Solutions Assignment 9

Verify the relations in (8.52) The semimajor axis is found from

$$
\begin{aligned}
2 a & =r_{\max }+r_{\min }=\frac{r_{o}}{1-\epsilon}+\frac{r_{o}}{1+\epsilon}=\frac{2 r_{o}}{1-\epsilon^{2}} \\
a & =\frac{r_{o}}{1-\epsilon^{2}}
\end{aligned}
$$

The semiminor axis is found from

$$
b=y_{\max }
$$

Since $y=r \sin \phi$ the maximum value for y is determined by setting $d y / d \phi=0$. We find

$$
\begin{aligned}
\frac{d y}{d \phi} & =r_{o} \frac{d}{d \phi} \frac{\sin \phi}{1+\epsilon \cos \phi}=r_{o}\left(\frac{\cos \phi}{1+\epsilon \cos \phi}+\frac{\epsilon \sin ^{2} \phi}{(1+\epsilon \cos \phi)^{2}}\right) \\
\frac{d y}{d \phi} & =r_{o}\left(\frac{\cos \phi(1+\epsilon \cos \phi)+\epsilon\left(1-\cos ^{2} \phi\right)}{(1+\epsilon \cos \phi)^{2}}\right)=r_{o}\left(\frac{\cos \phi+\epsilon}{(1+\epsilon \cos \phi)^{2}}\right)
\end{aligned}
$$

Setting this expression to zero yields $\cos \phi_{o}=-\epsilon$. Hence

$$
y_{\max }=\frac{r_{o} \sin \phi_{o}}{1+\epsilon \cos \phi_{o}}=\frac{r_{o} \sqrt{1-\epsilon^{2}}}{1-\epsilon^{2}}=\frac{r_{o}}{\sqrt{1-\epsilon^{2}}}=b
$$

The offset, d, is simply

$$
\begin{aligned}
d & =r_{\max }-a=\frac{r_{o}}{1-\epsilon}-\frac{r_{o}}{1-\epsilon^{2}} \\
d & =\frac{r_{o}}{1-\epsilon}\left(1-\frac{1}{1+\epsilon}\right)=\frac{\epsilon r_{o}}{1-\epsilon^{2}}=\epsilon a
\end{aligned}
$$

8.19 At perigee and apogee respectively,

$$
r_{p}=y_{p}+R_{e}=\frac{\ell^{2} / G M_{e}}{1+\epsilon}, \text { and } r_{a}=y_{a}+R_{e}=\frac{\ell^{2} / G M_{e}}{1-\epsilon}
$$

Solving for the eccentricity we find

$$
\begin{aligned}
\frac{r_{p}}{r_{a}} & =\frac{1-\epsilon}{1+\epsilon} \rightarrow(1+\epsilon) r_{p} / r_{a}=1-\epsilon \\
\epsilon & =\frac{1-r_{p} / r_{a}}{1+r_{p} / r_{a}}=\frac{r_{a}-r_{p}}{r_{a}+r_{p}}=\frac{y_{a}-y_{p}}{y_{a}+y_{p}+2 R_{e}} \\
\epsilon & =\frac{2700}{3300+2 \times 6400}=.1677
\end{aligned}
$$

From the statement of the problem, as the satellite crosses the y axis $\phi=\pi / 2$ and

$$
\begin{aligned}
r_{y} & =y+R_{e}=\ell^{2} / G M_{e}=(1+\epsilon)\left(y_{p}+R_{e}\right) \\
y & =(1+\epsilon)\left(y_{p}+R_{e}\right)-R_{e}=(1+\epsilon) y_{p}+\epsilon R_{e} \\
y & =1.1677 \times 300+.1677 \times 6400=1424 \mathrm{~km}
\end{aligned}
$$

8.20 The expression for the orbit is

$$
r(\phi)=\frac{\ell^{2} / G M_{\odot}}{1+\epsilon \cos \phi}
$$

At apogee

$$
r_{\max }=\frac{\ell^{2} / G M_{\odot}}{1-\epsilon} \rightarrow r_{\max }(1-\epsilon)=\ell^{2} / G M_{\odot}
$$

