 04+ a0 = a0+ a0, and again we have 0 = a0. Conversely,
assume that ax = 0. If @ # 0 then a~! exists, and hence

r=1z=(a"ta)r =a(ax) =a"'0=0

by the previous paragraph.
(iii) By (VS4) we have az + (—(ax)) = 0, whereas by (ii) and (VS6), we have

0=0x=(a+ (—a))x =ax+ (—a)zx.
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Hence ax + (—(az)) = ax + (—a)x implies —(ax) = (—a)x by (i). Similarly,
0=z + (—z) so that

0=a0=a(z+ (—2)) = ax + a(—2x).
Then 0 = az + (—(ax)) = ax + a(—x) implies —(az) = a(—x). |
In view of this theorem, it makes sense to define subtraction in V' by

v—y=x+(-y)

It should then be clear that a vector space will also have the properties we
expect, such as a(x — y) = axr — ay, and —(x —y) = —x + y.

If we take an arbitrary subset of vectors in a vector space then, in general,
this subset will not be a vector space itself. The reason for this is that in general,
even the addition of two vectors in the subset will not result in a vector that is
again a member of the subset. Because of this, we make the following definition.

Suppose V' is a vector space over F and W C V. Then, if z,y € W and
¢ € F implies that x +y € W and cx € W, we say that W is a subspace of V.
Indeed, if ¢ = 0 then 0 = 0z € W so that 0 € W, and similarly —x = (-1)z € W
so that —x € W also. It is now easy to see that W obeys (VS1)—(VS8) if V
does. It should also be clear that an equivalent way to define a subspace is to
require that cx +y € W for all z,y € W and all c € F.

It is extremely important to realize that any subspace always contains the
zero vector. As a simple example, consider a line W through the origin of the
usual zy-plane. Then the sum of any two points lying in W will still lie in W.
But if we consider a line W that does not pass through the origin, then the sum
of two points on W will not lie on W. Thus the subset W is a subspace of V/
but W is not.

If W is a subspace of V and W # V, then W is called a proper subspace
of V. In particular, W = {0} is a subspace of V, but it is not very interesting,
and hence from now on we assume that any proper subspace contains more than
simply the zero vector. (One sometimes refers to {0} and V' as trivial subspaces
of V)
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Example 1.4. Consider the elementary Euclidean space R? consisting of all
triples (z,vy, z) of real scalars. If we restrict our consideration to those vectors
of the form (z,y,0), then we obtain a subspace of R3. In fact, this subspace
is essentially just the space R? which we think of as the usual zy-plane. We
leave it as a simple exercise for the reader to show that this does indeed define
a subspace of R?. Note that any other plane parallel to the zy-plane is not a
subspace (why?).

Example 1.5. Let V be a vector space over F, and let S = {z1,...,2,} be
any n vectors in V. Given any set of scalars {a1,...,a,}, the vector

n
E a;T; = a121 + -+ anT,
i=1

is called a linear combination of the n vectors z; € S, and the set . of all
such linear combinations of elements in S is called the subspace spanned (or
generated) by S. Indeed, if A = E?:l a;x; and B = E?:l b;x; are vectors in
S and ¢ € F, then both

=1

and .
cA = Z (cas)x;
i=1

are vectors in .. Hence .¥ is a subspace of V. . is sometimes called the
linear span of S, and we say that S spans .7.

In view of this example, we might ask whether or not every vector space is
in fact the linear span of some set of vectors in the space. In the next section we
shall show that this leads naturally to the concept of the dimension of a vector
space.

Exercises
1. Verify axioms (VS1)-(VS8) for the space F".

2. Let S be any set, and consider the collection V' of all mappings f of S into
a field F. For any f,g € V and a € F, we define (f + g)(z) = f(z) + g(x)
and (af)(z) = af(x) for every x € S. Show that V together with these
operations defines a vector space over F.



10.

CHAPTER 1. VECTOR SPACES

Consider the two element set {z, y} with addition and scalar multiplication
by ¢ € F defined by

rT+r=1 rt+y=y+tzxrx=y yt+y==x cr=2=x cy =x.
Does this define a vector space over F 7

Let V be a vector space over F. Show that if z € V and a,b € F with
a # b, then ax = bx implies = = 0.

Let (V,+,*) be a real vector space with the addition operation denoted
by + and the scalar multiplication operation denoted by x. Let vg € V be
fixed. We define a new addition operation & on V by z @y =z + y + vy,
and a new scalar multiplication operation ® by a®xz = a*xz+ (a—1)*vy.
Show that (V,®,®) defines a real vector space.

. Let F[R] denote the space of all real-valued functions defined on R with

addition and scalar multiplication defined as in Exercise 2. In other words,
f € F[R] means f: R — R.

(a) Let C[R] denote the set of all continuous real-valued functions defined
on R. Show that C[R] is a subspace of F[R].
(b) Repeat part (a) with the set D[R] of all such differentiable functions.

Referring to the previous exercise, let D[R] denote the set of all n-times
differentiable functions from R to R. Consider the subset V' of D"[R] given
by the set of all functions that satisfy the differential equation

f(n) (z) + an_lf("_l)(x) + an_2f(n—2)($) S alf(l)(:v) +aof(z) =0

where f()(x) denotes the ith derivative of f(z) and a; is a fixed real
constant. Show that V is a vector space.

. Let V = R3. In each of the following cases, determine whether or not the

subset W is a subspace of V:

W ={(z,y,2) eR®: 2 >0} .

W ={( JER3 122 + 4?4+ 22 <1}
W ={(z,y,2) ER3:x+y+2=0}.
W ={( JER3 :z,y,2 € Q} .

W ={( ) € R3—{0,0,0}} .

Let S be a nonempty subset of a vector space V. In Example 1.5 we
showed that the linear span .% of S is a subspace of V. Show that if W
is any other subspace of V' containing S, then . C W.

(a) Determine whether or not the intersection ()_, W; of a finite number
of subspaces W; of a vector space V is a subspace of V.

(b) Determine whether or not the union [J;_, W; of a finite number of
subspaces W; of a space V' is a subspace of V.
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11. Let Wy and W5 be subspaces of a space V such that Wy U W5 is also a
subspace of V. Show that one of the W, is subset of the other.

12. Let W7 and W5 be subspaces of a vector space V. If, for every v € V we
have v = wy +ws where w; € W;, then we write V= W7+ W5 and say that
V is the sum of the subspaces W;. If V.= Wy + W and Wy N W, = {0},
show that every v € V has a unique representation v = w; + wy with
w; € W.

13. Let V be the set of all (infinite) real sequences. In other words, any v € V'
is of the form (21, ¥, z3,...) where each z; € R. If we define the addition
and scalar multiplication of distinct sequences componentwise exactly as
in Example 1.1, then it should be clear that V' is a vector space over R.
Determine whether or not each of the following subsets of V' in fact forms
a subspace of V:

(a) All sequences containing only a finite number of nonzero terms.

(b) All sequences of the form {z1,x9,...,25,0,0,...} where N is fixed.

(¢) All decreasing sequences, i.e., sequences where 1 < xy for each
k=1,2,....

(d) All convergent sequences, i.e., sequences for which limy_, . 2 ex-
ists.

14. For which value of k will the vector v = (1,-2,k) € R? be a linear
combination of the vectors x; = (3,0, —2) and x5 = (2, -1, —5)?

15. Write the vector v = (1,—2,5) as a linear combination of the vectors
x1=(1,1,1), 22 = (1,2,3) and a3 = (2,—1,1).

1.3 Linear Independence and Bases

Let x1,...,x, be vectors in a vector space V. We say that these vectors are
linearly dependent if there exist scalars ai,...,a, € F, not all equal to 0,
such that

n
a1x1 + asxs + - - -+ apx, = E a;x; = 0.
i=1

The vectors x; are said to be linearly independent if they are not linearly de-
pendent. In other words, if {x1, ..., x,} is linearly independent, then Y. | a;,x; =
0 implies that a1 = -+ = a, = 0. From these definitions, it follows that any
set containing a linearly dependent subset must be linearly dependent, and any
subset of a linearly independent set is necessarily linearly independent.

It is important to realize that a set of vectors may be linearly dependent with
respect to one field, but independent with respect to another. For example, the
set C of all complex numbers is itself a vector space over either the field of real
numbers or over the field of complex numbers. However, the set {21 = 1,29 =
i} is linearly independent if F = R, but linearly dependent if F = C since
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iz1 + (=1)x2 = 0. We will always assume that a linear combination is taken
with respect to the same field that V is defined over.

As a means of simplifying our notation, we will frequently leave off the limits
of a sum when there is no possibility of ambiguity. Thus, if we are considering
the set {z1,...,2,}, then a linear combination of the x; will often be written
as Y a;x; rather than Z?:l a;x;. In addition, we will often denote a collection
{z1,...,z,} of vectors simply by {x;}.

Example 1.6. Consider the three vectors in R? given by

€1 = (1,0,0)
€y = (0, 1,0)
€3 = (07071)

Using the definitions of addition and scalar multiplication given in Example
1.1, it is easy to see that these three vectors are linearly independent. This is
because the zero vector in R3 is given by (0,0, 0), and hence

are1 + ases + ases = (a1, as,asz) = (0,0,0)

implies that a; = as = asz = 0.
On the other hand, the vectors

i = (1,0,0)
T2 = (07 172)
€3 = (17376)

are linearly dependent since x3 = x1 + 3x2.

From a practical point of view, to say that a set of vectors is linearly depen-
dent means that one of them is a linear combination of the rest. The formal
proof of this fact is given in the following elementary result.

Theorem 1.2. A finite set S of vectors in a space V is linearly dependent if
and only if one vector in the set is a linear combination of the others. In other
words, S is linearly dependent if one vector in S is in the subspace spanned by
the remaining vectors in S.

Proof. It S = {x1,...,2,} is a linearly dependent subset of V', then
a1x1 + asxo + -+ apxr, =0

for some set of scalars ay, ..., a, € F not all equal to 0. Suppose, to be specific,
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that a; # 0. Then we may write

x1 = —(ag/ar)xe — -+ — (an/ar)x,

which shows that x; is a linear combination of xzs, ..., z,.
Conversely, if 1 = Zi# a;z; then

x1+ (—ag)ze + -+ (—ap)z, =0
which shows that the collection {x1,...,z,} is linearly dependent. |

It is important to realize that no linearly independent set of vectors can
contain the zero vector. To see this, note that if S = {z1,...,2,} and 21 =0,
then axy 4+ 0ze + - -+ + 0z, = 0 for all @ € F, and hence by definition, S is a
linearly dependent set.

Theorem 1.3. Let S = {x1,...,2,} CV be a linearly independent set, and let
< be the linear span of S. Then every v € . has a unique representation

n
v = E Q;T;
=1

where each a; € F.

Proof. By definition of .7, we can always write v = > a;x;. As to uniqueness,
it must be shown that if we also have v = Y b;x;, then it follows that b; = a; for
every i = 1,...,n. But thisis easy since Y a;,x; = > b;z; implies > (a; —b;)x; =
0, and hence a; — b; = 0 (since {z;} is linearly independent). Therefore a; = b;
foreachi=1,...,n. |

If S is a finite subset of a vector space V' such that V = . (the linear span of
S), then we say that V is finite-dimensional. However, we must define what
is meant in general by the dimension of V. If S C V is a linearly independent
set of vectors with the property that V = ., then we say that S is a basis
for V. In other words, a basis for V is a linearly independent set that spans
V. We shall see that the number of elements in a basis is what is meant by the
dimension of V. But before we can state this precisely, we must be sure that
such a number is well-defined. In other words, we must show that any basis has
the same number of elements. We prove this (see the corollary to Theorem 1.6)
in several steps.

Theorem 1.4. Let . be the linear span of S = {x1,...,x,} C V. Ifk <n
and {x1, ...,z } is linearly independent, then there exists a linearly independent
subset of S of the form {x1,...,xk, x;,...,x; } whose linear span also equals

e
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Proof. If k = n there is nothing left to prove, so we assume that & < n. Since
x1,..., 2, are linearly independent, we let x; (where j > k) be the first vector
in S that is a linear combination of the preceding z1,...,z;-1. If no such j
exists, then take (i1,...,i4) = (k4 1,...,n). Then the set of n — 1 vectors
T1,...,Tj—1,Tj41,..., Ty has a linear span that must be contained in . (since
this set is just a subset of S). However, if v is any vector in ., we can write
v =" a;xz; where z; is just a linear combination of the first j — 1 vectors.
In other words, v is a linear combination of 1,...,2;-12j41,..., 2, and hence
these n — 1 vectors also span ..

We now continue this process by picking out the first vector in this set of
n — 1 vectors that is a linear combination of the preceding vectors. An identical
argument, shows that the linear span of this set of n — 2 vectors must also be
. Tt is clear that we will eventually obtain a set {x1,..., 2k, @i, ..., T, }
whose linear span is still .%, but in which no vector is a linear combination
of the preceding ones. This means that the set must be linearly independent
(Theorem 1.2). |

Corollary 1. If V is a finite-dimensional vector space such that the set S =
{x1,...,2m} CV spans V, then some subset of S is a basis for V.

Proof. By Theorem 1.4, S contains a linearly independent subset that also spans
V. But this is precisely the requirement that S contain a basis for V. |

Corollary 2. Let V be a finite-dimensional vector space and let {xy,..., <y}
be a basis for V.. Then any element v € V has a unique representation of the

form
n
v = E a;x;
i=1

where each a; € F.

Proof. Since {z;} is linearly independent and spans V', Theorem 1.3 shows us
that any v € V may be written in the form v = Y " | a;x; where each a; € F is
unique (for this particular basis). |

It is important to realize that Corollary 1 asserts the existence of a finite basis
in any finite-dimensional vector space, but says nothing about the uniqueness
of this basis. In fact, there are an infinite number of possible bases for any such
space. However, by Corollary 2, once a particular basis has been chosen, then
any vector has a unique expansion in terms of this basis.
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Example 1.7. Returning to the space F", we see that any (ai,...,a,) € F"
can be written as the linear combination

a1(1,0,...,0) +a2(0,1,0,...,0) + -+ -+ a,(0,...,0,1).
This means that the n vectors

er = (1,0,0,...,0)
e = (0,1,0,...,0)

en = (0,0,0,...,1)

span F". They are also linearly independent since Y ae; = (a1,...,a,) = 0 if
and only if a; = 0 for all ¢ = 1,...,n. The set {e;} is extremely useful, and will
be referred to as the standard basis for F".

This example leads us to make the following generalization. By an ordered
basis for a finite-dimensional space V', we mean a finite sequence of vectors that
is linearly independent and spans V. If the sequence z1,...,z, is an ordered
basis for V, then the set {x1,...,2,} is a basis for V. In other words, the
set {x1,...,2,} gives rise to n! different ordered bases. Since there is usually
nothing lost in assuming that a basis is ordered, we shall continue to assume
that {z1,...,2,} denotes an ordered basis unless otherwise noted.

Given any (ordered) basis {x1,...,2,} for V, we know that any v € V
has a unique representation v = Z?:l a;z;. We call the scalars aq,...,a, the
coordinates of v relative to the (ordered) basis {21, ..., 2, }. In particular, we
call a; the ith coordinate of v. Moreover, we now proceed to show that these
coordinates define a direct correspondence between V and F" (or, as we shall
define it below, an isomorphism).

Let V and W be vector spaces over F. We say that a mapping ¢ : V — W
is a vector space homomorphism (or, as we shall call it later, a linear
transformation) if

(x +y) = o(x) + ¢(y)
and

¢(azx) = ad(x)

forall x,y € V and a € F. If ¢ is injective (i.e., one-to-one), then we say that ¢
is an isomorphism, and if ¢ is bijective (i.e., injective and surjective, or one-
to-one and onto), that V and W are isomorphic. (If necessary, the reader may
wish to review mappings in Section A.2 of the appendix to understand some of
these terms.)

As we now show, the set of vectors € V that map into 0 € W under ¢
gives us some very important information about ¢. To show this, we define the



14 CHAPTER 1. VECTOR SPACES

kernel of ¢ to be the set
Kergp={x eV :¢(x)=0e W}
If z,y € Ker¢ and ¢ € F we have
¢(x +y) = ¢(x) +o(y) =0

and
¢(cx) = cop(x) = 0 = 0.

This shows that both x 4+ y and cx are in Ker ¢, and hence Ker ¢ is a subspace
of V. Note also that if « = 0 and = € V' then

¢(0) = ¢(azx) = ag(z) = 0.
Alternatively, we could also note that
¢(z) = d(z +0) = d(x) + ¢(0)
and hence ¢(0) = 0. Finally, we see that
0=¢(0) = d(z + (—2)) = ¢(z) + d(—2)

and therefore
P(—z) = —¢(z).

The importance of the kernel arises from the following result.

Theorem 1.5. Let ¢ : V. — W be a vector space homomorphism. Then ¢ is
an isomorphism if and only if Ker ¢ = {0}.

Proof. If ¢ is injective, then the fact that ¢(0) = 0 implies that we must have
Ker ¢ = {0}. Conversely, if Ker ¢ = {0} and ¢(x) = ¢(y), then

0=¢(x) = dy) = oz —y)
implies that xt —y =0, or z = y. |

Now let us return to the above notion of an ordered basis. For any finite-
dimensional vector space V over F and any (ordered) basis {z1,...,z,}, we
define a mapping ¢ : V. — F™ by

$(v) = ¢<Z ax> = (a1,...,an)
i=1
for each

n
v = Zaixi eV.
i=1
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Since
¢(Z @iz + Y bixi) = ¢(Z(ai + bi)wi)
= (a1 +b1,...,an +by)
=(a1,...,an) + (b1,...,by)
= qs(z aixi) + (b(z bifvi)
and

p(kv) = ¢(kzai$i) = ¢(Z(kai)$i) = (kay, ... kan)
=k(ay,...,an) = ko(v)
we see that ¢ is a vector space homomorphism. Because the coordinates of any

vector are unique for a fixed basis, we see that this mapping is indeed well-
defined and one-to-one. (Alternatively, the identity element in the space F™

is (0,...,0), and the only vector that maps into this is the zero vector in V.
Hence Ker¢ = {0} and ¢ is an isomorphism.) It is clear that ¢ is surjective
since, given any ordered set of scalars ay,...,a, € F, we can define the vector

v =Y a;x; € V. Therefore we have shown that V and F" are isomorphic for
some n, where n is the number of vectors in an ordered basis for V.

