
Solutions Assignment 8

7.38 (a) Using spherical polar coordinates for an inverted cone with a half
angle � the relation between z and r is z = r cos�:
The Cartesian coordinates are

x = r sin� cos�; y = r sin� sin�; z = r cos�:

The Cartesian components of the velocity are

�
x =

�
r sin� cos�� r sin� sin�

�
�;

�
y =

�
r sin� sin�+ r sin� cos�

�
�;

�
z =

�
r cos�:

The kinetic energy is then

T =
1

2
m

�
�
x
2
+

�
y
2
+

�
z
2
�
=
1

2
m

�
�
r
2
+ r2 sin2 �

�
�
2�

In a uniform gravitational �eld the potential energy is U = mgz = mgr cos�:
Hence the Lagrangian is

L = 1

2
m

�
�
r
2
+ r2 sin2 �

�
�
2�
�mgr cos�:

(b) The Lagrange equations of motion are

r :
@L
@r

= mr sin2 �
�
�
2

�mg cos� = d

dt
m
�
r = m

��
r

� :
@L
@�

= 0! @L

@
�
�
= mr2 sin2 �

�
� = `z (const.)

Rewriting the radial equation we �nd

`2z
m2r3 sin2 �

� g cos� = ��
r:

If `z = 0 the the acceleration parallel to the surface of the cone is
��
z = �g cos�

which is exactly what you would obtain sliding down a frictionless surface with
this incline. At equilibrium

��
r = 0 and

`2z
m2r3o sin

2 �
= g cos�! r3o =

`2z
m2g sin2 � cos�

:

(c) If the particle is in equilibrium and given a slight kick so that r = ro+�;
the radial equation becomes

�3 `2z
m2r4o sin

2 �
� =

��
�:

The solution to this equation is a stable simple harmonic oscillator with fre-
quency

!2 = 3
`2z

m2r4o sin
2 �

=
3g cos�

ro

`2z
m2gr3o sin

2 � cos�
=
3g cos�

ro
:
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7.41 In cylindrical polar coordinates with z = k�2 the Cartesian coordi-
nates are

x = � cos!t; y = � sin!t; z = k�2:

The Cartesian components for the velocity are

�
x =

�
� cos!t� �! sin!t; y = �

x =
�
� sin!t+ �! cos!t;

�
z = 2k�

�
�

Hence the kinetic energy is

T =
1

2
m

�
�
�
2
+ �2!2 + 4k�2

�
�
2
�

Since the potential energy is U = mgz = mgk�2 the Lagrangian is

L = 1

2
m

�
�
�
2
+ �2!2 + 4k�2

�
�
2
�
�mgk�2:

The equation of motion is

@L
@�

= m�!2 + 4mk�
�
�
2
� 2mgk� = m d

dt

� �
�+ 4k�2

�
�
�

�!2 + 4k�
�
�
2
� 2gk� =

�
1 + 4k�2

� ��
�+ 8k�

�
�
2

�!2 � 2gk� =
�
1 + 4k�2

� ��
�+ 4k�

�
�
2
:

At equilibrium
��
� =

�
� = 0: This means�

!2 � 2gk
�
�o = 0:

One of the solutions occurs at �o = 0: For small �uctuations, � = �; about this
position we �nd �

!2 � 2gk
�
� =

��
�

This is stable only if 2gk > !2: In that case the system oscillates at a frequency

2 = 2gk � !2:

7.47 (a) The transformation between the Cartesian coordinates for N par-
ticles and the generalized coordinates only depends on a single generalized co-
ordinate. Hence �!r � = �!r � (q) : This allows us to write the kinetic energy as

T =
1

2

X
�

m�
@�!r �
@q

� @
�!r �
@q

�
q
2
=
1

2
A
�
q
2
;

where A is de�ned as

A �
X
�

m�
@�!r �
@q

� @
�!r �
@q

:
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With this de�nition is it clear that A is a positive de�nite quantity and may
depend on q but not

�
q. The Lagrangian is then

L=1
2
A
�
q
2
� U (q) :

The Lagrange equation of motion is

@L
@q

=
1

2

dA

dq

�
q
2
� dU
dq

=
d

dt

�
A (q)

�
q
�
=
dA

dq

�
q
2
+A

��
q:

The equation of motion then becomes

A
��
q = �1

2

dA

dq

�
q
2
� dU
dq
:

(b)
At equilibrium

��
q =

�
q = 0: Hence

dU (qo)

dq
= 0;

where qo is a position of equilibrium (there may be no solutions or numerous
possible solutions).

(c) Given a solution qo then for small �uctuations about qo; q = qo + � we
�nd

A
��
� = �@U (qo + �)

@q
= �d

2U (qo)

dq2
�:

This is a stable equilibrium only if

d2U (qo)

dq2
> 0;

which implies that U (qo) is at least a local minimum for U .

7.50 The modi�ed Lagrangian (with Lagrange multiplier) for this problem
is

L = 1

2
m1

�
x
2
+
1

2
m2

�
y
2
+m2gy + � (x+ y) :

The modi�ed Lagrange equations for x and y are

x : � = m1
��
x

y : m2g + � = m2
��
y

From the constraint we must have
��
x = ���y. Multiplying the x equation by �1

and adding the two expressions while taking into account that
��
x = ���y; we �nd

m2g = (m2 +m1)
��
y

��
y =

m2

m2 +m1
g:
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The Lagrange multiplier is given by

� = m2

���
y � g

�
= m2

�
m2

m2 +m1
� 1
�
g

� =
m1m2

m2 +m1
g:

Since

F cstrx = � (t)
@f

@x
; and

@f

@x
= 1;

we �nd that the constraint force is

F cstr = � =
m1m2

m2 +m1
g:

This is the tension in the rope. All of these results match those obtained from
free body diagrams using Newton�s second law.