Therefore if we hold $r_{\max }$ fixed and let $\ell \rightarrow 0$ then ϵ must approach 1 . For $\epsilon=1$,

$$
r_{\min }=\frac{\ell^{2} / G M_{\odot}}{1+\epsilon}=\ell^{2} / 2 G M_{\odot}
$$

As $\ell \rightarrow 0, r_{\text {min }} \rightarrow 0$ as well. With this analysis it is clear that if $r_{\max }$ is fixed and ℓ is small then the eccentricity is close to 1 . This is an orbit for which the semimajor axis is much larger than the semiminor axis. The semimajor axis is expressed as

$$
2 a=r_{\max }+r_{\min }=\frac{\ell^{2} / G M_{\odot}}{1-\epsilon}+\frac{\ell^{2} / G M_{\odot}}{1+\epsilon}=r_{\max }+\frac{1-\epsilon}{1+\epsilon} r_{\max }=r_{\max } \frac{2}{1+\epsilon}
$$

For ϵ very close to $1, a \simeq r_{\max } / 2$.
8.21 (b) Kepler's third law states

$$
\tau^{2}=\frac{4 \pi^{2}}{G M_{\odot}} a^{3}
$$

For the case described in $8.20, a \simeq r_{\max } / 2$. Hence in terms of $r_{\max }$ Kepler's third law becomes

$$
\tau^{2}=\frac{\pi^{2}}{2 G M_{\odot}} r_{\max }^{3}
$$

(c) For this orbit the total time to fall from $r=r_{\max }$ (where its total energy is just its potential energy) is

$$
\begin{aligned}
T & =-\sqrt{\frac{\mu}{2}} \int_{r_{\max }}^{0} \frac{d r}{\sqrt{U\left(r_{\max }\right)-U(r)}}=-\sqrt{\frac{\mu}{2}} \int_{r_{\max }}^{0} \frac{d r}{\sqrt{-G \mu M_{\odot} / r_{\max }+G \mu M_{\odot} / r}} \\
T & =-\sqrt{\frac{1}{2 G M_{\odot}}} \int_{r_{\max }}^{0} \frac{d r}{\sqrt{-1 / r_{\max }+1 / r}}=-\sqrt{\frac{1}{2 G M_{\odot}}} \int_{r_{\max }}^{0} \frac{\sqrt{r} d r}{\sqrt{1-r / r_{\max }}}
\end{aligned}
$$

The minus sign is used as the radial velocity is negative (the radius is decreasing). Defining

$$
r=r_{\max } \cos ^{2} \theta
$$

the integral becomes

$$
\begin{aligned}
T & =\sqrt{\frac{1}{2 G M_{\odot}}} r_{\max }^{3 / 2} \int_{0}^{\pi / 2} \frac{\cos \theta(2 \sin \theta \cos \theta d \theta)}{\sin \theta}=\sqrt{\frac{2}{G M_{\odot}}} r_{\max }^{3 / 2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta \\
T & =\sqrt{\frac{2}{G M_{\odot}}} r_{\max }^{3 / 2} \frac{\pi}{4}=\sqrt{\frac{1}{8 G M_{\odot}}} \pi r_{\max }^{3 / 2}
\end{aligned}
$$

This comet approaches the Sun on a nearly radial line. As it reaches the Sun it makes a U turn and returns.
(d,e) The period for this orbit is

$$
\tau=2 T=\sqrt{\frac{1}{2 G M_{\odot}}} \pi r_{\max }^{3 / 2}
$$

Squaring both sides yields

$$
\tau^{2}=\frac{\pi^{2}}{2 G M_{\odot}} r_{\max }^{3}
$$

which is in exact agreement with part (b).
$8.23(\mathbf{a}, \mathbf{b})$ The potential energy for a particle of mass m in the force field

$$
F(r)=-\frac{k}{r^{2}}+\frac{\lambda}{r^{3}}
$$

is

$$
U(r)=-\frac{k}{r}+\frac{\lambda}{2 r^{2}}
$$

If the particle moves with an angular momentum L then the expression for the conservation of energy is

$$
\begin{aligned}
E & =\frac{1}{2} m \dot{r}^{2}+U(r)+\frac{L^{2}}{2 m r^{2}}=\frac{1}{2} m \dot{r}^{2}-\frac{k}{r}+\frac{\lambda}{2 r^{2}}+\frac{L^{2}}{2 m r^{2}} \\
E & =\frac{1}{2} m \dot{r}^{2}-\frac{k}{r}+\frac{L^{2}+m \lambda}{2 m r^{2}}
\end{aligned}
$$