If V' has a basis consisting of n elements, is it possible to find another basis
consisting of m # n elements? Intuitively we guess not, for if this were true
then V' would be isomorphic to 7™ as well as to F", which implies that F™
is isomorphic to F™ for m # n. That this is not possible should be obvious
by simply considering the projection of a point in R* down onto the plane R2.
Any point in R? is thus the image of an entire vertical line in R3, and hence
this projection can not possibly be an isomorphism. Nevertheless, we proceed
to prove this in detail beginning with our next theorem.

Theorem 1.6. Let {x1,...,x,} be a basis for V, and let {yi,...,ym} be linearly
independent vectors in V. Then m < n.

Proof. Since {x1,...,x,} spans V| we may write each y; as a linear combination
of the x;. In particular, choosing ¥,,, it follows that the set

{ymaxla'- .7!En}

is linearly dependent (Theorem 1.2) and spans V' (since the zj already do so).
Hence there must be a proper subset {y,,i,,...,; } with 7 < n —1 that
forms a basis for V' (Theorem 1.4). Now this set spans V so that y,_1 is a
linear combination of this set, and hence

{ymflaymv'xh? tee 7xir}
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is linearly dependent and spans V. By Theorem 1.4 again, we can find a set
{Ym=1:Ym: Tjys- -, 25,} with s < n — 2 that is also a basis for V. Continuing
our process, we eventually obtain the set

{Y2,. -, Ym:Ta, T3, ... }

which spans V' and must contain at least one of the z; (since y; is not a linear
combination of the set {ya,...,ym} by hypothesis). This set was constructed
by adding m — 1 vectors y; to the original set of n vectors xy, and deleting at
least m — 1 of the xy along the way. However, we still have at least one of the
x) in our set, and hence it follows that m — 1 <n —1, or m < n. |

Corollary. Any two bases for a finite-dimensional vector space must consist of
the same number of elements.

Proof. Let {x1,...,x,} and {y1,...,ym} be bases for V. Since the y; are linearly
independent, Theorem 1.6 says that m < n. On the other hand, the z; are
linearly independent so that n < m. Therefore we must have n = m. |

We now return to the proof that F™ is isomorphic to F™ if and only if
m = n. Let us first show that an isomorphism maps a basis to a basis.

Theorem 1.7. Let ¢ : V. — W be an isomorphism of finite-dimensional vector
spaces. Then a set of vectors {¢(v1),...,¢(vn)} is linearly dependent in W if
and only if the set {vy,...,v,} is linearly dependent in V.

Proof. If the set {v1,...,v,} is linearly dependent, then for some set of scalars
{a1,...,an}, not all equal to 0, we have Y " | a;u; = 0. Applying ¢ to both
sides of this equation yields

0=¢(0) = (b(z aivi) = Z P(av;) = Z aip(v;).

But since not all of the a; are 0, this means that {¢(v;)} must be linearly
dependent.

Conversely, if ¢(v1), ..., ¢(v,) are linearly dependent, then there exists a set
of scalars by, ..., b, not all 0 such that Y b;¢(v;) = 0. But this means

0= Zbi¢(vi) = Z o(bivi) = ¢(Z bivz‘)

which implies that > b;v; = 0 (since Ker ¢ = {0}). This shows that the set {v;}
is linearly dependent. |
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Corollary. If ¢ : V. — W s an isomorphism of finite-dimensional vector
spaces, then {p(x;)} = {p(z1),...,0(xn)} is a basis for W if and only if
{zi} ={x1,..., 20} is a basis for V.

Proof. Since ¢ is an isomorphism, for any vector w € W there exists a unique
v € V such that ¢(v) = w. If {x;} is a basis for V, then v = Y"1 | a;z; and

w=06(v) = ¢(Y aim) = D ai (@)

Hence the ¢(z;) span W, and they are linearly independent by Theorem 1.7.
On the other hand, if {¢(x;)} is a basis for W, then there exist scalars {b;}
such that for any v € V we have

o) =w = biolw:) = oD bia:).

Since ¢ is an isomorphism, this implies that v = >_ b;2;, and hence {x;} spans
V. The fact that it is linearly independent follows from Theorem 1.7. This
shows that {x;} is a basis for V. |

Theorem 1.8. F" is isomorphic to F™ if and only if n = m.

Proof. If n = m the result is obvious. Now assume that F™ and F™ are iso-
morphic. We have seen in Example 1.7 that the standard basis of F™ consists
of n vectors. Since an isomorphism carries one basis onto another (corollary to
Theorem 1.7), any space isomorphic to F" must have a basis consisting of n
vectors. Hence, by the corollary to Theorem 1.6 we must have m = n.

Corollary. IfV is a finite-dimensional vector space over F, then V is isomor-
phic to F" for a unique integer n.

Proof. 1t was shown following Theorem 1.5 that V' is isomorphic to F™ for some
integer n, and Theorem 1.8 shows that n must be unique. |

The corollary to Theorem 1.6 shows us that the number of elements in any
basis for a finite-dimensional vector space is fixed. We call this unique number
n the dimension of V' over F, and we write dim V' = n. Our next result agrees
with our intuition, and is quite useful in proving other theorems.

Theorem 1.9. FEvery subspace W of a finite-dimensional vector space V is
finite-dimensional, and dim W < dim V.
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Proof. We must show that W has a basis, and that this basis contains at most
n = dimV elements. If W = {0}, then dimW = 0 < n and we are done. If
W contains some z1 # 0, then let Wi C W be the subspace spanned by z7. If
W = W1, then dim W =1 and we are done. If W 2 Wy, then there exists some
xo € W with z9 ¢ W1, and we let Wa be the subspace spanned by {1, z2}.
Again, if W = Ws, then dimW = 2. If W = W5, then choose some xz3 € W
with 23 ¢ W5 and continue this procedure. However, by Theorem 1.6, there can
be at most n linearly independent vectors in V', and hence dim W < n. |

Note that the zero subspace is spanned by the vector 0, but {0} is not linearly
independent so it can not form a basis. Therefore the zero subspace is defined
to have dimension zero.

Finally, let us show that any set of linearly independent vectors may be
extended to form a complete basis.

Theorem 1.10. Let V be finite-dimensional and S = {x1,...,xn} any set of

m linearly independent vectors in V.. Then there exists a set {Tm1, ..., Tmir}
of vectors in V' such that {x1,...,Tmir} is a basis for V.

Proof. Since V is finite-dimensional, it has a basis {v1,...,v,}. Then the set
{x1,...,@m,v1,...,0,} spans V so, by Theorem 1.4, we can choose a subset
{x1,.. . &m,vi,,...,v;. } of linearly independent vectors that span V. Letting
Viy = Tm41,-- -, Vi, = Tm4r Proves the theorem. |
Exercises

1. Determine whether or not the three vectors x; = (2, —1,0), 22 = (1,—1,1)
and x3 = (0,2,3) form a basis for R3.

2. In each of the following, show that the given set of vectors is linearly
independent, and decide whether or not it forms a basis for the indicated
space:

(a) {(1,1),(1,-1)} in R
(){(2707 )(727 )( )}inRg
(¢) {(1,0,0,0),(1,1,0, )(1,1,1,0) (1,1,1,1)} in R%.

3. Extend each of the following sets to a basis for the given space:

(a) {(1,1,0),(2,-2,0)} in R3.
(b) {(1,0.0,0),(1,0,1,0), (1,0,0, 1)} in RA.
(¢) {(1.1,0,0). (1.—1,0,0), (1,0, 1,0)} in R*,

4. Show that the vectors u = (1 +14,2i), v = (1,1 + i) € C? are linearly
dependent over C, but linearly independent over R.
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5. Find the coordinates of the vector (3,1,—4) € R3 relative to the basis
x1 = (1,1,1), 22 = (0,1,1) and a3 = (0,0, 1).

6. Let Rs[z] be the space of all real polynomials of degree < 3. Determine
whether or not each of the following sets of polynomials is linearly inde-
pendent:

(a) {23 =322+ 5z +1,2% — 2% + 82 + 2,223 — 42% + 92 + 5}.
(b) {2® +42% — 20 + 3,23 + 62% — 2 + 4,323 + 822 — 8z + T}.

7. Let V be a finite-dimensional space, and let W be any subspace of V.
Show that there exists a subspace W’ of V such that W N W’ = {0} and
V =W 4+ W' (see Exercise 1.2.12 for the definition of W + W”).

8. Let ¢ : V — W be a homomorphism of two vector spaces V and W.

(a) Show that ¢ maps any subspace of V onto a subspace of W.
(b) Let S” be a subspace of W, and define the set S = {x € V : ¢(x) € S'}.
Show that S is a subspace of V.

9. Let V be finite-dimensional, and assume that ¢ : V' — V is a surjective
homomorphism. Prove that ¢ is in fact an isomorphism of V' onto V.

10. Let V have basis x1,x2,..., 2y, and let v1,ve,...,v, be any n elements
in V. Define a mapping ¢ : V. — V by

10} (i aixl) = i a;v;
i=1 i=1

where each a; € F.

(a) Show that ¢ is a homomorphism.
(b) When is ¢ an isomorphism?

1.4 Direct Sums

We now present some useful ways of constructing a new vector space from several
given spaces. The reader is advised to think carefully about these concepts, as
they will become quite important later in this book. We also repeat our earlier
remark that all of the vector spaces that we are discussing are considered to be
defined over the same field F.

Let A and B be subspaces of a finite-dimensional vector space V. Then we
may define the sum of A and B to be the set A + B given by

A+B={a+b:a€c Aandbc B}.

It is important to note that A and B must both be subspaces of the same space
V', or else the addition of a € A to b € B is not defined. In fact, since A and B
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are subspaces of V, it is easy to show that A+ B is also subspace of V. Indeed,
given any a; + by and as + bo in A + B and any k € F we see that

(a1 +b1) + (ag + b2) = (a1 +az) + (b1 +b2) € A+ B

and
k(a1+b1):ka1+kb1 cA+B

as required. This definition can clearly be extended by induction to any finite
collection {A;} of subspaces.

In addition to the sum of the subspaces A and B, we may define their
intersection AN B by

ANB={zx eV :x € Aand z € B}.

Since A and B are subspaces, we see that for any x,y € AN B we have both
r+ycAandx+ye Bsothatt+ye€ ANB, and if x € AN B then kx € A
and kx € B so that kx € AN B. Since 0 € AN B, we then see that AN B is a
nonempty subspace of V. This can also be extended to any finite collection of
subspaces of V.

Our next theorem shows that the dimension of the sum of A and B is just
the sum of the dimensions of A and B minus the dimension of their intersection.

Theorem 1.11. If A and B are subspaces of a finite-dimensional space V', then

dim(A + B) = dim A + dim B — dim(A N B).

Proof. Since A+ B and AN B are subspaces of V, it follows that both A+ B and
AN B are finite-dimensional (Theorem 1.9). We thus let dim A = m, dim B =n
and dmANB=r.

Let {u1,...,u,} be a basis for AN B. By Theorem 1.10 there exists a set
{v1,...,Vm—r} of linearly independent vectors in V' such that

{ut, .oy Upy V1, oo Uy }
is a basis for A. Similarly, we have a basis
{u1, .. w1, ... Wy}
for B. It is clear that the set
{U1y o Uy V1 e ooy Uy Wy e e oy Wiy }

spans A + B since any a +b € A+ B (with a € A and b € B) can be written
as a linear combination of these r + (m —r) + (n — r) = m + n — r vectors. To
prove that they form a basis for A+ B, we need only show that these m+n—1r
vectors are linearly independent.
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Suppose we have sets of scalars {a;}, {b;} and {cx} such that

r m—r n—r
E a;u; + E bjl)j + E CrWE — 0.
i=1 Jj=1 k=1

Then
r m—r n—r
g a;u; + g bjv; = — g ClLW .
i=1 j=1 k=1

Since the left side of this equation is an element of A while the right side is an
element of B, their equality implies that they both belong to A N B, and hence

n—r T
- E crwy = 5 diu;
k=1 =1

for some set of scalars {d;}. But {us,...,us, wy,..., w,—,} forms a basis for B
and hence they are linearly independent. Therefore, writing the above equation

as
T n—r
E diu; + E cpwy =0
i=1 k=1

implies that
di=-=d,=c1=-=cp_r =0.

We are now left with

T m—r
Zaiui + Z bj’Uj =0.
i=1 j=1

But {u1,..., U, 01,...,Um_pr} is also linearly independent so that
G = =ay=by = =bp_, = 0.
This proves that {u1, ..., Ur, V1, .., Vm—p, W1, ..., Wy} is linearly independent

as claimed. The proof is completed by simply noting that we have shown
dim(A+ B) =m+n —r =dim A + dim B — dim(A N B). |

We now consider a particularly important special case of the sum. If A and
B are subspaces of V' such that AN B = {0} and V = A+ B, then we say that
V' is the internal direct sum of A and B. A completely equivalent way of
defining the internal direct sum is given in the following theorem.

Theorem 1.12. Let A and B be subspaces of a finite-dimensional vector space
V. Then V is the internal direct sum of A and B if and only if every v € V
can be uniquely written in the form v = a + b where a € A and b € B.
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Proof. Let us first assume that V is the internal direct sum of A and B. In
other words, V.= A + B and AN B = {0}. Then by definition, for any v € V
we have v = a + b for some a € A and b € B. Suppose we also have v = a’ + b’
where ' € A and V' € B. Then a+b=a’+ ¥ so that a —a’ = b —b. But note
that a —a’ € A and V' — b € B, and hence the fact that AN B = {0} implies
that a —a’ =0’ — b = 0. Therefore a = a’ and b = b’ so that the expression for
v is unique.

Conversely, suppose that every v € V may be written uniquely in the form
v=a+bwith a € Aand b € B. This means that V = A + B, and we must
still show that AN B = {0}. In particular, if v € AN B we may write v = v+ 0
with v € A and 0 € B, or alternatively, we may write v = 04+ v with 0 € A and
v € B. But we are assuming that the expression for v is unique, and hence we
must have v = 0 (since the contributions from A and B must be the same in
both cases). Thus AN B = {0} and the sum is direct. |

We emphasize that the internal direct sum is defined for two subspaces A
and B of a given space V. As we stated above, this is because the addition of
two vectors from distinct spaces is not defined. In spite of this, we now proceed
to show that it is nevertheless possible to define the sum of two distinct vector
spaces.

Let A and B be distinct vector spaces (over the same field F, of course).
While the sum of a vector in A and a vector in B makes no sense, we may relate
these two spaces by considering the Cartesian product A x B defined as (see
Section A.1)

Ax B={(a,b):a € Aandbe B}.

Using the ordered pairs (a,b), it is now easy to turn A x B into a vector space
by making the following definitions (see Example 1.1).

First, we say that two elements (a,b) and (a’,b") of A x B are equal if and
only if a = @’ and b = b’. Next, we define addition and scalar multiplication in
the obvious manner by

(a,b) + (a',V) = (a+ad,b+ 1)

and

k(a,b) = (ka, kb).
We leave it as an exercise for the reader to show that with these definitions,
the set A x B defines a vector space V over F. This vector space is called the
external direct sum of the spaces A and B, and is denoted by A & B.

While the external direct sum was defined for arbitrary spaces A and B,
there is no reason why this definition can not be applied to two subspaces of
a larger space V. We now show that in such a case, the internal and external
direct sums are isomorphic.

Theorem 1.13. IfV is the internal direct sum of A and B, then V is isomor-
phic to the external direct sum A ® B.
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Proof. If V' is the internal direct sum of A and B, then any v € V may be
written uniquely in the form v = a + b. This uniqueness allows us to define the
mapping ¢ : V — A® B by

p(v) = p(a+0b) = (a,b).
Since for any v = a+ b and v' = a’ +V/, and for any scalar k we have
d(v+v")=(a+ad,b+V)=(a,b)+ (a',b) = ¢(v) + ¢p(v')

and
o(kv) = (ka, kb) = k(a,b) = ko(v)

it follows that ¢ is a vector space homomorphism. It is clear that ¢ is surjective,
since for any (a,b) € A® B we have ¢(v) = (a,b) where v =a +b € V. Finally,
if ¢(v) = (0,0) then we must have a = b = 0 = v and hence Ker ¢ = {0}. This
shows that ¢ is also injective (Theorem 1.5). In other words, we have shown
that V' is isomorphic to A & B. |

Because of this theorem, we shall henceforth refer only to the direct sum
of A and B, and denote this sum by A & B. It follows trivially from Theorem
1.11 that

dim(A @ B) = dim A + dim B.

Example 1.8. Consider the ordinary Euclidean three-space V' = R3. Note that
any v € R? may be written as

(v1,v2,v3) = (v1,v2,0) + (0,0, v3)

which is just the sum of a vector in the xy-plane and a vector on the z-axis.
It should also be clear that the only vector in the intersection of the xy-plane
with the z-axis is the zero vector. In other words, defining the space A to be
the zy-plane R? and the space B to be the z-axis R!, we see that V = A @ B
or R® =R? ®R!.

On the other hand, if we try to write R3 as the direct sum of the xy-plane A
with say, the yz-plane B, then the intersection condition is violated since AN B
is the entire y-axis. In this case, any vector lying on the y-axis can be specified
in terms of its components in either the xy-plane or in the yz-plane.

In many of our later applications we shall need to take the direct sum of
several vector spaces. While it should be obvious that this follows simply by
induction from the above case, we go through the details nevertheless. We say
that a vector space V is the direct sum of the subspaces Wr,..., W, if the
following properties are true:

(DS1) W; # {0} foreach i =1,...,r;
(DSQ) Wiﬂ(W1+"'+Wif1+Wi+1+"'+WT):{O}fori:L...,T;
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(DS3) V=W +---+ W, .

If V is the direct sum of the W;, then we write V. = Wy @& --- @& W,.. The
generalization of Theorem 1.12 is the following.

Theorem 1.14. If Wy, ..., W, are subspaces of V', then
V=W ---oW,
if and only if every v € V has a unique representation of the form
V=v1+: -+ U

where v; € Wy for each i =1,... 7.

Proof. First assume that V is the direct sum of Wy, ..., W,. Given any v € V,
property (DS3) of the direct sum tells us that we have

V=0v1+ "+ U
where v; € W; for each ¢ =1,...,r. If we also have another representation
v=v]+ -+

with v} € W;, then
/

Ul+...+UT:U/1+...+UT

so that for any ¢ = 1,...,r we have
v —vi = (v1 —vp) + o (Ve — Vi) + (Vigr — Vi) oo+ (v —op).