As usual we $r=1 / u$ or equivalently $u=1 / r$. Also we note that $d / d t=\phi d / d \phi$. First consider the radial kinetic energy term

$$
\begin{aligned}
\dot{r} & =\frac{d r}{d u} \frac{d u}{d t}=-\frac{1}{u^{2}} \dot{\phi} \frac{d u}{d \phi}=-\frac{L u^{2}}{m} \frac{1}{u^{2}} \frac{d u}{d \phi}=-\frac{L}{m} \frac{d u}{d \phi} \\
\dot{r}^{2} & =\left(\frac{L}{m}\right)^{2}\left(\frac{d u}{d \phi}\right)^{2} .
\end{aligned}
$$

Substituting this result into the conservation of energy in the special case where $k=0$ we find

$$
\begin{aligned}
\frac{L^{2}}{2 m}\left(\frac{d u}{d \phi}\right)^{2}+\frac{L^{2}+m \lambda}{2 m} u^{2} & =E \\
\left(\frac{d u}{d \phi}\right)^{2}+\left(1+m \lambda / L^{2}\right) u^{2} & =\frac{2 m}{L^{2}} E \\
\frac{1}{1+m \lambda / L^{2}}\left(\frac{d u}{d \phi}\right)^{2}+u^{2} & =\frac{2 m}{L^{2}+m \lambda} E
\end{aligned}
$$

From observation the solution to this nonlinear differential equation is
$u=u_{0} \cos \beta \phi$, with $\beta=\sqrt{1+m \lambda / L^{2}}$ and $u_{0}=\sqrt{2 m E /\left(L^{2}+m \lambda\right)}=\sqrt{2 m E / \beta^{2} L^{2}}$.
With k nonzero the expression for the conservation of energy is

$$
\frac{L^{2}}{2 m}\left(\frac{d u}{d \phi}\right)^{2}+\frac{L^{2}+m \lambda}{2 m} u^{2}-k u=E
$$

Going through the same procedure as that with $k=0$ we find

$$
\begin{aligned}
\frac{1}{1+m \lambda / L^{2}}\left(\frac{d u}{d \phi}\right)^{2}+u^{2}-\frac{2 m k}{L^{2}+m \lambda} u & =\frac{2 m}{L^{2}+m \lambda} E \\
\frac{1}{\beta^{2}}\left(\frac{d u}{d \phi}\right)^{2}+u^{2}-\frac{2 m k}{\beta^{2} L^{2}} u & =\frac{2 m}{\beta^{2} L^{2}} E
\end{aligned}
$$

Completing the square results in

$$
\begin{aligned}
\frac{1}{\beta^{2}}\left(\frac{d u}{d \phi}\right)^{2}+u^{2}-\frac{2 m k}{\beta^{2} L^{2}} u+\frac{m^{2} k^{2}}{\beta^{4} L^{4}} & =\frac{2 m}{\beta^{2} L^{2}} E+\frac{m^{2} k^{2}}{\beta^{4} L^{4}} \\
\frac{1}{\beta^{2}}\left(\frac{d u}{d \phi}\right)^{2}+\left(u-\frac{m k}{\beta^{2} L^{2}}\right)^{2} & =\frac{2 m}{\beta^{2} L^{2}} E+\frac{m^{2} k^{2}}{\beta^{4} L^{4}}
\end{aligned}
$$

From the result for the case with $k=0$ we see that the solution is now

$$
\begin{aligned}
u & =\frac{m k}{\beta^{2} L^{2}}+\sqrt{\frac{2 m}{\beta^{2} L^{2}} E+\frac{m^{2} k^{2}}{\beta^{4} L^{4}}} \cos \beta \phi \\
u & =\frac{m k}{\beta^{2} L^{2}}\left(1+\sqrt{1+2 \beta^{2} L^{2} E / m k^{2}} \cos \beta \phi\right)
\end{aligned}
$$

where again

$$
\beta=\sqrt{1+m \lambda / L^{2}}
$$

Inverting this expression we find

$$
r(\phi)=\frac{\beta^{2} L^{2} / m k}{1+\sqrt{1+2 \beta^{2} L^{2} E / m k^{2}} \cos \beta \phi}
$$