Since v} — v; € W; and the right hand side of this equation is an element of
Wi+ 4+ Wiy +Wigq + - - -+ W,., we see that (DS2) requires v, —v; = 0, and
hence v, = v;. This proves the uniqueness of the representation.

Conversely, assume that each v € V' has a unique representation of the form
v = w1+ +v, where v; € W, foreachi =1,...,r. Since (DS3) is automatically
satisfied, we must show that (DS2) is also satisfied. Suppose

U1€W1Q(W2+-"+WT).

Since
’U1€W2+"'+Wr

we must also have
V] =V + -+ U

for some vy € Wa, ..., v, € W,.. But then

0=—-vi+v2+-+7v
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and

0=0+---+0
are two representations of the vector 0, and hence the uniqueness of the repre-
sentations implies that v; = 0 for each i = 1,...,r. In particular, the case : =1
means that

Wwhin(Wy+---+W,)={0}
A similar argument applies to W; N (Wa + -+« + Wiy + Wipq1 + - + W,.) for
any ¢ = 1,...,r. This proves (DS2). |

V=W, &---&W,, then it seems reasonable that we should be able to
form a basis for V' by adding up the bases of the subspaces W;. This is indeed
the case as we now show.

Theorem 1.15. Let Wy,..., W, be subspaces of V', and for each i = 1,... 1
let W; have basis B; = {wi1, ..., Win, }. Then V is the direct sum of the W; if
and only if the union of bases

r
B = UBi:{wll,...,wlnl,...,wrl,...,wmr}

=1

s a basis for V.

Proof. Suppose that B is a basis for V. Then for any v € V' we may write

v=(anwi + -+ @n Win, ) + -+ (@riwr1 + - + Qrp, Wren,.)
— wl + e + wr

where
Wi = Qi Wil + -+ + Qi Win, € W

and a;; € F. Now let
v=w) + -+ w

be any other expansion of v, where each w, € W;. Using the fact that B; is a
basis for W; we have
w; = bjywit + -+ + bin, Win,

for some set of scalars b;;. This means that we may also write
v = (bllwll + -+ blnlwlnl) +-- (brlwrl + -+ brnrwrnr) .

However, since B is a basis for V', we may equate the coefficients of w;; in these
two expressions for v to obtain a;; = b;; for all 7, j. We have thus proved that
the representation of v is unique, and hence Theorem 1.14 tells us that V is the
direct sum of the W;.
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Now suppose that V is the direct sum of the W,;. This means that any
v € V may be expressed in the unique form v = wy + - - - + w,- where w; € W;
foreachi =1,...,r. Given that B; = {wj1, ..., Wiy, } is a basis for W;, we must
show that B = |JB; is a basis for V. We first note that each w; € W; may be
expanded in terms of the members of B;, and therefore | J B; clearly spans V. Tt
remains to show that the elements of B are linearly independent.

We first write

(Cllwll +-F Clnlwlnl) +--- 4+ (Crlwrl + -+ CrnTwrnT) =0
and note that
CilWi1 + -+ -+ Cin, Win, € Wi

Using the fact that 0+---40 = 0 (where each 0 € W;) along with the uniqueness
of the representation in any direct sum, we see that for each ¢ = 1,...,r we must
have

Ci1Wi1 + *+ +F Cin; Win, = 0.

However, since B; is a basis for W;, this means that ¢;; = 0 for every ¢ and 7,
and hence the elements of B = | B; are linearly independent.

Corollary. If V. =W1 @ --- @ W,, then

dimV = idimm.

i=1

Proof. Obvious from Theorem 1.15. This also follows by induction from Theo-
rem 1.11. |

Exercises

1. Let Wy and W be subspaces of R? defined by W1 = {(z,y,2) 1 x =y = z}
and Wy = {(x,y,2) : @ = 0}. Show that R3 = Wy & Wh.

2. Let W7 be any subspace of a finite-dimensional space V. Prove there exists
a subspace W5 of V' such that V =Wy & Ws.

3. Let Wy, W5 and W3 be subspaces of a vector space V. Show that
(Wl n WQ) + (Wl n Wg) cWin (W2 + Wg)

Give an example in V = R? for which equality does not hold.

4. Let V = F[R] be as in Exercise 1.2.6. Let W, and W_ be the subsets of V'
defined by Wo ={f eV : f(—z) = f(x)} and W_ = {f e V : f(—z) =
—f(x)}. In other words, W, is the subset of all even functions, and W_
is the subset of all odd functions.
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(a) Show that W, and W_ are subspaces of V.
(b) Show that V=W, @ W_ .

5. Let W7 and W; be subspaces of a vector space V.

(a) Show that Wy C Wy + Wy and Wo C W1 + Wha.

(b) Prove that Wy + Ws is the smallest subspace of V' that contains both
W1 and Wy, In other words, if . (W7, Ws) denotes the linear span
of Wy and Wa, show that Wy + Wy = . (W5, Ws). [Hint: Show that
Wi+ Wy C y(Wl,Wg) and y(Wl,Wg) c Wy + Wg.]

6. Let V be a finite-dimensional vector space. For any z € V, we define
Fx ={ax : a € F}. Prove that {z1,22,...,2,} is a basis for V if and
only if V=Fx, ®Fao® - ® Fay.

7. If A and B are vector spaces, show that A + B is the span of AU B.

1.5 Inner Product Spaces

Before proceeding with the general theory of inner products, let us briefly re-
view what the reader should already know from more elementary courses. It is
assumed that the reader is familiar with vectors in R®, and we show that for
any da, b € R? the scalar product (also called the dot product) @ - b may be

written as either
3
i=1

where {a;} and {b;} are the coordinates of @ and b relative to the standard basis
for R3 (see Example 1.7), or as

@-b=|all o] cos
where § = Z(@,b) and

3
lal* =" a:®
i=1

with a similar equation for ||5]|. The symbol | - || is just the vector space gener-
alization of the absolute value of numbers, and will be defined carefully below
(see Example 1.9). For now, just think of ||d|| as meaning the length of the
vector @ in R3.

Just for fun, for the sake of completeness, and to show exactly what these
equations depend on, we prove this as a series of simple lemmas. Our first
lemma is known as the Pythagorean theorem.
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Proof. As shown in the figure below, we draw the line PQ perpendicular to
the hypotenuse ¢ = AB. Note that we can now write ¢ as the sum of the two
parts ¢; = AQ and c; = QB. First observe that AABP is similar to AAPQ
because they are both right triangles and they have the angle 6 in common (so
they must have their third angle the same). Let us denote this similarity by
AABP ~ ANAPQ. If we let this third angle be o = Z(ABP), then we also have
a = Z(APQ), and hence AABP, AAPQ and APBQ are all similar.

A P

Using the fact that AAPQ ~ AABP and APBQ ~ AABP along with
¢ = c1 + ¢y we have

a_? and 27
c a c
and therefore
a? +b?
c=c1+c=
c
from which the lemma follows immediately. |

Our next lemma is known as the law of cosines. This result, together with
Lemma 1.1, shows that for any triangle T" with sides ¢ < a < b, it is true that
a’® 4 b? = ¢? if and only if T is a right triangle.
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we have ¢ = a® + b% — 2abcosb.

Proof. Draw a perpendicular to side b as shown:

oC

By the Pythagorean theorem we have

? = h? + (b—acosf)?
= (asin®)? + (b — acosh)?
= a?sin? 0 + b — 2abcosf + a® cos 6

=a?+b% — 2abcosh

where we used sin? # + cos? § = 1 which follows directly from Lemma 1.1 with
a = ¢(sinf@) and b = c(cosb). |

We now define the scalar product a - b for any d, beR3 by

3
i=1

where @ = (a1, as,a3) and b= (b1, b2,b3). Tt is easy to see that

3 3
i (b+0) =) aibi+c)=> (abi+aic)=a b+a-c
i=1 i=1

and similarly, it is easy to show that

—

(G+b)-¢=d-c+b-¢

Sl

and
(k@) -b=k(@-b)

where k € R.
From the figure below, we see the Pythagorean theorem also shows us that

3
lal* = aia; =d-a.
=1
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ISI8

x1

This is the justification for writing ||@|| to mean the length of the vector @ € R3.
Noting that any two vectors (with a common origin) in R3 lie in a plane, we
have the following well-known formula for the dot product.

Lemma 1.3. For any d, b € R3 we have
@-b=abcosb

where a = |||, b = ||b]| and 6 = £(@,b) .

By the law of cosines we have ¢? = a? + b®> — 2abcos @, while on the other hand
F=a-b*>=@G—-b)-(@G—b)=0a’>+b*>—2a-b.

Therefore we see that @ - b = ab cos . |

Another more intuitive way to see that @ -b = abcosf is the following. Orient

the coordinate system so that we have the vectors @ and b in the xy-plane as
shown below.
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From this figure we see that @ = (a,0,0) and b = (bcos6, bsin6,0). But then
ab= a1b1 +agbs+aszbs = abcos B as before. Since neither the length of a vector
nor the angle between two vectors depends on the orientation of the coordinate
system, this result must be true in general.

The main reason that we went through all of this is to motivate the gen-
eralization to arbitrary vector spaces. For example, if u,v € R™, then to say

that
n
u-v = Z U;V;
i=1

makes sense, whereas to say that u-v = ||u|| [|v]| cos 0 leaves one wondering just
what the “angle” € means in higher dimensions. In fact, this will be used to
define the angle 6.

We now proceed to define a general scalar (or inner) product (u, v) of vectors
u,v € V. Throughout this section, we let V' be a vector space over either the
real field R or the complex field C. By way of motivation, we will want the inner
product (-,-) applied to a single vector v € V to yield the length (or norm) of
v, so that [[v]|*> = (v,v). But |jv|| must be a real number even if the field we
are working with is C. Noting that for any complex number z € C we have
|z]* = z2*, we are led to make the following definition.

Let V be a vector space over F (where F is either R or C). By an inner
product on V (sometimes called the Hermitian inner product), we mean a
mapping (-,-) : V. x V — F such that for all u,v,w € V and a,b € F we have

(IP1) {au + bv,w) = a*(u, w) + b* (v, w);
(1P2) (u,v) = (v, u)";
(IP3) (u,u) >0 and (u u) = 0 if and only if u = 0.

Using these properties, we also see that

(u, av + bw) = {av 4+ bw, u)*

= (a™(v,u) + b"(w, u))*
= a(u,v) + blu, w)

and hence, for the sake of reference, we call this
(IP1") (u,av + bw) = alu,v) + b{u, w).

(The reader should be aware that instead of (au,v) = a*(u,v), many authors
define (au,v) = a(u,v) and (u,av) = a*(u,v). This is particularly true in
mathematics texts, whereas we have chosen the convention used by most physics
texts. Of course, this has no effect on any of our results.)

Another remark that is worth pointing out is this. Our condition (IP3), that
(u,uy > 0 and (u,u) = 0 if and only if v = 0 is sometimes called a positive
definite inner product. If condition (IP3) is dropped entirely, we obtain an
indefinite inner product, but this is rarely used (at least by physicists and
engineers). However, if we replace (IP3) by the weaker requirement
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(IP3") (u,v) =0for allv € V if and only if u =0

then we obtain what is called a nondegenerate inner product. For example,
the Minkowski space of special relativity has the property that any lightlike
vector v # 0 still has the property that (v,v) = 0.

A space V together with an inner product is called an inner product space.
If V is an inner product space over the field C, then V is called a complex inner
product space, and if the field is R, then V is called a real inner product space.
A complex inner product space is frequently called a unitary space, and a real
inner product space is frequently called a Euclidean space. Note that in the
case of a real space, the complex conjugates in (IP1) and (IP2) are superfluous.

By (IP2) we have (u,u) € R so that we may define the length (or norm)
of u to be the nonnegative real number

ull = (u,u)t/2.

If ||u|| = 1, then u is said to be a unit vector. If ||v|| # 0, then we can normalize
v by setting u = v/||v||. One sometimes writes ¢ to mean the unit vector in the
direction of v, i.e., v = ||v|| ©.

Example 1.9. Let X = (21,...,2,) and Y = (y1,...,Yyn) be vectors in C™.
We define

1=1

and leave it to the reader to show that this satisfies (IP1)—(IP3). In the case of
the space R™, we have (X,Y) = X - Y = > z;y;. This inner product is called
the standard inner product in C" (or R™).

We also see that if X,Y € R” then

IX-YP=(X-Y,X-Y)=> (z:i —w)*

=1

Thus || X — Y| is indeed just the distance between the points X = (21,...,2)
and Y = (y1,...,yn) that we would expect by applying the Pythagorean the-
orem to points in R™. In particular, || X is simply the length of the vector
X.

It is now easy to see why we defined the inner product as we did. For
example, consider simply the space C3. Then with respect to the standard
inner product on C3, the vector X = (1,4,0) will have norm || X|* = (X, X) =
1+ 1+ 0 = 2, while if we had used the expression corresponding to the standard
inner product on R?, we would have found || X||*> =1 — 1+ 0 = 0 even though
X #0.
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Example 1.10. Let V' be the vector space of continuous complex-valued func-
tions defined on the real interval [a,b]. We may define an inner product on V'
by

b
(19) = [ 1 @) do

for all f,g € V. It should be obvious that this satisfies the three required
properties of an inner product.

In Appendix A (see Theorem A.7) we proved an elementary result that
essentially entailed taking the inner product of vectors in C"*. We now generalize
this to an important result known as the Cauchy-Schwartz inequality.

Theorem 1.16 (Cauchy-Schwartz). Let V be an inner product space. Then
for any u,v € V. we have
|(w, )| < [lull o] -

Proof. If either u or v is zero the theorem is trivially true. We therefore assume
that v # 0 and v # 0. Then, for any real number ¢, we have (using (IP2) and

the fact that |z|° = z2*)
0 < |Jv — c{u, v)ul?
= (v — c{u, v)u,v — c{u, viu)
= (v,v) — c(u, v) (v, u) — clu, v)*(u,v) + (u, v)* (u, v)(u, u)

= J[ol|* = 2¢|(u, 0)]* + | (u, 0)* ul®

Now let ¢ = 1/ |Ju/|* to obtain

2
o< o - L2
[
or
[0} < Ilul® o]
Taking the square root proves the theorem. |

We have seen that an inner product may be used to define a norm on V.
In fact, the norm has several properties that may be used to define a normed
vector space axiomatically as we see from the next theorem.

Theorem 1.17. The norm in an inner product space V has the following prop-
erties for all w,v € V and k € F:
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(N1) |lul] > 0 and ||u|| = 0 if and only if u = 0.
(N2) ||kull = [E] [|ul|.
(N3) lu+ ol <]l + [jof|-

Proof. Since |ju|| = (u,u)/?, (N1) follows from (IP3). Next, we see that
kull* = (o, ku) = (k[ [Jul|®
and hence taking the square root yields (N2). Finally, using Theorem 1.16 and
the fact that z + 2* = 2Rez < 2|z| for any z € C, we have
lu+ ] = (u+v,u+v)

= (u,u) + {(u,v) + (v, u) + (v, v)

= lull® + (u, v) + (w,v)* + |||

< ) + 2 [, v)] + [Jo]?

< Jull* + 2 Jull o] + o]

= (llull + o).
Taking the square root yields (N3). |

We note that property (N3) is frequently called the triangle inequality
because in two or three dimensions, it simply says that the sum of two sides of
a triangle is greater than the third. Furthermore, we note that properties (N1)—
(N3) may be used to define a normed vector space. In other words, a normed
vector space is defined to be a vector space V together with a mapping || - || :
V — R that obeys properties (N1)-(N3). While a normed space V' does not in
general have an inner product defined on it, the existence of an inner product
leads in a natural way (i.e., by Theorem 1.17) to the existence of a norm on V.

Example 1.11. Let us prove a simple but useful result dealing with the norm
in any normed space V. From the properties of the norm, we see that for any
u,v € V we have

l[ull = llu = v+ || < [Ju =] + [[v]|

and
o]l = llv —u+ul < [lu—2vf +ul.

Rearranging each of these yields

[Jull = llvll < flu =]l
and

ol = llull < flu -2

This shows that
[l = ol | < Jlu = o]
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Example 1.12. Consider the space V of Example 1.10 and the associated
inner product (f, g). Applying the Cauchy-Schwartz inequality (Theorem 1.16)
we have

< l/b \f(x)\de] - l/b \g(x)\de] 1/2.

From property (N3) in Theorem 1.17 we see that [|f+ gl < [|f]| + ||g]| or
(f +g,f+ )2 < (f, /)% + (g,9)'/? which becomes
5 , 1/2
/ }g($)| dx .

b 1/2 b
[/ |f<w>+g<w>>2dx] s[/ f(a) o

The reader might try and prove either of these directly from the definition of the
integral if he or she wants to gain an appreciation of the power of the axiomatic
approach to inner products.

/a ' p(@)(z) do

1/2
+

Finally, let us finish our generalization of Lemmas 1.1-1.3. If we repeat the
proof of Lemma 1.3 using the inner product and norm notations, we find that
for any u,v € R we have (u,v) = |Jul| ||v]| cos§. Now let V be any real vector
space. We define the angle 6 between two nonzero vectors u,v € V by

Note that cosf < 1 by Theorem 1.16 so this definition makes sense. We say
that u is orthogonal (or perpendicular) to v if (u,v) = 0. If v and v are
orthogonal, we often write this as ulwv. From the basic properties of the inner
product, it then follows that (v, u) = (u,v)* = 0* = 0 so that v is orthogonal to
u also. Thus ulwv if and only if cos® = 0. While cos# is only defined in a real
vector space, our definition of orthogonality is valid in any space V over F.

Exercises

1. Let z = (x1,72) and y = (y1,92) be vectors in R?, and define the mapping
(-,) 1 R? = R by (x,y) = m1y1 — T1y2 — T2y1 + 3T2y2. Show this defines
an inner product on R2.

2. Let z = (3,4) € R?, and evaluate ||z|| with respect to the norm induced
by:

(a) The standard inner product on R
(b) The inner product defined in the previous exercise.

3. Let V be an inner product space, and let z,y € V.
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(a) Prove the parallelogram law:
2 2 2 2
[l +yll” + llz = ylI” = 2|« + 2 ][y]"-

(The geometric meaning of this equation is that the sum of the squares
of the diagonals of a parallelogram is equal to the sum of the squares
of the sides.)

(b) Prove the Pythagorean theorem:

2 2 2 .
e +yll” = ll=lI” + lyll”  if zLy.

. Find a unit vector orthogonal to the vectors x = (1,1,2) and y = (0,1, 3)

in R3.

. Let u = (21, 22) and v = (w1, ws) be vectors in C2, and define the mapping

<'7'>:(C2_>Rby
(u,v) = z1wi + (1 +i)z1w3 + (1 — @) z0w] + 3z0w5.

Show this defines an inner product on C2.

. Let w = (1 —2i,2 + 3i) € C? and evaluate ||u|| with respect to the norm

induced by:

(a) The standard norm on C2.
(b) The inner product defined in the previous exercise.

. Let V be an inner product space. Verify the following polar form iden-

tities:

(a) If V is a real space and z,y € V, then
1 2 2
(.y) = 7z +yl” = lle = vll).
(b) If V is a complex space and z,y € V, then

(llz +yI* =l = yl*) + i( iz + ylI* — lliz — y[|*)

RNy

<Iay> -

(If we were using instead the inner product defined by (az,y) =
a(x,y), then the last two terms in this equation would read ||z £ iy||.)

. Let V = C|[0,1] be the space of continuous real-valued functions defined

on the interval [0, 1]. Define an inner product on C|0, 1] by

1
(f9) = /0 f(t)g(t)dt.

(a) Verify that this does indeed define an inner product on V.
(b) Evaluate || f| where f =t> —2t+3€ V.
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9. Given a vector space V', we define a mapping d: V x V — R by d(z,y) =
[l =y for all z,y € V. Show that:

(a) d(z,y) >0 and d(z,y) = 0 if and only if z = y.

(b) d(z,y) = d(y, z).
(¢) d(z,z) < d(z,y) + d(y, z) (triangle inequality).

The number d(z,y) is called the distance from z to y, and the mapping d
is called a metric on V. Any arbitrary set S on which we have defined a
function d : S x S — R satisfying these three properties is called a metric
space.

10. Let {e1,...,en} be an orthonormal basis for a complex space V', and let
x € V be arbitrary. Show

(a) 2 = Y0, eifes,a) -
(b) [l = S, [(en )] .

11. Show equality holds in the Cauchy-Schwartz inequality if and only if one
vector is proportional to the other.

1.6 Orthogonal Sets

If a vector space V is equipped with an inner product, then we may define a
subspace of V' that will turn out to be extremely useful in a wide variety of
applications. Let W be any subset of such a vector space V. (Note that W
need not be a subspace of V.) We define the orthogonal complement of W
to be the set W+ given by

Wt ={veV:(v,w)=0 forallwe W}.

Theorem 1.18. Let W be any subset of a vector space V. Then W+ is a
subspace of V.
Proof. We first note that 0 € W+ since for any v € V we have

(0,v) = (0v,v) = 0(v,v) = 0.

To finish the proof, we simply note that for any u,v € W+, for any scalars
a,b € F, and for every w € W we have

(au + bv,w) = a*(u, w) + b*(v,w) =a*0+b"0=0

so that au + bv € W+, |
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Consider the space R with the usual Cartesian coordinate system (x,y, 2).
If we let W = R? be the zy-plane, then W' = R! is just the z-axis since the
standard inner product on R? shows that any v € R?® of the form (0,0, c¢) is
orthogonal to any w € R? of the form (a,b,0). Thus, in this case anyway, we
see that W @ W+ = R3. We will shortly prove that W @ W+ = V for any inner
product space V and subspace W C V. Before we can do this however, we must
first discuss orthonormal sets of vectors.

A set {v;} of nonzero vectors in a space V is said to be an orthogonal set
(or to be mutually orthogonal) if (v;,v;) = 0 for ¢ # j. If in addition, each
v; 1s a unit vector, then the set {v;} is said to be an orthonormal set and we
write

(vi,vj) = dij

where the very useful symbol J;; (called the Kronecker delta) is defined by
R
0 ifs#j.

Theorem 1.19. Any orthonormal set of vectors {v;} is linearly independent.

Proof. If Y. a;v; = 0 for some set of scalars {a;}, then

0= <Uj30> - <’Uj,ZCLi’Ui> = Zai@j,vi) = Zaidij = aj

3
so that a; = 0 for each j, and hence {v;} is linearly independent. |

Note that in the proof of Theorem 1.19 it was not really necessary that each
v; be a unit vector. Any orthogonal set would work just as well.

Theorem 1.20. If {v1,v,...,v,} is an orthonormal set in' V and if w € V is
arbitrary, then the vector

U=w— Z(vi,w)vi
i

18 orthogonal to each of the v;.

Proof. We simply compute (v, u):

(vj,u) = <Uj,w - Z(vi,w>vi>
= <vjvw> - Z<vivw><vjvvi>

i
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= (vj,w) =Y (vi,w)d5
i
= (vjw) — (vj,w) =0. i
The numbers ¢; = (v;, w) are frequently called the Fourier coefficients of
w with respect to v;. In fact, we leave it as an exercise for the reader to show
that the expression ||w — ), a;v;|| achieves its minimum precisely when a; = ¢;
(see Exercise 1.6.4). Furthermore, we also leave it to the reader (see Exercise
1.6.5) to show that

n

2 2
D leil” < lw]

i=1
which is called Bessel’s inequality.

As we remarked earlier, most mathematics texts write (u,av) = a*(u,v)
rather than (u,av) = a(u,v). In this case, Theorem 1.20 would be changed to

read that the vector
u=w-— Z(w,vﬁvi
i

is orthogonal to each v;.

Example 1.13. The simplest and best known example of an orthonormal set
is the set {e;} of standard basis vectors in R™. Thus

€1 = (1,0,0,...,0)
€2 = (0,1,0,...,0)

en = (0,0,0,...,1)

and clearly
(ei€5) = €i - €5 = bij

since for any X = (z1,...,2,) and Y = (y1,...,yn) in R™, we have
(X,Y)=XY=) zy.
i=1

(It would perhaps be better to write the unit vectors as é; rather than e;, but
this will generally not cause any confusion.)

Example 1.14. Let V' be the space of continuous complex-valued functions
defined on the real interval [—m, 7]. As in Example 1.10, we define

(0= [ F@o)d



40 CHAPTER 1. VECTOR SPACES

for all f,g € V. We show that the set of functions

1/2
1 inx
fn - (ﬂ) €

for n =1,2,... forms an orthonormal set.
If m = n, then

L™ s 1 (7
msyJn) = \JnsJn) = 5= TnEetnd = — = 1,
(o fod = ) = 5= [ e do= oo [ ao

If m # n, then we have

1 [ : [ .
<fm7 fn> _ _/ e~ imT inT 1o ez(n—m)m dx

2 J_, 27 —

1 ei(n—m)ac ™

B 27 i(n — m)

__sin(n —m)m ;
w(n —m) 0

since sinnm = 0 for any integer n. (Note that we also used the fact that

6 —
sin =

which follows from the Euler formula mentioned in Appendix A.) Therefore

(fms fn) = Omn. That the set {f,} is orthonormal is of great use in the theory

of Fourier series.

We now wish to show that every finite-dimensional vector space with an inner
product has an orthonormal basis. The proof is based on the famous Gram-
Schmidt orthogonalization process, the precise statement of which we present
as a corollary following the proof.

Theorem 1.21. Let V' be a finite-dimensional inner product space. Then there
exists an orthonormal set of vectors that forms a basis for V.

Proof. Let dimV = n and let {uq,...,u,} be a basis for V. We will construct

a new basis {ws,...,w,} such that (w;,w;) = d;;. To begin, we choose
Uy
wy = —
[ |
so that

Jwi|” = (w1, wi) = (ur/ furll,ua/ fJuall) = (ug,ua)/ [fus?
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2 2
= [luall™/ lud]” =1

and hence w; is a unit vector. We now take us and subtract off its “projection”
along wi. This will leave us with a new vector vy that is orthogonal to w;.
Thus, we define

vy = ug — (wy, uz)wi
so that
(wy,v2) = (w1, uz) — (w1, uz)(wy,w1) =0
(this also follows from Theorem 1.20). If we let
V2

RIEA]

w2

then {wy,ws} is an orthonormal set . (That vy # 0 will be shown below.)
We now go to ug and subtract off its projection along wy and ws. In other
words, we define
v3 = uz — (we, uz)wa — (w1, uz)wi
so that (wy,v3) = (wa,v3) = 0. Choosing
U3

sl

w3

we now have an orthonormal set {wy, wa, w3}.

It is now clear that given an orthonormal set {wy, ..., w;}, we let
k
k1 = U1 — Y (wy, upp)w;
i=1
so that v41 is orthogonal to wy, ..., w; (Theorem 1.20), and hence we define
Vk+1
Wey1 = —-
[y

It should now be obvious that we can construct an orthonormal set of n vectors
from our original basis of n vectors. To finish the proof, we need only show that
w1, ..., w, are linearly independent.

To see this, note first that since u; and us are linearly independent, w; and
us must also be linearly independent, and hence v # 0 by definition of linear
independence. Thus ws exists and {wy, w2} is linearly independent by Theorem
1.19. Next, {w1, we, us} is linearly independent since w; and wsy are in the linear
span of u; and uy. Hence vz # 0 so that ws exists, and Theorem 1.19 again
shows that {w,ws,ws} is linearly independent.

In general then, if {wy,...,w;} is linearly independent, it follows that the
set {wy,...,w, ups1} is also independent since {ws,...,wi} is in the linear
span of {uy,...,ur}. Hence vgy1 # 0 and w1 exists. Then {wq, ..., w1} is
linearly independent by Theorem 1.19. Thus {ws,...,w,} forms a basis for V,
and <wi,wj> = 51] I
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Corollary (Gram-Schmidt process). Let {ui,...,u,} be a linearly inde-
pendent set of vectors in an inner product space V. Then there exists a set of
orthonormal vectors wy, ..., w, € V such that the linear span of {uy,...,ug} is
equal to the linear span of {w1,...,wi} for each k =1,...,n.

Proof. This corollary follows by a careful inspection of the proof of Theorem
1.21. |

We emphasize that the Gram-Schmidt algorithm (the “orthogonalization
process” of Theorem 1.21) as such applies to any inner product space, and is
not restricted to only finite-dimensional spaces.

Example 1.15. Consider the following basis vectors for R3:
up = (3,0,4) us = (=1,0,7) usz = (2,9,11).

Let us apply the Gram-Schmidt process (with the standard inner product on
R3) to obtain a new orthonormal basis for R3.
Since ||u1|| = v/9 + 16 = 5, we define

wy, = ’LL1/5 = (3/5,0,4/5)
Next, using (wy,uz) = —3/5+ 28/5 =5 we let
va = (=1,0,7) — (3,0,4) = (4,0, 3).

Since ||vz|| = 5, we have
we = (—4/5,0,3/5).

Finally, using (w1, us) = 10 and (ws, u3) = 5 we let
vs = (2,9,11) — (—4,0,3) — (6,0,8) = (0,9,0)
and hence, since ||vz]] = 9, our third basis vector becomes
ws = (0,1,0).

We leave it to the reader to show that {w;,ws, w3} does indeed form an or-
thonormal basis for R3.

We are now ready to prove our earlier assertion. Note that here we require
W to be a subspace of V.
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Theorem 1.22. Let W be a subspace of a finite-dimensional inner product
space V. Then V=W & W=,

Proof. By Theorem 1.9, W is finite-dimensional. Therefore, if we choose a basis
{v1,...,v;} for W, it may be extended to a basis {vy,...,v,} for V (Theorem
1.10). Applying Theorem 1.21 to this basis, we construct a new orthonormal
basis {u1,...,un} for V- where

K
U =Y anv;
j=1

for » = 1,...,n and some coefficients a,; (determined by the Gram-Schmidt
process). In particular, we see that wui,...,u; are all in W, and hence they
form an orthonormal basis for W.

Since {uy,...,u,} are orthonormal, it follows that ug41,...,u, are in wt

(since (uj,uj) =0 for all ¢ <k and any j = k+1,...,n). Therefore, given any
x €V we have
r=aiuy + -+ apun

where
au + -+ apup € W

and

Ak+1Uk+1 + -+ -+ apuy, € W,
This means that V = W + W+, and we must still show that W N W+ = {0}.
But if y € W N W, then (y,y) = 0 since y € W+ implies that ¥ is orthogonal

to any vector in W, and in particular, y € W. Hence y = 0 by (IP3), and it
therefore follows that W N W+ = {0}.

Corollary. IfV is finite-dimensional and W is a subspace of V, then (W+)+ =
wW.

Proof. Given any w € W we have (w,v) = 0 for all v € W+, This implies that
w € (W)L and hence W C (W)L, By Theorem 1.22, V = W @ W+ and
hence

dimV = dim W + dim W

(Theorem 1.11). But W+ is also a subspace of V, and hence V = W+ @ (W+)+
(Theorem 1.22) which implies

dim V' = dim W+ + dim(W+)*.

Therefore, comparing these last two equations shows that dim W = dim(W+)*.
This result together with W C (W)L implies that W = (W)L, |
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Finally, note that if {e;} is an orthonormal basis for V', then any = € V may
be written as = . x;e; where

<6j,:E> = <ejazxiei> = Z$i<ej,€i> = ZI“SZJ =x;.

Therefore we may write

x = Z(ei,x)ei

K3
which is a very useful expression.

We will have much more to say about inner product spaces after we have
treated linear transformations in detail. For the rest of this book, unless explic-
itly stated otherwise, all vector spaces will be assumed to be finite-dimensional.
In addition, the specific scalar field F will generally not be mentioned, but it is
to be understood that all scalars are elements of F.

Exercises

1. Let W be a subset of a vector space V. Prove the following:

(a) 0t =V and V+ = 0.
(b) Wnw+t ={0}.
(c) Wy C Wy implies W3- € Wit.

2. Let U and W be subspaces of a finite-dimensional inner product space V.
Prove the following:

(a) (U+W)t=Utnw.
b)) (UNW)+ =U++W,

3. Let {e1,...,e,} be an orthonormal basis for an arbitrary inner product
space V. If u =), uje; and v = ), v;je; are any vectors in V', show that

n
(u,v) = Z ulv;
i=1

(this is just the generalization of Example 1.9).

4. Suppose {eq,...,e,} is an orthonormal set in a vector space V', and x is
any element of V. Show that the expression

n
xr — E A€l
k=1

achieves its minimum value when each of the scalars ay is equal to the
Fourier coefficient ¢, = (eg,x). [Hint: Using Theorem 1.20 and the
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Pythagorean theorem (see Exercise 1.5.3), add and subtract the term
> i ckex in the above expression to conclude that

n 2 n 2
xr — g crerll < ||l — g A€k
k=1 k=1
for any set of scalars ay.|
. Let {ei,...,e,} be an orthonormal set in an inner product space V', and

let ¢, = (ex,x) be the Fourier coefficient of x € V with respect to e.
Prove Bessel’s inequality:

n
D lel” < =)
k=1

[Hint: Use the definition of the norm along with the obvious fact that
0 < llo = i cnenll”]

. Find an orthonormal basis (relative to the standard inner product) for the

following subspaces:

(a) The subspace W of C3 spanned by the vectors u; = (1,4,0) and
Ug = (1,2, 1-— Z)

(b) The subspace W of R* spanned by u; = (1,1,0,0), ug = (0,1,1,0)
and uz = (0,0,1,1).

. Consider the space R? with the standard inner product.

(a) Convert the vectors u; = (1,0, 1), us = (1,0, —1) and uz = (0,3,4) to
an orthonormal basis {ey, e, e3} of R3.

(b) Write the components of an arbitrary vector z = (21,22, 73) € R? in
terms of the basis {e;}.

. Let V be the space of all polynomials of degree < 3 defined on the interval

[—1,1]. Define an inner product on V' by

1
(fg) = / Falt)dr

Find an orthonormal basis for V' generated by the functions {1, z, 2%, 23}.

. Let V and W be isomorphic inner product spaces under the vector space

homomorphism ¢ : V- — W, and assume that ¢ has the additional prop-
erty that

[o(2) = oIl = llz = yll-

Such a ¢ is called an isometry, and V and W are said to be isometric
spaces. (We also note that the norm on the left side of this equation is in
W, while the norm on the right side is in V. We shall rarely distinguish
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between norms in different spaces unless there is some possible ambiguity.)

Let V have orthonormal basis {v1,...,v,} so that any z € V may be
written as x = Y a;v;. Prove that the mapping ¢ : V — R"™ defined by
¢(z) = (z1,...,zy) is an isometry of V onto R™ (with the standard inner
product).

Let {e1, €2, e3} be an orthonormal basis for R3, and let {u1, u2, u3} be three
mutually orthonormal vectors in R3. Let u)’ denote the ith component
of uy with respect to the basis {e;}. Prove the completeness relation

3
E u,\lu,\J = 5ij~
A=1

Let W be a finite-dimensional subspace of a possibly infinite-dimensional
inner product space V. Prove that V.= W@ W=, [Hint: Let {wy, ..., wy}
be an orthonormal basis for W, and for any x € V define

k
T = Z(wi, T)w;

i=1

and x5 = x— ;. Show that z1 +x2 € W+ W+, and that WNW+ = {0} ]



Chapter 2

Linear Equations and
Matrices

In this chapter we introduce matrices via the theory of simultaneous linear
equations. This method has the advantage of leading in a natural way to the
concept of the reduced row echelon form of a matrix. In addition, we will
formulate some of the basic results dealing with the existence and uniqueness
of systems of linear equations. In Chapter 4 we will arrive at the same matrix
algebra from the viewpoint of linear transformations.

In order to introduce the idea of simultaneous linear equations, suppose we
have two lines in the plane R?, and we ask whether or not they happen to
intersect anywhere. To be specific, say the lines have the equations

To = —(1/2)%1 + 5/2

T = xr — 1/2 (21)
If these lines intersect, then there exists a point (z1,72) € R? that satisfies both
of these equations, and hence we would like to solve the pair of equations

$1—|—2ZC2: 5

Xr1 — T = 1/2 (22)

In this particular case, the easiest way to solve these is to use equation (2.1)
directly and simply equate —(1/2)z1 4+ 5/2 = 21 — 1/2 to obtain x; = 2 and
hence xo = 21 —1/2 = 3/2. But a more general approach is to use equation (2.2)
as follows. Multiply the first of equations (2.2) by —1 and add to the second to
obtain a new second equation —3x2 = —9/2. This again yields 3 = 3/2 and
hence also £1 =5 — 29 = 2.