This is of the form

$$
r(\phi)=\frac{c}{1+\epsilon \cos \beta \phi},
$$

where

$$
c=\beta^{2} L^{2} / m k \text { and } \epsilon=\sqrt{1+2 \beta^{2} L^{2} E / m k^{2}} .
$$

(c) This orbit is closed whenever $\beta=n / m$, a rational number. Note that as $\lambda \rightarrow 0$ the parameter $\beta \rightarrow 1$ and the solution is that for a Kepler orbit.
8.29 The kinetic energy of the Earth would remain unchanged. However the potential energy would immediately be halved. In a circular orbit the virial applies not just on average but for all time. Hence prior to the Sun losing its mass

$$
T=\frac{n}{2} U=-\frac{1}{2} U, \text { and } E=T+U=U / 2
$$

Since U is negative this is the energy of a bound particle. If the Sun lost half its mass then relative to its new potential energy $T=-U$. Now the total energy is

$$
E=T+U=0
$$

The Earth is just barely unbound.
8.35 Assume that the initial radius for the circular orbit is R_{1}. After a backward thrust given by $\lambda=v_{2} / v_{1}<1$, the orbit will become an ellipse with the rocket located at the apogee. Hence

$$
R_{1}=\ell_{1}^{2} / G M=\frac{\ell_{2}^{2} / G M}{1-\epsilon_{2}}=\frac{\lambda^{2} \ell_{1}^{2} / G M}{1-\epsilon_{2}}=\frac{\lambda^{2}}{1-\epsilon_{2}} R_{1}
$$

This implies that

$$
\lambda^{2}=1-\epsilon_{2} \rightarrow \epsilon_{2}=1-\lambda^{2}
$$

At the perigee the distance from the Sun is R_{3} given by

$$
R_{3}=\frac{\ell_{2}^{2} / G M}{1+\epsilon_{2}}=\frac{\lambda^{2} \ell_{1}^{2} / G M}{2-\lambda^{2}}=\frac{\lambda^{2}}{2-\lambda^{2}} R_{1}
$$

Solving for λ^{2} we find

$$
\left(2-\lambda^{2}\right) R_{3}=\lambda^{2} R_{1} \rightarrow \lambda^{2}=\frac{2 R_{3}}{R_{1}+R_{3}} .
$$

Since $R_{3}=R_{1} / 4, \lambda=\sqrt{2 / 5}=0.6325$.
To obtain a circular orbit at this radius an additional backward thrust is required at the perigee. Since R_{3} is held fixed we find

$$
\begin{aligned}
R_{3} & =\frac{\ell_{2}^{2} / G M}{1+\epsilon_{2}}=\ell_{3}^{2} / G M=\lambda^{\prime 2} \ell_{2}^{2} / G M \\
\lambda^{\prime 2} & =\frac{1}{1+\epsilon_{2}}=\frac{1}{2-\lambda^{2}}=\frac{R_{1}+R_{3}}{2 R_{1}}
\end{aligned}
$$

Again $R_{3}=R_{1} / 4$ so that $\lambda^{\prime}=\sqrt{5 / 8}=0.7906$.
The final velocity is

$$
\begin{aligned}
v_{3} & =\lambda^{\prime} \frac{v_{2}(\text { per })}{v_{2}(\text { apo })} \lambda v_{1}=\lambda^{\prime} \frac{\ell_{2} / R_{3}}{\ell_{2} / R_{1}} \lambda v_{1}=\sqrt{\frac{R_{1}+R_{3}}{2 R_{1}}} \frac{R_{1}}{R_{3}} \sqrt{\frac{2 R_{3}}{R_{1}+R_{3}}} v_{1} \\
v_{3} & =\sqrt{R_{1} / R_{3}} v_{1}=2 v_{1}
\end{aligned}
$$

11.6

(a) The Lagrangian for this system $\left(m_{1}=m_{2}=m, k_{1}=3 k\right.$, and $\left.k_{2}=2 k\right)$
is