We now turn our attention to generalizing this situation to more than two
variables. This leads to systems of m linear equations in n unknowns.

47
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2.1 Systems of Linear Equations

Let aq,...,a,,y be elements of a field F, and let z1, ..., z, be unknowns (also
called variables or indeterminates). Then an equation of the form

G1I1+"'+an$n:y

is called a linear equation in n unknowns (over F). The scalars a; are
called the coefficients of the unknowns, and y is called the constant term of
the equation. A vector (ci,...,¢,) € F™ is called a solution vector of this
equation if and only if
alcl+"'+ancn:y

in which case we say that (¢, ..., c,) satisfies the equation. The set of all such
solutions is called the solution set (or the general solution).

Now consider the following system of m linear equations in n un-
knowns:

1171 + -+ + Q1Tn =1
2121 + -+ + A2pnTn = Y2
Am121 + - + AmnTyn = Ym

We abbreviate this system by

n
E Qi Tj = Yi, Z:L,m
J=1

If we let S; denote the solution set of the equation Zj a;;jr; = y; for each 1,
then the solution set S of the system is given by the intersection S = (15;. In
other words, if (c¢1,...,¢,) € F™ is a solution of the system of equations, then
it is a solution of each of the m equations in the system.

Example 2.1. Consider this system of two equations in three unknowns over

the real field R:
201 — 322+ 3= 6
T + dxg — 223 =12

The vector (3,1,3) € R? is not a solution of this system because
2(3) —3(1) +3 =6

while
34+5(1)—2(3) =2 #12.

However, the vector (5,1, —1) € R3 is a solution since
2(5) —3(1)+(-1)=6

and
54+5(1) —2(-1) =12.
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Associated with a system of linear equations are two rectangular arrays of
elements of F that turn out to be of great theoretical as well as practical sig-
nificance. For the system ) a;;z; = y;, we define the matrix of coefficients
A as the array

aii @12 A1n

a1 @22 A2n
A= .

Am1 Am2 et Amn

a11 a2 a1n | Y1

a1 @22 A2n Y2
aug A =

Am1 Am?2 e Amn | Yn

In general, we will use the term matrix to denote any array such as the
array A shown above. This matrix has m rows and n columns, and hence is
referred to as an m X n matrix, or a matrix of size m x n. By convention, an
element a;; € F of A is labeled with the first index referring to the row and the
second index referring to the column. The scalar a;; is usually called the i, jth
entry (or element) of the matrix A. We will frequently denote the matrix A
by the symbol (a;;).

Before proceeding with the general theory, let us give a specific example
demonstrating how to solve a system of linear equations.

Example 2.2. Let us attempt to solve the following system of linear equations:

2x1 + xo —2x3=-3
r1 —3x3+ 3= 8
41:1 — T2 — 21:3 = 3

That our approach is valid in general will be proved in our first theorem below.
Multiply the first equation by 1/2 to get the coefficient of 21 equal to 1:

x1+ (1/2)zg — x3=-3/2
1 — 3xe + x3= 8
4(E1 — o — 21:3 = 3

Multiply this first equation by —1 and add it to the second to obtain a new
second equation, then multiply this first equation by —4 and add it to the third
to obtain a new third equation:

1+ (1/2)xe — x3=-3/2
—(7/2)a2 + 223 = 19/2
—3x5 + 213 = 9
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Multiply this second by —2/7 to get the coefficient of 25 equal to 1, then multiply
this new second equation by 3 and add to the third:

x1 + (1/2)xs — x3= —3/2
o — (4/7)(E3 = —19/7
(2/T)xs= 6/7

Multiply the third by 7/2, then add 4/7 times this new equation to the second:

x1+ (1/2)xg — x3 =—3/2
T2 = -1
I3 — 3

Add the third equation to the first, then add —1/2 times the second equation
to the new first to obtain

1 = 2
:L'Q:—l
I3 — 3

This is now a solution of our system of equations. While this system could have
been solved in a more direct manner, we wanted to illustrate the systematic
approach that will be needed below.

Two systems of linear equations are said to be equivalent if they have equal
solution sets. That each successive system of equations in Example 2.2 is indeed
equivalent to the previous system is guaranteed by the following theorem. Note
that this theorem is nothing more than a formalization of the above example.

Theorem 2.1. The system of two equations in n unknowns over a field F

01121 + a12%2 + -+ + 1Ty = b1 (2.3)

21T + G22%2 + -+ + A2,Ty = b ’
with a1y # 0 is equivalent to the system

a11%1 + a12%2 + -+ + 1Ty = b1 (2.4)

ahoy + -+ + ab, x, = bl ’
in which
ah; = G1102; — 2101,

foreachi=1,...,n and

/
b2 = a11b2 — a1b;
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Proof. Let us define
Li = Z Qi T4
j=1

so that equations (2.3) may be written as the system

L= bl
Lo = by (2.5)
while equations (2.4) are just
2.6
—a1 Ly +ainlo = —azb + ai1bs (26)
If (x1,...,2,) € F™ is a solution of equations (2.5), then the two equations

a1 Ly = az1by
a11La = an1b2

and hence also
—ao1 L1+ a11Le = —az1b1 + an1b

are all true equations. Therefore every solution of equations (2.5) also satisfies
equations (2.6).
Conversely, suppose that we have a solution (z1,...,2,) to the system (2.6).
Then clearly
ao1 L1 = a1 by

is a true equation. Hence, adding this to the second of equations (2.6) gives us
az1Ly + (—az1 L1 + a11Lo) = ag1by + (—a21b1 + a11b2)
or
ai1Lo = aj1bs.

Thus Lo = bs is also a true equation. This shows that any solution of equations
(2.6) is a solution of equations (2.5) also. |

It should now be reasonably clear why we defined the matrix aug A — we
want to perform the above operations on aug A to end up (if possible) with a
matrix of the form

T 0 0 C1
0 €To 0 Co
0 O Ty | Cn

From here we see that the solution to our system is simply z; = ¢;.

We point out that in the proof of Theorem 2.1 (as well as in Example 2.2),
it was only the coefficients themselves that were of any direct use to us. The
unknowns xz; were never actually used in any of the manipulations. This is the
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reason that we defined the matrix of coefficients (a;;). What we now proceed
to do is to generalize the above method of solving systems of equations in a
manner that utilizes this matrix explicitly.

Exercises

1. For each of the following systems of equations, find a solution if it exists:

(a) x+2y—3z=-1 (b) 22+ y—22=10
3r— y+2z= 7 3r+2y+2z= 1
Sr 43y —4dz= 2 Sr+4y+3z= 4

(¢) z+2y—3z= 6
20 — y+4z= 2
dr+ 3y —2z2=14

2. Determine whether or not the each of the following two systems is equiv-
alent (over C):

(a) z—y=0 and 3x4+y=0

20 +y=0 r+y=0
(b) -+ y+ 4z=0 and x - 2=0
z+ 3y + 8z2=0 y+32=0

(1/2)z+ y+(5/2)z=0

(€) 2z 4+ (—1+4)y+ t=0
3y — 2iz+5t=0
and

(14+1i/2)x+ 8y—iz— t=0
(2/3)x — (1/2)y+ z+Tt=0

2.2 Elementary Row Operations

The important point to realize in Example 2.2 is that we solved a system of
linear equations by performing some combination of the following operations:

(a) Change the order in which the equations are written.

(b) Multiply each term in an equation by a nonzero scalar.

(¢) Multiply one equation by a nonzero scalar and then add this new equa-
tion to another equation in the system.

Note that (a) was not used in Example 2.2, but it would have been necessary if
the coefficient of x; in the first equation had been 0. The reason for this is that
we want the equations put into echelon form as defined below.

We now see how to use the matrix aug A as a tool in solving a system of
linear equations. In particular, we define the following so-called elementary
row operations (or transformations) as applied to the augmented matrix:
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() Interchange two rows.
(8) Multiply one row by a nonzero scalar.
(v) Add a scalar multiple of one row to another.

It should be clear that operations () and (3) have no effect on the solution set
of the system and, in view of Theorem 2.1, that operation () also has no effect.

The next two examples show what happens both in the case where there is
no solution to a system of linear equations, and in the case of an infinite number
of solutions. In performing these operations on a matrix, we will let R; denote
the ith row. We leave it to the reader to repeat Example 2.2 using this notation.

Example 2.3. Consider this system of linear equations over the field R:

T+3y+2z2="7
2r4+ y— z=5

—x+2y+3z2=4
The augmented matrix is
1 3 2|7
2 1 —-115
-1 2 3|4

and the reduction proceeds as follows.
We first perform the following elementary row operations:

1 3 2 7
RQ — 2R1 — 0 -5 —=5|-9
Rs+ Ri— |0 5 5| 11

Now, using this matrix, we obtain

It is clear that the equation 0z = 2 has no solution, and hence this system has
no solution.

Example 2.4. Let us solve the following system over the field R:

T, — 2x9 + 223 — x4y = —14
3r1 + 229 — x3+2x4= 17
221 +3x2 — x3— 4= 18

—21,'1 =F 51!2 — 3(E3 — 3(E4 = 26
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We have the matrix aug A given by

1 =2 2 —1|-14]
3 2 =l 2 17
2 3 -1 -1 18
=2 5 =3 =3 26

and hence we obtain the sequence

1 =2 2 —-1|-14
Ry —3R1— | 0 8§ =7 5 99
R3s—2R;— | 0 7T =5 1 46
Ry +2R — | 0 1 1 -5] =2
(1 -2 2 —1|-14
Ry— |0 1 1 —-5| -2
Ry —8Rs— | 0O 0 —15 45 75
R3—TR4— |0 0 —12 36 60
[1 -2 2 —-1]|-14
0 1 1 5| -2
(=1/15)R3 — | O 01 -3| =5
(=1/12)Ry — | 0 01 -3| =5

We see that the third and fourth equations are identical, and hence we have
three equations in four unknowns:

T, — 2x9 + 223 — x4y =—14
To+ T3 —Ddry= —2
Tr3 — 3124 = -5

It is now apparent that there are an infinite number of solutions because, if
we let ¢ € R be any real number, then our solution set is given by x4 = c,
r3=3c—5, 0 =2c+ 3 and 1 = —c+ 2.

Two m xn matrices are said to be row equivalent if one can be transformed
into the other by a finite number of elementary row operations. As we stated
just prior to Example 2.3, these elementary row operations have no effect on
the solution set of a system of linear equations. The formal statement of this is
contained in our next theorem.

Theorem 2.2. Let A and B be the augmented matrices of two systems of m
linear equations in n unknowns. If A is row equivalent to B, then both systems
have the same solution set.
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Proof. If A is row equivalent to B, then we can go from the system represented
by A to the system represented by B by a succession of the operations (a), (b)
and (c) described above. It is clear that operations (a) and (b) have no effect
on the solutions, and the method of Theorem 2.1 shows that operation (c) also
has no effect.

In order to describe the desired form of the augmented matrix after perform-
ing the elementary row operations, we need some additional terminology.

A matrix is said to be in row echelon form if successive rows of the matrix
start out (from the left) with more and more zeros. In particular, a matrix is
said to be in reduced row echelon form if it has the following properties
(which are more difficult to state precisely than they are to understand):

(a) All zero rows (if any) occur below all nonzero rows.

(b) The first nonzero entry (reading from the left) in each row is equal to 1.

(c) If the first nonzero entry in the ¢th row is in the j;th column, then every
other entry in the j;th column is 0.

(d) If the first nonzero entry in the ith row is in the j;th column, then
J1<jgz<---.

Loosely put, the reduced row echelon form has more and more zeros as you
go down the rows, the first element of each nonzero row is a 1, and every other
element above and below that first 1 is a zero.

We will call the first (or leading) nonzero entries in each row of a row
echelon matrix the distinguished elements of the matrix. (The leading entry
of a row that is added to another row is also frequently referred to as a pivot.)
Thus, a matrix is in reduced row echelon form if the distinguished elements
are each equal to 1, and they are the only nonzero entries in their respective
columns.

Example 2.5. The matrix

1 2 -3 0 1
00 5 2 —4
00 07 3
00 00 O

is in row echelon form but not in reduced row echelon form. However, the matrix

0
0
1
0

oS O O
oS O = O
S O N Ot
S =N

is in reduced row echelon form. Note that the distinguished elements of the first
matrix are the numbers 1, 5 and 7, and the distinguished elements of the second
matrix are the numbers 1, 1 and 1.
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It should be clear from Example 2.4 that every matrix can be put into
reduced row echelon form. Our next theorem proves this in detail by outlining
an algorithm generally known as Gaussian elimination. (Sometimes this
refers to reducing to row echelon form, and Gauss-Jordan elimination refers
to reducing all the way to reduced row echelon form.)

Theorem 2.3. Every mxn matriz A is row equivalent to a reduced row echelon
matriz.

Proof. Suppose that we first put A into the form where the leading entry in each
nonzero row is equal to 1, and where every other entry in the column containing
this first nonzero entry is equal to 0. (This is called simply the row-reduced
form of A.) If this can be done, then all that remains is to perform a finite
number of row interchanges to achieve the final desired reduced row echelon
form.

To obtain the row-reduced form we proceed as follows. First consider row 1.
If every entry in row 1 is equal to 0, then we do nothing with this row. If row
1 is nonzero, then let j; be the smallest positive integer for which a1;, # 0 and
multiply row 1 by (ai;,)~!. Next, for each i # 1 we add —a;j, times row 1 to
row 7. This leaves us with the leading entry a;;, of row 1 equal to 1, and every
other entry in the j;th column equal to 0.

Now consider row 2 of the matrix we are left with. Again, if row 2 is equal to
0 there is nothing to do. If row 2 is nonzero, assume that the first nonzero entry
occurs in column jo (where jo # j1 by the results of the previous paragraph).
Multiply row 2 by (azj,)~* so that the leading entry in row 2 is equal to 1, and
then add —a;;, times row 2 to row i for each i # 2. Note that these operations
have no effect on either column j;, or on columns 1, ..., j; of row 1.

It should now be clear that we can continue this process a finite number of
times to achieve the final row-reduced form. We leave it to the reader to take
an arbitrary matrix (a;;) and apply successive elementary row transformations
to achieve the desired final form. |

For example, I leave it to you to show that the reduced row echelon form of
the matrix in Example 2.4 is

1 00 1 2
01 0 =2 3
0 01 -3 =5
0 0 O 0 0

While we have shown that every matrix is row equivalent to at least one
reduced row echelon matrix, it is not obvious that this equivalence is unique.
However, we shall show in the next section that this reduced row echelon matrix
is in fact unique. Because of this, the reduced row echelon form of a matrix is
often called the row canonical form.
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Exercises

1. Show that row equivalence defines an equivalence relation on the set of all

matrices.

. For each of the following matrices, first reduce to row echelon form, and
then to row canonical form:

1 -2 3 -1 12 -1 21
() [2 -1 2 2 b)) |2 4 1 -2 3
3 1.2 3 36 2 —6 5
1 3 —1 2]
0 1 -5 3
© 1o 5 3 1
4 1 1 5

. For each of the following systems, find a solution or show that no solution
exists:

(a) 2+ y+ z=1 (b) z—y+22=1
20 —3y+T72=0 r+y+ z=2

3r—2y+8z=4

(¢) z—y+22=4
3x+y+42=6
r+y+ z=1

() z+3y+ z=0
20+ Ty +42=0
r+ y—42=0

2c —y+ z=95

(d) z4+3y+ z2=2
20 + Ty +42=6
r+ y—4z=1

(f) 22— y+52=19
r+5y—3z2= 4
3x+2y+4z= 5

(g) 20— y+52=19
r+5y—3z= 4
3r+2y+42=25

. Let f1, f2 and f3 be elements of F[R] (i.e., the space of all real-valued
functions defined on R).

(a) Given aset {21, 2,23} of real numbers, define the 3x3 matrix F(z) =
(fi(z;)) where the rows are labeled by ¢ and the columns are labeled
by j. Prove that the set {f;} is linearly independent if the rows of the
matrix F(x) are linearly independent.

(b) Now assume that each f; has first and second derivatives defined on

some interval (a,b) C R, and let fl-(j ) denote the jth derivative of f;
(where fl-(o) is just f;). Define the matrix W(z) = (fi(ﬁl)(x)) where
1 <i,j7 < 3. Prove that {f;} is linearly independent if the rows of
W (z) are independent for some x € (a,b). (The determinant of W (x)
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is called the Wronskian of the set of functions {f;}.)

Show that each of the following sets of functions is linearly indepen-
dent:

(c) filx) = =2 +x+1, fo(z) =2® + 2z, f3(z) =2? - L.

(d) fi(x) =exp(—zx), fa(x) =z, f3(x) = exp(22).

(e) fi(z) = exp(x), f2(x) =sinz, f3(x) = cosx.

5. Let
3 -1 2
A=12 1 1
1 -3 0

Determine the values of Y = (y1,%2,y3) for which the system >, a;;x; =
y; has a solution.

6. Repeat the previous problem with the matrix

3 -6 2 -1

-2 4 1 3

A= 0 0 1 1
1 -2 1 0

2.3 Row and Column Spaces

We now forget about systems of equations, and instead focus our attention di-
rectly on the matrices themselves. This will be absolutely essential in discussing
the properties of linear transformations.

First of all, it will be extremely useful to consider the rows and columns of an
arbitrary m x n matrix as vectors in their own right. In particular, the rows of A

are to be viewed as vector n-tuples A1, ..., A,, where each 4; = (a;1,...,ai) €
F™. Similarly, the columns of A are to be viewed as vector m-tuples A',..., A"
where each A7 = (aij,...,am;) € F™. As we mentioned earlier, for notational

clarity we should write A7 as the column vector

ayj

CLmj

but it is typographically easier to write this horizontally whenever possible.
Note that we label the row vectors of A by subscripts, and the columns of A by
superscripts.

Since each row A; is an element of ', the set of all rows of a matrix can be
used to generate a new vector space V over F. In other words, V is the space
spanned by the rows A;, and hence any v € V may be written as

m
v = E CiAl'
i=1
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where each ¢; € F. The space V (which is apparently a subspace of F") is called
the row space of A. The dimension of V is called the row rank of A, and will
be denoted by rr(A). Since V is a subspace of F™ and dim F" = n, it follows
that rr(A) = dimV < n. On the other hand, V is spanned by the m vectors
A;, so that we must have dim V' < m. It then follows that rr(A) < min{m,n}.

In an exactly analogous manner, we define the column space W of a matrix
A as that subspace of F™ spanned by the n column vectors A7. Thus any w € W

is given by
n
w = Z bjAj
j=1

The column rank of A, denoted by cr(A4), is given by cr(A) = dim W and, as
above, we must have cr(A4) < min{m,n}.

We will sometimes denote the row space of A by row(A) and the column
space by col(A).

An obvious question is whether a sequence of elementary row operations
changes either the row space or the column space of a matrix. What we will
show is that the row space itself remains unchanged, and the column space at
least maintains its dimension. In other words, both the row rank and column
rank remain unchanged by a sequence of elementary row operations. We will
then show that in fact the row and column ranks are the same, and therefore we
are justified in defining the rank of a matrix as either the row or column rank.
Let us now verify these statements.

Under elementary row operations, it should be clear that the row space won’t
change because all we are doing is taking different linear combinations of the
same vectors. In other words, the elementary row operations simply result in
a new basis for the row space. In somewhat more formal terms, suppose A is
row-equivalent to A. Then the rows of A are linear combinations of the rows of
A, and therefore the row space of A is a subspace of the row space of A. On
the other hand, we can reverse the order of row operations so that A is row
equivalent to A. Then the rows of A are linear combinations of the rows of A
so that the row space of A is a subspace of the row space of A. Therefore the
row spaces are the same for A and A so that rr(A4) = rr(A).

However, what happens to the column space is not so obvious. The elemen-
tary row transformations interchange and mix up the components of the column
vectors, so the column spaces are clearly not the same in A and A. But the
interesting point, and what makes all of this so useful, is that the dimension of
the column space hasn’t changed. In other words, we still have cr(A) = cr(A).

Probably the easiest way to see this is to consider those columns of A that are
linearly dependent; and with no loss of generality we can call them A!,... A".

Then their linear dependence means there are nonzero scalars zy,...,z, such
that >°!_, A'z; = 0. In full form this is

a1 A1y
ry+ -+ z, = 0.

am1 Amyr
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But this is a system of m linear equations in r unknowns, and we have seen
that the solution set doesn’t change under row equivalence. In other words,
Yoy Aiz; = 0 for the same coefficients x;. Then the same 7 columns of A are
linearly dependent, and hence both A and A have the same (n —r) independent
columns, i.e., cr(A) = cr(A). (There can’t be more dependent columns of A
than A because we can apply the row operations in reverse to go from A to A.
If A had more dependent columns, then when we got back to A we would have
more than we started with.)

Let us summarize what we have just said as a theorem for ease of reference.

Theorem 2.4. Let A and A be row equivalent m X n matrices. Then the row
space of A is equal to the row space of A, and hence rr(A) = rr(A). Furthermore,

we also have cr(A) = cr(A). (However, note that the column space of A is not
necessarily the same as the column space of A.)

Now look back at the reduced row echelon form of a matrix A (as in Example
2.5). The number of nonzero rows of A is just rr(A), and all of these rows begin
with a 1 (the distinguished elements). But all other entries in each column
containing these distinguished elements are 0, and the remaining columns are
linear combinations of these. In other words, the number of linearly independent
columns in the reduced row echelon form of A is the same as the row rank of A.

This discussion proves the following very important result.

Theorem 2.5. If A = (a;;) is any m x n matriz over a field F, then rr(A) =
cr(A).

In view of this theorem, we define the rank of a matrix A as the number
rank(A) given by
rank(A4) = rr(A) = cr(A4).

The concept of rank is extremely important in many branches of mathemat-
ics (and hence physics and engineering). For example, the inverse and implicit
function theorems, surface theory in differential geometry, and the theory of
linear transformations (which we will cover in a later chapter) all depend on
rank in a fundamental manner.

Combining Theorem 2.5 with the discussion just prior to it, we have the
basis for a practical method of finding the rank of a matrix.

Theorem 2.6. If A is any matriz, then rank(A) is equal to the number of
nonzero rows in the (reduced) row echelon matriz row equivalent to A. (Alter-
natiwely, rank(A) is the number of nonzero columns in the (reduced) column-
echelon matriz column equivalent to A.)
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There is one special case that is worth pointing out. By way of terminology,
if A is an n x n matrix such that a;; = 0 for ¢ # j and a;; = 1, then we say
that A is the identity matrix of size n, and write this matrix as I,,. Since the
size is usually understood, we will generally simply write I. If I = (I;;), then
another useful way of writing this is in terms of the Kronecker delta as I;; = ;5.
Written out, I has the form

1 0 0
0 1 0
I =

If Ais an n x n matrix and rank(A) = n, then the reduced row echelon form
of A is just the identity matrix I,,, and we have the next result.

Theorem 2.7. If A is an n X n matriz of rank n, then the reduced row echelon
matriz row equivalent to A is the identity matriz I, .

An n x n matrix of rank n is said to be nonsingular, and if rank(A) < n,
then A is said to be singular. As we will see shortly, if a matrix is nonsingular,
we will be able to define an “inverse.” But to do so, we first have to define
matrix multiplication. We will return to this after the next section.

Example 2.6. Let us find the rank of the matrix A given by

1 2 -3

2 1 0

A= =2 = 3
=1 4 -2

To do this, we will apply Theorem 2.6 to columns instead of rows (just for vari-
ety). Proceeding with the elementary transformations, we obtain the following
sequence of matrices:

1 0 0
2 -3 6
-2 3 -3
-1 6 -5
T 1
A2 241 A3 4 341
1 0 0
2 -1 0
—2 1 1
-1 2 7/3
T 1

(1/3)A%  (1/3)(A3% +2A42)



62 CHAPTER 2. LINEAR EQUATIONS AND MATRICES

1 0 0
0 1 0
0 0 1
3 1/3 7/3

T
Al 1242 (A2 - A3)

Thus the reduced column-echelon form of A has three nonzero columns, so
that rank(A) = cr(A) = 3. We leave it to the reader (see Exercise 2.3.1) to
show that the row canonical form of A is

0

o= O O

1
0
0
0

o O =

and hence rank(A4) = cr(A) =rr(A4) as it should.

Exercises
1. Verify the row-canonical form of the matrix in Example 2.6.

2. Let A and B be arbitrary m x n matrices. Show that rank(A4 + B) <
rank(A) 4 rank(B).

3. Using elementary row operations, find the rank of each of the following

matrices:
1 3 1 -2 -3 [ 1 2 -3
1 4 3 -1 —4 2 1 0
@ 19 5 4 7 _3 O
13 8 1 -7 -8 -1 4 -2
(1) _3 [5 -1 1
(c) £ _1 (d) |2 1 -2
B [0 -7 12

4. Repeat the previous problem using elementary column operations.

2.4 Solutions to Systems of Linear Equations

We now apply the results of the previous section to the determination of some
general characteristics of the solution set to systems of linear equations. We
will have more to say on this subject after we have discussed determinants in
the next chapter.
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To begin with, a system of linear equations of the form

n
E aija:j:(), i:l,...,m
j=1

is called a homogeneous system of m linear equations in n unknowns. It is
obvious that choosing 1 = x5 = - -+ = x,, = 0 will satisfy this system, but this
is not a very interesting solution. It is called the trivial (or zero) solution.
Any other solution, if it exists, is referred to as a nontrivial solution.

A more general type of system of linear equations is of the form

n
E AijTj = Y, i=1,...7m
j=1

where each y; is a given scalar. This is then called an inhomogeneous system
(or sometimes a nonhomogeneous system) of linear equations. Let us define
the column vector

Y:(yl,...,ym) e F™m

and also note that a;;x; is just x; times the ith component of the jth column
AJ € F™. Thus our system of inhomogeneous equations may be written in the

ail a2 Q1n
n i a21 a22 G2n
ZA:vj: o+ I e ) Tnp =Y
= : : :
Am1 Am2 Amn

where this vector equation is to be interpreted in terms of its components.
(In the next section, we shall see how to write this as a product of matrices.)
It should also be obvious that a homogeneous system may be written in this

notation as .
Z Aj,Tj =0.
j=1

Let us now look at some elementary properties of the solution set of a ho-
mogeneous system of equations.

Theorem 2.8. The solution set S of a homogeneous system of m equations in
n unknowns is a subspace of F".

Proof. Let us write our system as Zj aj;x; = 0. We first note that S # & since
(0,...,0) € F™ is the trivial solution of our system. If u = (u1,...,u,) € F"
and v = (v1,...,v,) € F" are both solutions, then

Zaij(uj + ’Uj) = Z Qi Uj + Z QjjV; = 0
J J J
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so that u + v € S. Finally, if ¢ € F then we also have
> aijleu;) = aiju; =0
J J

so that cu € S. |

If we look back at Example 2.4, we see that a system of m equations in
n > m unknowns will necessarily result in a nonunique, and hence nontrivial,
solution. The formal statement of this fact is contained in our next theorem.

Theorem 2.9. Let a homogeneous system of m equations in n unknowns have
the m x n matrix of coefficients A. Then the system has a nontrivial solution if
and only if rank(A) < n.

Proof. By writing the system in the form j x; A7 =0, it is clear that a non-
trivial solution exists if and only if the n column vectors A7 € F™ are linearly
dependent. Since the rank of A is equal to the dimension of its column space,
we must therefore have rank(A) < n.

It should now be clear that if an n x n (i.e., square) matrix of coefficients A
(of a homogeneous system) has rank equal to n, then the only solution will be
the trivial solution since reducing the augmented matrix (which then has the
last column equal to the zero vector) to reduced row echelon form will result in
each variable being set equal to zero (see Theorem 2.7).

Theorem 2.10. Let a homogeneous system of linear equations in n unknowns
have a matriz of coefficients A. Then the solution set S of this system is a
subspace of F™ with dimension

dim S = n — rank(A4).

Proof. Assume that S is a nontrivial solution set, so that by Theorem 2.9 we
have rank(A4) < n. Assume also that the unknowns z1, ..., z, have been ordered
in such a way that the first k = rank(A) columns of A span the column space
(this is guaranteed by Theorem 2.4). Then the remaining columns A1 ... A"
may be written as

k
AiZZbijAj, i=k+1,...,n
=1

where each b;; € F. If we define b;; = —1 and b;; =0 for j # ¢ and j > k, then
we may write this as

ZbijAj:O, z:k—i—l,,n
Jj=1
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(note the upper limit on this sum differs from the previous equation). Next we
observe that the solution set S consists of all vectors x € F™ such that

il‘jAj =0
j=1

and hence in particular, the n — k vectors
b = (b, ..., bin)

for each © = k 4+ 1,...,n must belong to S. We show that they in fact form a
basis for S, which is then of dimension n — k.
To see this, we first write out each of the b(:

b5 = (g1, ik, —1,0,0,...,0)
b+ = (bpyo1, .. brror,0,—1,0,...,0)

b™ = (bp1, ..., buk,0,0,...,0,—1).

Hence for any set {c¢;} of n — k scalars we have

i Clb(z) = < i Cibila ey i Cibik7 “Ch41y -y —Cn>

i=k+1 i=k+1 i=k+1

and therefore .

Z cib® =0

i=k+1

if and only if ¢x41 = -+ = ¢, = 0. This shows that the b are linearly
independent. (This should have been obvious from their form shown above.)
Now suppose that d = (dy,...,d,) is any solution of

i {EjAj =0.
j=1

Since S is a vector space (Theorem 2.8), any linear combination of solutions is
a solution, and hence the vector

y=d+ Y  dp?
i=k+1

must also be a solution. In particular, writing out each component of this
expression shows that

Y = dj + Z dlbu
i=k+1
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and hence the definition of the b;; shows that y = (y1,...,9x,0,...,0) for some
set of scalars ;. Therefore, we have

n k
0=2 yAl =) y A
j=1 j=1

and since {A!, ..., A¥} is linearly independent, this implies that y; = 0 for each
j=1,... k. Hence y = 0 so that

d=— zn: d;b®

i=k+1

and we see that any solution may be expressed as a linear combination of the
b,

Since the b are linearly independent and we just showed that they span S,
they must form a basis for S.

Suppose that we have a homogeneous system of m equations in n > m
unknowns, and suppose that the coefficient matrix A is in row echelon form and
has rank m. Then each of the m successive equations contains fewer and fewer
unknowns, and since there are more unknowns than equations, there will be
n —m = n — rank(A) unknowns that do not appear as the first entry in any of
the rows of A. These n —rank(A) unknowns are called free variables. We may
arbitrarily assign any value we please to the free variables to obtain a solution
of the system.

Let the free variables of our system be x;,,...,z; where k = n —m =
n — rank(A), and let v, be the solution vector obtained by setting z;_ equal to
1 and each of the remaining free variables equal to 0. (This is essentially what
was done in the proof of Theorem 2.10.) We claim that vy, ..., vy are linearly
independent and hence form a basis for the solution space of the (homogeneous)
system (which is of dimension n — rank(A) by Theorem 2.10).

To see this, we basically follow the proof of Theorem 2.10 and let B be the
k x n matrix whose rows consist of the solution vectors vs. For each s, our
construction is such that we have z;, = 1 and x;, = 0 for » # s (and the
remaining m = n — k unknowns are in general nonzero). In other words, the
solution vector v, has a 1 in the position of x;_, while for r # s the vector v, has
a 0 in this same position. This means that each of the k columns corresponding
to the free variables in the matrix B contains a single 1 and the rest zeros. We
now interchange column 1 and column %1, then column 2 and column io,...,
and finally column k and column i;. This yields the matrix

0 0 bl)k-"-l Tt bln

0
1 0 0 bogt1 -+ boy

1 0
0 0
C:

00 0 - 0 1 brger - b
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where the entries b; 41, ..., bin are the values of the remaining m unknowns in
the solution vector v;. Since the matrix C' is in row echelon form, its rows are
independent and hence rank(C') = k. However, C is column-equivalent to B,
and therefore rank(B) = k also (by Theorem 2.4 applied to columns). But the
rows of B consist precisely of the k solution vectors v, and thus these solution
vectors must be independent as claimed.

Example 2.7. Consider the homogeneous system of linear equations

T+2y—4z4+3w— t=0
z+2y—2z2+2w+ t=0
2c+4y — 22+ 3w+ 4t =0

If we reduce this system to row echelon form, we obtain

z+2y—4z4+3w— t=0
22— w+2t=0 (2.7)
It is obvious that the rank of the matrix of coefficients is 2, and hence the
dimension of the solution space is 5 — 2 = 3. The free variables are clearly y, w
and ¢. The solution vectors vs are obtained by choosing (y = 1,w = 0,¢ = 0),
(y =0,w=1,t =0) and (y = 0,w = 0,& = 1). Using each of the these in
equation 2.7, we obtain the solutions

U1 = (_271707070)
vy = (—1,0,1/2,1,0)
v3 = (—3,0,—1,0,1)

Thus the vectors vy, v2 and vs form a basis for the solution space of the homo-
geneous system.

We emphasize that the corollary to Theorem 2.4 shows us that the solu-
tion set of a homogeneous system of equations is unchanged by elementary row
operations. It is this fact that allows us to proceed as we did in Example 2.7.

We now turn our attention to the solutions of an inhomogeneous system of
equations ), ai;z; = ;.

Theorem 2.11. Let an inhomogeneous system of linear equations have matrix
of coefficients A. Then the system has a solution if and only if rank(A) =
rank(aug A).

Proof. Let ¢ = (c1,...,¢,) be a solution of Zj aijr; = y;. Then writing this as

chAj =Y

J
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shows us that Y is in the column space of A, and hence
rank(aug A) = cr(aug A) = cr(A) = rank(A).

Conversely, if cr(aug A) = rank(aug A) = rank(A) = cr(A), then Y is in the
column space of A, and hence Y =) ¢; A7 for some set of scalars ¢;. But then
the vector ¢ = (c1,...,¢,) is a solution since it obviously satisfies 3, a;;z; =

Yi- |

Using Theorem 2.10, it is easy to describe the general solution to an inho-
mogeneous system of equations.

Proof. If w = (w1,...,w,) € F" is any other solution of }_; a;;z; = y;, then
Do aig(wy —ug) =Y aiw; — Y agu; = y; —y; =0
J J J

so that w —u € S, and hence w = u + v for some v € S. Conversely, if v € S
then

Zaij(“j +j) = Zaijuj + Zaijvj =y; +0=y;

J J

so that u + v is a solution of the inhomogeneous system. |
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Proof. Since Y = " Alx;, we see that Y € F" is just a linear combination
of the columns of A. Since rank(A) = n, it follows that the columns of A are
linearly independent and hence form a basis for F". But then any Y € F™ has
a unique expansion in terms of this basis (Theorem 1.4, Corollary 2) so that the
vector X with components z; must be unique. |

Example 2.8. Let us find the complete solution set over the real numbers of
the inhomogeneous system

3r1+ a2+ 223+ 4drs= 1
Ty — o+ 3x3— x4= 3
r1 + Ty — 1lzg + 1324 = —13

11lzy + 29 + 1223+ 1024, = 9

We assume that we somehow found a particular solution u = (2,5,1, —3) € R*,
and hence we seek the solution set S of the associated homogeneous system.
The matrix of coefficients A of the homogeneous system is given by

3 1 2 4
1 -1 3 -1
1 7 —11 13
11 1 1210

A:

The first thing we must do is determine rank(A). Since the proof of Theorem
2.10 dealt with columns, we choose to construct a new matrix B by applying
elementary column operations to A. Thus we define

1 0 0 0
-1 4 ) 3
7T =20 —-25 -—15
1 8 10 6

B =

where the columns of B are given in terms of those of A by B! = A?, B? =
Al — 342, B3 = A% — 242 and B* = A* — 4A4? . Tt is obvious that B' and B?
are independent, and we also note that B3 = (5/4)B? and B* = (3/4)B2. Then
rank(A) = rank(B) = 2, and hence we have dim S =4 — 2 = 2.

(An alternative method of finding rank(A) is as follows. If we interchange
the first two rows of A and then add a suitable multiple the new first row to
eliminate the first entry in each of the remaining three rows, we obtain

1 -1 3 -1
0 4 -7 7
0 8§ —14 14
0 12 -21 21

It is now clear that the first two rows of this matrix are independent, and that the
third and fourth rows are each multiples of the second. Therefore rank(A) = 2
as above.)
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We now follow the first part of the proof of Theorem 2.10. Observe that
since rank(A) = 2 and the first two columns of A are independent, we may
write

A3 = (5/4)A* — (7/4)A*

and
At = (3/4) A + (7/4)A%.