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)-\frac{1}{2} 3 k x_{1}^{2}-\frac{1}{2} 2 k\left(x_{2}-x_{1}\right)^{2} .
$$

Hence the equations of motion are

$$
\begin{aligned}
& m \ddot{x}_{1}=-3 k x_{1}-2 k\left(x_{1}-x_{2}\right)=-5 k x_{1}+2 k x_{2} \\
& m \ddot{x}_{2}=-2 k\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Assuming a solution of the form

$$
\mathbf{z}=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] e^{i \omega t}
$$

where $\mathbf{x}=\operatorname{Re} \mathbf{z}$, we find

$$
\left[\begin{array}{cc}
5 k-m \omega^{2} & -2 k \\
-2 k & 2 k-m \omega^{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

A nontrivial solution requires the secular equation,

$$
\operatorname{det}\left[\begin{array}{cc}
5 k-m \omega^{2} & -2 k \\
-2 k & 2 k-m \omega^{2}
\end{array}\right]=m^{2} \omega^{4}-7 k m \omega^{2}+6 k^{2}=0
$$

to be satisfied. The normal mode frequencies are

$$
\omega_{1}^{2}=k / m, \text { and } \omega_{2}^{2}=6 k / m
$$

(b) To find the ratios of a_{1} and a_{2} for ω_{1} we find

$$
\left[\begin{array}{cc}
5-1 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

Hence

$$
2 a_{1}=a_{2} .
$$

In this mode the oscillations are in phase with the amplitude of x_{2} being twice that of x_{1}.

To find the ratios of a_{1} and a_{2} for ω_{1} we find

$$
\left[\begin{array}{cc}
5-6 & -2 \\
-2 & -4
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -4
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

Hence

$$
a_{1}=-2 a_{2}
$$

In this mode the oscillations are exactly out of phase with the amplitude of x_{1} being twice that of x_{2}.
11.9 (a) The equations of motion when $m_{1}=m_{2}=m$ and $k_{1}=k_{2}=$ $k_{3}=k$ are

$$
\begin{aligned}
& m \ddot{x}_{1}=-2 k x_{1}+k x_{2} \\
& m \ddot{x}_{2}=-2 k x_{2}+k x_{1}
\end{aligned}
$$

The normal coordinates are

$$
\xi_{1}=\left(x_{1}+x_{2}\right) / 2 \text { and } \xi_{2}=\left(x_{1}-x_{2}\right) / 2
$$

Hence

$$
x_{1}=\xi_{1}+\xi_{2} \quad \text { and } \quad x_{2}=\xi_{1}-\xi_{2}
$$

Substituting this result into the equations of motion leads to

$$
\begin{aligned}
& m\left(\ddot{\xi}_{1}+\ddot{\xi}_{2}\right)=-2 k\left(\xi_{1}+\xi_{2}\right)+k\left(\xi_{1}-\xi_{2}\right)=-k \xi_{1}-3 k \xi_{2} \\
& m\left(\ddot{\xi}_{1}-\ddot{\xi}_{2}\right)=-2 k\left(\xi_{1}-\xi_{2}\right)+k\left(\xi_{1}+\xi_{2}\right)=.-k \xi_{1}+3 k \xi_{2}
\end{aligned}
$$

Adding and subtracting these two expressions results in

$$
\begin{aligned}
m \ddot{\xi}_{1} & =-k \xi_{1} \\
\ddot{\xi}_{2} & =-3 k \xi_{2}
\end{aligned}
$$

(b) The solutions are

$$
\xi_{1}=A_{1} \cos \left(\omega_{1} t-\delta_{1}\right) \quad \text { and } \quad \xi_{2}=A_{2} \cos \left(\omega_{2} t-\delta_{2}\right)
$$

where $\omega_{1}^{2}=k / m$ and $\omega_{2}^{2}=3 k / m$. The general solution for the displacements is

$$
\begin{aligned}
& \mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\xi_{1}(t)+\xi_{2}(t) \\
\xi_{1}(t)-\xi_{2}(t)
\end{array}\right] \\
& \mathbf{x}(t)=A_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cos \left(\omega_{1} t-\delta_{1}\right)+A_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \cos \left(\omega_{2} t-\delta_{2}\right)
\end{aligned}
$$