We therefore define the vectors
b® = (5/4,-7/4,-1,0)

and
b = (3/4,7/4,0,-1)

which are independent solutions of the homogeneous system and span the solu-
tion space S. Therefore the general solution set to the inhomogeneous system
is given by

u+S={u+ ab® + ﬂb(4)}
= {(2757 17 _3) + Oé(5/4, _7/47 _170> + ﬁ(3/47 7/4707 1>}

where «, 8 € R are arbitrary.

Exercises

1. Find the dimension and a basis for the solution space of each of the fol-
lowing systems of linear equations over R:

(a) x+4y+2z=0 (b) z+3y+22z=0
2c+ y+52=0 r+5y+ z=0
3z 45y +82=0
(¢) z+2y+2z2—w+3t=0 (d) z4+2y—2z—2w— t=0
r+2y+3z4+w+ t=0 rT+2y— z+3w—-2t=0
3r+6y+82+w+ t=0 2r+4y—T7z4+ w4+ t=0

2. Consider the subspaces U and V of R?* given by

U={(a,bc,d) eR*:b+c+d=0}
V ={(a,b,c,d) € R*:a+b=0and c = 2d}.
(a) Find the dimension and a basis for U.

a
(b) Find the dimension and a basis for V.
(¢) Find the dimension and a basis for UNV.
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3. Find the complete solution set of each of the following systems of linear
equations over R:

(a) 3t —y="7 (b) 22— y+32=5
2r+y=1 3r4+2y—2z= 1
Tr+ 4z=11
(c) b +2y— z=0 d) z— y+2z24+ w=3
3r+5y+32=0 20+ y— 22— w=1
r+8y+72=0 34+ y+ z—3w=2
3x — 2y + 62 =7

2.5 DMatrix Algebra

We now introduce the elementary algebraic operations on matrices. These oper-
ations will be of the utmost importance throughout the remainder of this text.
In Chapter 4 we will see how these definitions arise in a natural way from the
algebra of linear transformations.

Given two m x n matrices A = (a;;) and B = (b;;), we define their sum
A+ B to be the matrix with entries

(A+ B)ij = aij + bi

obtained by adding the corresponding entries of each matrix. Note that both A
and B must be of the same size. We also say that A equals B if a;; = b;; for
all 7 and j. It is obvious that

A+B=B+A

and that
A+ (B+C)=(A+B)+C

for any other m x n matrix C'. We also define the zero matrix 0 as that matrix
for which A+0 = A. In other words, (0);; = 0 for every ¢ and j. Given a matrix
A = (ai;), we define its negative (or additive inverse)

—A = (—ay)

such that A 4+ (—A) = 0. Finally, for any scalar ¢ we define the product of ¢
and A to be the matrix
cA = (ca;j).

Since in general the entries a;; in a matrix A = (a;;) are independent of each
other, it should now be clear that the set of all m x n matrices forms a vector
space of dimension mn over a field F of scalars. In other words, any m X n
matrix A with entries a;; can be written in the form
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where the m x n matriz E;; is defined as having a 1 in the (¢, j)th position and
0’s elsewhere, and there are clearly mn such matrices. Observe that another
way of describing the matrix Ej;; is to say that it has entries (Ejj)rs = 0ir0js.

We denote the space of all m x n matrices over the field F by M,,xn(F).
The particular case of m = n defines the space M, (F) of all square matrices
of size n. We will often refer to a matrix in M, (F) as an n-square matrix.

Now let A € Mywn(F) be an m x n matrix, B € My, (F) be an r x m
matrix, and consider the two systems of linear equations

n
E aijx‘j:yi, i=1,...,m
Jj=1

and
m
E bijyj:Zi7 izl,...,T
j=1

where X = (z1,...,2,) € F", Y = (y1,...,ym) € F™ and Z = (21,...,2,) €
F7T. Substituting the first of these equations into the second yields

m m n n
Zi= by =Y by > ajpzi =Y Ciri
=1 =1 k=1 k=1

where we defined the product of the r x m matrix B and the m X n matrix A
to be the r x n matrix C' = BA whose entries are given by

m
Cil. = E bijajk.
j=1

Thus the (7, k)th entry of C = BA is given by the standard scalar product
(BA)jx = B; - A*

of the ith row of B with the kth column of A (where both A* and B; are
considered as vectors in F™). Note that matrix multiplication is generally not
commutative, i.e., AB # BA. Indeed, the product AB may not even be defined.

Example 2.9. Let A and B be given by

1 6 -2 2 -9
A=13 4 5 B=16 1
7 0 8 1 -3

Then the product of A and B is given by

C=AB=

N W =

S =~ O
Ut
Sy
—
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[1-246-6—-2-1 —1-9+6-1+2-3
=|3-244-6+5-1 —-3-9+4-1-5-3
[7-240-64+8-1 -7-940-1-8-3

(36 3
=35 -38
|22 87

Note that it makes no sense to evaluate the product BA.
It is also easy to see that if we have the matrices

1 2 0 1
2= 2] ma m=[2l]

an=[3 3 1o =[5

a2 2][3 2]-[¢ 4uae

then

while

Example 2.10. Two other special cases of matrix multiplication are worth
explicitly mentioning. Let X € R™ be the column vector

Z1
X =
-
If A is an m X n matrix, we may consider X to be an n x 1 matrix and form
the product AX:
ai; -+ Qg T3 a1121 + -+ a1pTy A - X
AX=| AN : =
am1 - Amn Ly Am1%1 + -+ Gy Am - X
As expected, the product AX is an m x 1 matrix with entries given by the

standard scalar product A; - X in R™ of the ith row of A with the vector X.
Note that this may also be written in the form
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ai1 A1n
AX = 1+ + B
Am1 Amn

which clearly shows that AX is just a linear combination of the columns of A.
Now let Y € R™ be the row vector Y = (y1,...,Ym). If we view this as a
1 X m matrix, then we may form the 1 x n matrix product Y A given by

ai1 A1n
YA= (yla"'7ym)

am1 Qmn
= (ylall +"'+ymam17~"7y1aln+"'+ymamn)
=(Y A',...,Y . A")

This again yields the expected form of the product with entries Y - A’

This example suggests the following commonly used notation for systems of
linear equations. Consider the system

n
> i =y
Jj=1
where A = (a;;) is an m X n matrix. Suppose that we define the column vectors

T Y1
X = Dl eF" and Y = : e Fm.
Tn Ym

If we consider X to be an n x 1 matrix and Y to be an m x 1 matrix, then we
may write this system in matrix notation as

AX =Y.

Note that the ith row vector of A is A; = (a;1,...,ain), so if F = R the
expression ;@i Tj = Y; may be written as the standard scalar product

We leave it to the reader to show that if A is an n X n matrix, then
AlL, =1,A=A.

Even if A and B are both square matrices (i.e., matrices of the form m x m), the
product AB will not generally be the same as BA unless A and B are diagonal
matrices (see Exercise 2.5.4). However, we do have the following.
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Proof. (i) [(AB)Clij = 321 (AB)ikcrj = 3., (@irbri)crj = 32, @ir(brici;)
=2, air(BC)rj = [A(BC)]y;.

(ii) [A(B + C)]z] = Ek aik(B + C)kj = Ek aik(bkj + ij)
= 2k @ikbrj + 20 aivery = (AB)ij + (AC);;
=[(AB) + (AC)]y;-

(iii) Left to the reader (Exercise 2.5.1).
(iv) Left to the reader (Exercise 2.5.1). |

Given a matrix A = (a;j), we define the transpose of A, denoted by AT =
(af;) to be the matrix with entries given by aj; = a;i. In other words, if A is an
m x n matrix, then A7 is an n x m matrix whose columns are just the rows of
A. Note in particular that a column vector is just the transpose of a row vector.

Proof. (i) [(A+ B)T]ij =[(A+ B)lji = aji +bj; = a;?’; + b;?’; = (AT + BT)ij.
(it) (AT = (AT)i = aij = (A)s;.
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(iii) (cA)f; = (cA)ji = caiy = c(AT)y;.
(iv) (AB)f; = (AB)ji = X"y ajibri = > blpaf; = (BT AT);; . i

Our last basic property of the transpose is the following theorem, the easy
proof of which is left as an exercise.

Theorem 2.16. For any matriz A we have rank(AT) = rank(A).

Proof. This is Exercise 2.5.2. |

We now wish to relate this matrix algebra to our previous results dealing
with the rank of a matrix. Before doing so, let us first make some elementary
observations dealing with the rows and columns of a matrix product. Assume
that A € My, xn(F) and B € M, (F) so that the product AB is defined. Since
the (4, j)th entry of AB is given by (AB);; = Y, airbkj, we see that the ith row
of AB is given by a linear combination of the rows of B:

(AB)l = (Z aikbkl, ey Zaikb]ﬂ«) = Zaik (bkh ey bkr) = Z aikBk.
k k k k

This shows that the row space of AB is a subspace of the row space of B.
Another way to write this is to observe that

(AB); = (Z aikbr1, - -, Z aikbkr>
3 3

bir -+ by
= (i1, Qi) | - : =A;B.
bnl et bnr

Similarly, for the columns of a product we find that the jth column of AB
is a linear combination of the columns of A:

>k a1kbrj n
(AB) = : =>
ok ambry | R

and therefore the column space of AB is a subspace of the column space of A.
We also have the result

a1k

by = > Abby;
k=1

Amk

Zk alkbkj aip - Qln blj
(AB)! = : =1 : D =AB.
Ek amkbkj am1 - Amn bnj

These formulas will be quite useful to us in a number of theorems and calcula-
tions.
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Theorem 2.17. If A and B are any matrices for which the product AB is
defined, then the row space of AB is a subspace of the row space of B, and the
column space of AB is a subspace of the column space of A.

Proof. As we saw above, using (AB); = >, a; By, it follows that the ith row of
AB is in the space spanned by the rows of B, and hence the row space of AB
is a subspace of the row space of B.

As to the column space, this was also shown above. Alternatively, note that
the column space of AB is just the row space of (AB)T = BT AT, which is a
subspace of the row space of AT by the first part of the theorem. But the row
space of AT is just the column space of A. |

Corollary. rank(AB) < min{rank(A4),rank(B)}.

Proof. Let row(A) be the row space of A, and let col(A4) be the column space
of A. Then

rank(AB) = dim(row(AB)) < dim(row(B)) = rank(B)

while
rank(AB) = dim(col(AB)) < dim(col(A4)) = rank(A). |

Let us now prove some very useful properties of the row and column spaces
of a matrix. To begin with, suppose A € M, xn(F). We define the kernel of
A to be the set

kerA={X e F" : AX = 0}.

(In the context of matrices, this is usually called the null space of A and
denoted by nul(A). The dimension of nul(A) is then called the nullity of A and
is denoted nullity(A4) or null(A4). Since we think this is somewhat confusing,
and in Chapter 4 we will use nul(A) to denote the dimension of the kernel of a
linear transformation, we chose the notation as we did.)

It is easy to see that ker A is a subspace of F”. Indeed, if X,Y € ker A and
k € F, then clearly A(kX +Y) = kAX + AY = 0 so that kX +Y € ker A also.
In fact, ker A is just the solution set to the homogeneous system AX = 0, and
therefore dim(ker A) is just the dimension dim .S of the solution set. In view of
Theorem 2.10, this proves the following very useful result, known as the rank
theorem (or the dimension theorem).

Theorem 2.18. Let A € My, wn(F). Then

rank A + dim(ker A) = n.
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Another very useful result we will need in a later chapter comes by consider-
ing the orthogonal complement of the row space of a real matrix A € M,,x,(R).
This is by definition the set of all X € R" that are orthogonal to every row of
A. In other words, using the standard inner product on R™ we have

(row(A)* ={X €R": A4;- X =0foralli=1,...,m}.

But this is just the homogeneous system AX = 0 and hence (row(A))* = ker A.
Applying this relation to AT we have (row(AT))+ = ker AT. But row(A”) =
col(A) and therefore (col(A))* = ker AT

We state this result as a theorem for future reference.

Theorem 2.19. Let A € My, xn(R). Then

(row(A))* =ker A and (col(A))' = ker AT.

Exercises
1. Complete the proof of Theorem 2.14.
2. Prove Theorem 2.16.

3. Let A be any m x n matrix and let X be any n x 1 matrix, both with
entries in F. Define the mapping f: F" — F™ by f(X) = AX.

(a) Show that f is a linear transformation (i.e., a vector space homomor-
phism).

(b) Define the set Im f = {AX : X € F™}. Show that Im f is a subspace
of Fm.

(¢) Let U be the column space of A. Show that Im f = U. [Hint: Use
Example 2.10 to show that Im f C U. Next, use the equation (AI) =
A to show that U C Im f]

(d) Let N denote the solution space to the system AX = 0. In other
words, N = {X € F" : AX = 0}. (N is just the null space of A.)
Show that

dim N +dimU = n.

[Hint: Suppose dim N = r, and extend a basis {z1,...,2,} for N
to a basis {x;} for F™. Show that U is spanned by the vectors
Axyy1,...,Ax,, and then that these vectors are linearly independent.
Note that this exercise is really just another proof of Theorem 2.10.]

4. A square matrix of the form

a;; 0 .- 0
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is called a diagonal matrix. In other words, A = (a;;) is diagonal if
a;; =0 for i # j. If A and B are both square matrices, we may define the
commutator [A, B] of A and B to be the matrix [A, B] = AB — BA. If
[A, B] =0, we say that A and B commute.

(a) Show that any diagonal matrices A and B commute.
(b) Prove that the only n x n matrices which commute with every n x n
diagonal matrix are diagonal matrices.

5. Given the matrices

2 -1
A= 1 0 B:[; _i _ﬂ
-3 4
compute the following:
(a) AB.
(b) BA.
(c) AAT.
(d) AT A.
(e) Verify that (AB)T = BT AT.
6. Consider the matrix A € M, (F) given by
01 0 0 0 07
0o o010 --- 00
o001 -- 00
A:
0o 000 --- 01
0000 - 0 0]

Thus A has zero entries everywhere except on the superdiagonal where
the entries are 1’s. Let A2 = AA, A3 = AAA, and so on. Show that
A" =0 but A"~ £ 0.

7. Given a matrix A = (a;;) € M, (F), the sum of the diagonal elements of
A is called the trace of A, and is denoted by tr A. Thus

n
trA = Z Qi -
i=1

(a) Prove that tr(A + B) = tr A+ tr B and that tr(aA) = a(tr A) for any
scalar a.
(b) Prove that tr(AB) = tr(BA).

8. Prove that it is impossible to find matrices A, B € M,,(R) such that their
commutator [A, B] = AB — BA is equal to 1.
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9.

10.

11.

12.
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A matrix A = (a;;) is said to be upper triangular if a¢;; = 0 for i > j. In
other words, every entry of A below the main diagonal is zero. Similarly,
A is said to be lower triangular if a;; = 0 for ¢ < j. Prove that the
product of upper (lower) triangular matrices is an upper (lower) triangular
matrix.

Consider the so-called Pauli spin matrices

0 1 0 —i 10
ol I B R I TR

and define the permutation symbol ¢;;; by

1 if (4,4, k) is an even permutation of (1, 2, 3)
gijk = 4 —1 if (4,7, k) is an odd permutation of (1, 2, 3)
0 if and two indices are the same

The commutator of two matrices A, B € M, (F) is defined by [4, B] =
AB — BA, and the anticommutator is given by [A, B, = AB + BA.

(a) Show that [0;,0;] = 2i) ", €ijr0k. In other words, show that ¢;0; =
io), where (i, 7, k) is an even permutation of (1, 2, 3).

(b) Show that [0, 0]+ = 210;;.

(¢) Using part (a), show that tro; = 0.

(d) For notational simplicity, define o9 = I. Show that {og, 01,092,035}
forms a basis for M3(C). [Hint: Show that tr(cno3) = 24,3 where
0 < a, 8 < 3. Use this to show that {04} is linearly independent.]

(e) According to part (d), any X € M>(C) may be written in the form
X =3, %004 How would you find the coefficients 7

(f) Show that (0n,08) = (1/2)tr(cnog) defines an inner product on
M;(C).

(g) Show that any matrix X € My(C) that commutes with all of the o;
(i.e., [X,0;] = 0 for each ¢ = 1,2, 3) must be a multiple of the identity
matrix.

A square matrix S is said to be symmetric if ST = S, and a square matrix
A is said to be skewsymmetric (or antisymmetric) if A7 = —A.

(a) Show that S # 0 and A # 0 are linearly independent in M, (F).
(b) What is the dimension of the space of all n x n symmetric matrices?
(c) What is the dimension of the space of all nxn antisymmetric matrices?

Find a basis {A;} for the space M,,(F) that consists only of matrices with
the property that A;> = A; (such matrices are called idempotent or
projections). [Hint: The matrices

bol ol e [

will work in the particular case of My(F).]
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13. Show that it is impossible to find a basis for M, (F) such that every pair
of matrices in the basis commutes with each other.

14. (a) Show that the set of all nonsingular n x n matrices forms a spanning
set for M, (F). Exhibit a basis of such matrices.
(b) Repeat part (a) with the set of all singular matrices.

15. Show that the set of all matrices of the form AB— BA do not span M, (F).
[Hint: Use the trace.]

16. TIs it possible to span M, (F) using powers of a single matrix A? In other
words, can {I,,, A, A%, ..., A,, ...} span M, (F)? [Hint: Consider Exercise
4 above.]

2.6 Invertible Matrices

As mentioned earlier, we say that a matrix A € M,(F) is nonsingular if
rank(A) = n, and singular if rank(A) < n. Given a matrix A € M, (F), if
there exists a matrix B € M, (F) such that AB = BA = I,,, then B is called
an inverse of A, and A is said to be invertible.

Technically, a matrix B is called a left inverse of A if BA = I, and a matrix
B’ is a right inverse of A if AB’ = I. Then, if AB = BA = I, we say that B is
a two-sided inverse of A, and A is then said to be invertible. Furthermore,
if A has a left inverse B and a right inverse B’, then it is easy to see that B = B’
since B = BI = B(AB') = (BA)B' = IB’ = B’. We shall now show that if B
is either a left or a right inverse of A, then A is invertible. (We stress that this
result is valid only in finite dimensions. In the infinite dimensional case, either a
left or right inverse alone is not sufficient to show invertibility. This distinction
is important in fields such as functional analysis and quantum mechanics.)

Theorem 2.20. A matriv A € M, (F) has a right (left) inverse if and only
if A is nonsingular. This right (left) inverse is also a left (right) inverse, and
hence is an inverse of A.

Proof. Suppose A has a right inverse B. Then AB = I,, so that rank(AB) =
rank(l,). Since rank(I,) is clearly equal to n (Theorem 2.6), we see that
rank(AB) = n. But then from the corollary to Theorem 2.17 and the fact
that both A and B are n x n matrices (so that rank(A) < n and rank(B) < n),
it follows that rank(A) = rank(B) = n, and hence A is nonsingular.

Now suppose that A is nonsingular so that rank(A) = n. If we let £ be the
jth column of the identity matrix I,,, then for each j = 1,...,n the system of
equations

Zn: Alg, = AX = EJ

=1
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has a unique solution which we denote by X = B’ (Theorem 2.13). Now let B
be the matrix with columns B7. Then the jth column of AB is given by

(AB)) = AB’ = E7

and hence AB = I,,. It remains to be shown that BA = I,,.

To see this, note that rank(A”) = rank(A) = n (Theorem 2.16) so that AT
is nonsingular also. Hence applying the same argument shows there exists a
unique n x n matrix CT such that ATCT = I,,. Since (CA)T = ATCT and
InT = I, this is the same as CA = I,,. We now recall that it was shown prior
to the theorem that if A has both a left and a right inverse, then they are the
same. Therefore B = C' so that BA = AB = I,,, and hence B is an inverse of A.
Clearly, the proof remains valid if “right” is replaced by “left” throughout. |

This theorem has several important consequences which we state as corol-
laries.

Corollary 1. A matric A € M,(F) is nonsingular if and only if it has an
inverse. Furthermore, this inverse is unique.

Proof. As we saw above, if B and C are both inverses of A, then B = BI =
B(AC) = (BA)C = IC = C. |

In view of this corollary, the unique inverse to a matrix A will be denoted
by A~! from now on.

Corollary 2. If A is an n x n nonsingular matriz, then A~ is nonsingular
and (A=1)~1 = A.

Proof. If A is nonsingular, then (by Theorem 2.20) A1 exists so that A=*A =
AA~Y = I. But this means that (A~!)~! exists and is equal to A, and hence
A~1is also nonsingular. |

Corollary 3. If A and B are nonsingular then so is AB, and (AB)™! =
B~tA-L

Proof. The fact that A and B are nonsingular means that A~! and B! exist.
We therefore see that
(B'A™Y(AB)=B'IB=B"'B=1

and similarly (AB)(B~'A~') = I. Tt then follows that B~'A~! = (AB)"!.
Since we have now shown that AB has an inverse, Theorem 2.20 tells us that
AB must be nonsingular. |
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Corollary 4. If A is nonsingular then so is AT, and (AT)=1 = (A~1)T.

Proof. That AT is nonsingular is a direct consequence of Theorem 2.16. Next
we observe that
(Afl)TAT _ (AAfl)T _ IT -7

so the uniqueness of the inverse tells us that (A7)~! = (A=1)T. Note this also
shows that AT is nonsingular. |

Corollary 5. A system of n linear equations in n unknowns has a unique
solution if and only if its matriz of coefficients is nonsingular.

Proof. Consider the system AX = Y. If A is nonsingular, then a unique A~!
exists, and therefore we have X = A=Y as the unique solution. (Note that
this is essentially the content of Theorem 2.13.)

Conversely, if this system has a unique solution, then the solution space
of the associated homogeneous system must have dimension 0 (Theorem 2.12).
Then Theorem 2.10 shows that we must have rank(A) = n, and hence A is
nonsingular. |

A major problem that we have not yet discussed is how to actually find the
inverse of a matrix. One method involves the use of determinants as we will see
in the next chapter. However, let us show another approach based on the fact
that a nonsingular matrix is row-equivalent to the identity matrix (Theorem
2.7). This method has the advantage that it is algorithmic, and hence is easily
implemented on a computer.

Since the jth column of a product AB is AB7, we see that considering the
particular case of AA~! = I leads to

(AA™Y) = A(A™YY = BY

where E7 is the jth column of I. What we now have is the inhomogeneous
system
AX =Y

(or >°; ajjzj = y;) where X = (A71J and Y = E7. As we saw in Section 2.2,
we may solve for the vector X by reducing the augmented matrix to reduced
row echelon form. For the particular case of j = 1 we have

ai; o oaig |1
agr -+ az, |0

aug A =

Gn1 e Ann 0
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and hence the reduced form will be

1 0 0 --- 0 C11
0O 1 0 0 C21
00 0 -+ 1|cm

for some set of scalars c;;. This means that the solution to the system is z; = ¢11,
To = €21, ..., Ty = Cp1. But X = (A71)! = the first column of A~!, and
therefore this last matrix may be written as

1 - 0 a7111

0o --- 1 a71n1

Now, for each j = 1,...,n the system AX = A(A~1)7 = EJ always has the
same matrix of coefficients, and only the last column of the augmented matrix
depends on j. Since finding the reduced row echelon form of the matrix of
coefficients is independent of this last column, it follows that we may solve all
n systems simultaneously by reducing the single matrix

ail e a1n 1 e O

an1 e Ann O e 1
In other words, the reduced form will be

1 O a_lll a 1n

O 1 a_lnl a_lnn

where the matrix A™! = (a™1;;) satisfies AA™! = I since (AA™!)7 = A(A™1) =
EJ is satisfied for each j =1,...,n.

Example 2.12. Let us find the inverse of the matrix A given by

=1 2 1
0 B =2
2 =1 0

We leave it as an exercise for the reader to show that the reduced row echelon
form of

2 0
3 — 0
=1 1

N O =
(el Ol
S O =
(= )
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is
1 0 0|1/6 1/12 7/12
0 1 0|1/3 1/6  1/6
0 0 1(1/2 —-1/4 1/4

and hence A~! is given by

1/6 1/12 7/12
1/3  1/6 1/6
1/2 —1/4 1/4

Exercises
1. Verify the reduced row echelon form of the matrix given in Example 2.12.

2. Find the inverse of a general 2 x 2 matrix. What constraints are there on
the entries of the matrix?

3. Show that a matrix is not invertible if it has any zero row or column.

4. Find the inverse of each of the following matrices:

1 0 2 1 3 4 12 1
@ |2 =1 3| M| 3 -1 6| (¢)|2 5 2
4 18 -1 5 1 1 3 3

5. Use the inverse of the matrix in Exercise 4(c) above to find the solutions
of each of the following systems:

(a) x+2y+ z=10 (b) z4+2y+ z= 2
20+ by +2z=14 20+ by +2z2=—1
z+3y+32=30 r+3y+3z= 6

6. What is the inverse of a diagonal matrix?

7. (a) Prove that an upper triangular matrix is invertible if and only if ev-
ery entry on the main diagonal is nonzero (see Exercise 2.5.9 for the
definition of an upper triangular matrix).

(b) Prove that the inverse of a lower (upper) triangular matrix is lower
(upper) triangular.

8. Find the inverse of the following matrix:

oS oo
O O NN
O W ww
= s
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9. (a) Let A be any 2 x 1 matrix, and let B be any 1 x 2 matrix. Prove that
AB is not invertible.
(b) Repeat part (a) where A is any m x n matrix and B is any n x m
matrix with n < m.

10. Summarize several of our results by proving the equivalence of the follow-
ing statements for any n x n matrix A:

(a) A is invertible.
(b) The homogeneous system AX = 0 has only the zero solution.
(c¢) The system AX =Y has a solution X for every n x 1 matrix Y.

11. Let A and B be square matrices of size n, and assume that A is nonsin-
gular. Prove that rank(AB) = rank(B) = rank(BA).

12. A matrix A is called a left zero divisor if there exists a nonzero matrix
B such that AB = 0, and A is called a right zero divisor if there exists
a nonzero matrix C' such that CA = 0. If A is an m X n matrix, prove
that:

(a) If m < n, then A is a left zero divisor.

(b) If m > n, then A is a right zero divisor.

(c) If m = n, then A is both a left and a right zero divisor if and only if
A is singular.

13. Let A and B be nonsingular symmetric matrices for which AB — BA = 0.
Show that AB, A~'B, AB~! and A~'B~! are all symmetric.

2.7 Elementary Matrices

Recall the elementary row operations «, 3, v described in Section 2.2. We now
let e denote any one of these three operations, and for any matrix A we define
e(A) to be the result of applying the operation e to the matrix A. In particular,
we define an elementary matrix to be any matrix of the form e(I). The great
utility of elementary matrices arises from the following theorem.

Theorem 2.21. If A is any mxXn matriz and e is any elementary row operation,
then

Proof. We must verify this equation for each of the three types of elementary
row operations. First consider an operation of type a. In particular, let a be
the interchange of rows ¢ and j. Then

[e(A))r =Ar fork#£14,j

while
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On the other hand, using (AB)x = ArB we also have
(DAl = [e(D)]xA.

If k 4, j then [e(I)]y = Ii (the kth row of I, not the k x k identity matrix)
so that
[6([)]kA = IkA = Ak.

Written out in full, the rules of matrix multiplication make it easy to see what
it going on:

It A=[0---1---0] : : =[ap - agn ] = Ap. (2.8)
Qm1 Amn
If & =1, then [e(])]; = I; and

Similarly, we see that
[e(I)]JA = IZA = Al
This verifies the theorem for transformations of type «.

For a type [ transformation that multiplies row k by the scalar ¢, we just
have [e(I)]; = I; for i # k and [e(])]r = cIr. Then looking at equation (2.8)
should make it obvious that e(A4) = e(I)A.

We now go on to transformations of type . So, let e be the addition of ¢
times row j to row ¢. Then

e(D]x =1Ir for k#i

and
[6([)]1 = Ii + CIj.
Therefore

and for k # i we have
[8(])]kA = IkA = Ak = [G(A)]k I

If e is of type «a, then rows ¢ and j are interchanged. But this is readily
undone by interchanging the same rows again, and hence e~ ! is defined and is
another elementary row operation. For type 3 operations, some row is multiplied
by a scalar ¢, so in this case e~ ! is simply multiplication by 1/c. Finally, a type
~ operation adds ¢ times row j to row i, and hence e~! adds —c times row j to
row ¢. Thus all three types of elementary row operations have inverses which
are also elementary row operations.

By way of nomenclature, a square matrix A = (a;;) is said to be diagonal if
a;; = 0 for i # j (see Exercise 2.5.4). The most common example of a diagonal
matrix is the identity matrix.



88 CHAPTER 2. LINEAR EQUATIONS AND MATRICES

Theorem 2.22. FEvery elementary matrix is nonsingular, and
()]~ =71 (1).

Furthermore, the transpose of an elementary matrix is an elementary matriz.

Proof. By definition, e(I) is row equivalent to I and hence has the same rank
as I (Theorem 2.4). Thus e(]) is nonsingular since I is nonsingular, and hence
e(I)~! exists. Since it was shown above that e~! is an elementary row operation,
we apply Theorem 2.21 to the matrix e(I) to obtain

e t(De(I) =ee(I)) = 1.
Similarly, applying Theorem 2.21 to e~ (1) yields
e(Ie ™ (I) = e(e™ (1)) = 1.

This shows that e~ 1(I) = [e(I)] L.

Now let e be a type « transformation that interchanges rows ¢ and j (with
i < j). Then the ith row of () has a 1 in the jth column, and the jth row has
a 1 in the ith column. In other words,

le(D)]ij =1=[e(I)];:

while for r, s # i, j we have

and

and

Thus [e(I)]T = e(I) for type a operations.

Since I is a diagonal matrix, it is clear that for a type 3 operation which
simply multiplies one row by a nonzero scalar, we have [e(I)]T = e(I).

Finally, let e be a type « operation that adds ¢ times row j to row ¢. Then
e(I) is just I with the additional entry [e(I)];; = ¢, and hence [e(1)]T is just
I with the additional entry [e(I)];; = c¢. But this is the same as ¢ times row i
added to row j in the matrix I. In other words, [e(1)]7 is just another elementary
matrix. |
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We now come to our main result dealing with elementary matrices. For
ease of notation, we denote an elementary matrix by E rather than by e(I). In
other words, the result of applying the elementary row operation e; to I will be
denoted by the matrix E; = e;(I).

Theorem 2.23. Fvery nonsingular n X n matrix may be written as a product
of elementary n x n matrices.

Proof. It follows from Theorem 2.7 that any nonsingular n x n matrix A is row
equivalent to I,,. This means that I,, may be obtained by applying r successive
elementary row operations to A. Hence applying Theorem 2.21 r times yields

E.---EyA=1,

so that
A=FE ' B ', =E'...E .

The theorem now follows if we note that each E; ™' is an elementary matrix
according to Theorem 2.22 (since F;~* = [e(I)]™' = e Y(I) and e~ ! is an
elementary row operation).

Corollary. If A is an invertible n X n matriz, and if some sequence of elemen-
tary row operations reduces A to the identity matriz, then the same sequence of
row operations reduces the identity matriz to A=1.

Proof. By hypothesis we may write E,. --- E1 A = I. But then multiplying from
the right by A~! shows that A~' = E, --- Ey 1. |

Note this corollary provides another proof that the method given in the
previous section for finding A~1 is valid.

There is one final important property of elementary matrices that we will
need in a later chapter. Let F be an n X n elementary matrix representing any
of the three types of elementary row operations, and let A be an n x n matrix.
As we have seen, multiplying A from the left by E results in a new matrix with
the same rows that would result from applying the elementary row operation to
A directly. We claim that multiplying A from the right by E7 results in a new
matrix whose columns have the same relationship as the rows of EA. We will
prove this for a type 7y operation, leaving the easier type o and [ operations to
the reader (see Exercise 2.7.1).

Let v be the addition of ¢ times row j to row i. Then the rows of E are
given by Ej, = I, for k # i, and E; = I; + cI;. Therefore the columns of ET are
given by

(ETYe =T1F  fork+#1i
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and . . ‘
(ET)' =T"+cl.

Now recall that the kth column of AB is given by (AB)* = AB*. We then have
(AET)k = A(ETYF = AI* = A% for k #i

and
(AET) = A(ET) = A(I' + cl’) = AT' 4+ cAI’ = A" + cAY.

This is the same relationship as that found between the rows of EA where
(EA), = Ay and (EA); = A; + cA; (see the proof of Theorem 2.21).

Exercises

1. Let A be an n X n matrix, and let E be an n X n elementary matrix
representing a type o or 3 operation. Show that the columns of AET
have the same relationship as the rows of FA.

2. Write down 4 x 4 elementary matrices that will induce the following ele-
mentary operations in a 4 X 4 matrix when used as left multipliers. Verify
that your answers are correct.

a) Interchange the 2nd and 4th rows of A.

b) Interchange the 2nd and 3rd rows of A.

¢) Multiply the 4th row of A by 5.

d) Add k times the 4th row of A to the 1st row of A.
(e) Add k times the 1st row of A to the 4th row of A.

(
(
(
(

)

3. Show that any e, (A) may be written as a product of eg(A)’s and e (A)’s.
(The notation should be obvious.)

4. Pick any 4 x 4 matrix A and multiply it from the right by each of the
elementary matrices found in the previous problem. What is the effect on
A?

5. Prove that a matrix A is row equivalent to a matrix B if and only if there
exists a nonsingular matrix P such that B = PA.

6. Reduce the matrix

1 0 2
A=10 3 -1
2 3 3

to the reduced row echelon form R, and write the elementary matrix cor-
responding to each of the elementary row operations required. Find a
nonsingular matrix P such that PA = R by taking the product of these
elementary matrices.

7. Let A be an n X n matrix. Summarize several of our results by proving
that the following are equivalent:
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10.

11.

12.

13.

(a) A is invertible.
(b) A is row equivalent to I,, .
(c) A is a product of elementary matrices.

. Using the results of the previous problem, prove that if A = A; Ay -+ Ag

where each A; is a square matrix, then A is invertible if and only if each
of the A; is invertible.

The remaining problems are all connected, and should be worked in the
given order.

. Suppose that we define elementary column operations exactly as we did

for rows. Prove that every elementary column operation on A can be
achieved by multiplying A on the right by an elementary matrix. [Hint:
You can either do this directly as we did for rows, or by taking transposes
and using Theorem 2.22.]

Show that an m xn reduced row echelon matrix R of rank k can be reduced
by elementary column operations to an m x n matrix C' of the form

1T 0 --- 0 --- 0 07
0 1 0 0 0
C=1]0 0 1 0 0
00 0 0 0
00 -+ 0 -+ 0 0]

where the first £ entries on the main diagonal are 1’s, and the rest are 0’s.

From the previous problem and Theorem 2.3, show that every m xn matrix
A of rank k can be reduced by elementary row and column operations to
the form C'. We call the matrix C' the canonical form of A.

We say that a matrix A is row-column-equivalent (abbreviated r.c.e.)
to a matrix B if A can be transformed into B by a finite number of
elementary row and column operations. Prove:

(a) If A is a matrix, e is an elementary row operation, and ¢’ is an ele-
mentary column operation, then (eA)e’ = e(Ae’).

(b) r.c.e. is an equivalence relation.

(¢) Two m x n matrices A and B are r.c.e. if and only if they have the
same canonical form, and hence if and only if they have the same rank.

If A is any m x n matrix of rank k, prove there exists a nonsingular m x m
matrix P and a nonsingular n x n matrix @ such that PAQ = C (the
canonical form of A).
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14. Prove that two m x n matrices A and B are r.c.e. if and only if there
exists a nonsingular m x m matrix P and a nonsingular n X n matrix Q
such that PAQ = B.

2.8 The LU Factorization®

We now show how elementary matrices can be used to “factor” a matrix into
the product of a lower triangular matrix times an upper triangular matrix. This
factorization can then be used to easily implement the solution to a system of
inhomogeneous linear equations. We will first focus our attention on type [
(multiply a row by a nonzero scalar) and type v (add a scalar multiple of one
row to another) transformations. Afterwards, we will discuss how to handle the
additional complications introduced by the interchange of two rows (the type «
transformations).

Before beginning, let us introduce some very common and useful terminology.
As we mentioned in the last section, a square matrix A = (a;;) € M, (F) is said
to be diagonal if the only nonzero entries are those on the main diagonal. In
other words, a;; = 0 if ¢ # j and each a;; may or may not be zero. A typical
diagonal matrix thus looks like

ay; 0 .- 0
0 asy - 0
0 0 - amm

Referring to Exercise 2.5.9, a square matrix A = (a;;) is said to be upper
triangular if a;; = 0 for ¢ >