7.51 (a) The Lagrangian for the simple pendulum in terms of x and y (y
positive in the downward direction) subject to the constraint

p
x2 + y2 = ` is

L = 1

2
m

�
�
x
2
+

�
y
2
�
+mgy + �

p
x2 + y2:

The modi�ed Lagrange equations are

�
xp

x2 + y2
= m

��
x! �

x

`
= m

��
x;

mg + �
yp

x2 + y2
= m

��
y ! mg + �

y

`
= m

��
y:

Now
x=` = sin� and y=` = cos�;

Hence

��
x = `

d

dt

�
cos�

�
�

�
= `

�
� sin�

�
�
2

+ cos�
��
�

�
;

��
y = `

d

dt

�
� sin�

�
�

�
= `

�
� cos�

�
�
2

� sin�
��
�

�
:

The two equations of motion are now

� sin� = m`

�
� sin�

�
�
2

+ cos�
��
�

�
;

mg + � cos� = m`

�
� cos�

�
�
2

� sin�
��
�

�
:
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If we multiply the x equation by cos�; the y equation by � sin�; and add we
�nd

�mg sin� = m`
��
�;

which is the usual pendulum equation.
To solve for the Lagrange multiplier multiply the x equation by sin�; the y

equation by cos�; and add with the result

mg cos�+ � = �m`
�
�
2

! � = �mg cos��m`
�
�
2

:

Since

F cstrx = � (t)
@f

@x
and F cstry = � (t)

@f

@y

we �nd
F cstrx = �

x

`
= � sin� and F cstry = �

y

`
= � cos�:

Hence the magnitude of the constraint force is F cstr = j�j = mg cos� +m`
�
�
2

:
This is the expression for the tension in the rod.

Area under string The maximum area under a string of length ` can be
found via the method of Lagrange multipliers. Expressing the area as

A =

Z
ydx+ �

Z p
1 + y02dx:

The �rst integral of the Euler Lagrange equation results in

y + �
p
1 + y02 � �y0 y0p

1 + y02
= yo ! (y � yo)

p
1 + y02 = ��

y02 =
�2 � (y � yo)2

(y � yo)2
! (y � yo) dyq

�2 � (y � yo)2
= �dx

(x� xo)2 + (y � yo)2 = �2 ! y = yo +

q
�2 � (x� xo)2

The last expression is the equation of a semicircle of radius � = R whose center
is located at (xo; yo) : If the circle is to pass through the origin (0; 0) then

0 = yo +
p
R2 � x2o;

and both yo and the term inside the square root must vanish. This means that
yo = 0 and xo = R: The expression is then

y =

q
R2 � (x�R)2:

The area under this semicircle is A = �R2=2 and the length of the string is
` = �R:
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8.3 The Lagrangian for this problem is (y is measured upward from the
table top) is

L = 1

2
m1

�
y
2

1 +
1

2
m2

�
y
2

2 �
1

2
k (y1 � y2 � L)2 �m1gy1 �m2gy2:

De�ning the center of mass coordinate, Y = (m1y1 +m2y2) = (m1 +m2) ; and
the relative coordinate, y = y1 � y2; the Lagrangian takes the form

L =
1

2
M

�
Y
2

+
1

2
�
�
y
2
� 1
2
k (y � L)2 �m1g

�
Y +

m2

M
y
�
�m2g

�
Y � m1

M

�
L =

1

2
M

�
Y
2

+
1

2
�
�
y
2
� 1
2
k (y � L)2 �MgY:

The two Lagrange equations of motion with their solutions are

Y :
@L
@Y

= �Mg =M
��
Y ! Y (t) = �1

2
gt2 + V0t+ Y0

y :
@L
@y

= �k (y � L) = ���y ! y = L+A sin (!t� �) ;

where !2 = k=�: The intial conditions for the relative coordinate lead to

y (t = 0) = L! � = 0;
�
y (t = 0) = �v0 ! A = �v0=!;

y (t) = L� v0=! sin!t:

The initial conditions for the center of mass coordinate lead to

Y (t = 0) =
m2L

M
= Y0

�
Y (t = 0) =

m1v0
M

= V0

Y (t) =
m2L

M
+
m1v0
M

t� 1
2
gt2:

8.9 (a) The Lagrangian in terms of�!r 1 and�!r 2 for this problem (m1 = m2 = m)
is

L = 1

2
m

 
��!r
2

1 +
��!r
2

2

!
� 1
2
k (j�!r 1 ��!r 2j � L)2 :

In terms of
�!
R and �!r the Lagrangian is

L = m
��!
R

2

+
1

4
m

��!r
2

� 1
2
k (r � L)2 = LCM + Lrel:
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(c) In terms of r and � the Lagrangian for the relative coordinates is

Lrel =
1

4
m

�
�
r
2
+ r2

�
�
2�
� 1
2
k (r � L)2 :

The two equations of motion are

� :
@Lrel
@
�
�

=
1

2
mr2

�
� = ` = const

r :
@Lrel
@r

=
1

2
mr

�
�
2

� k (r � L) = 1

2
m
��
r

r :
1

2

`2

mr3
� k (r � L) = 1

2
m
��
r:

If r = ro and
�
r = 0 then the motion is a circle with radius ro where

1

2

`2

mr3o
= k (ro � L) :

If
�
� = 0 then the angular momentum vanishes, ` = 0; and

�k (r � L) = 1

2
m
��
r:

This is the equation for oscillating motion about r = L with a frequency !2 =
2k=m:

8.12 (a) The e¤ective potential is

Ueff = �
G�M

r
+
1

2

L2

�r2
= �

�
�GM

r
+
1

2

`2

r2

�
:

To �nd the radius for a circular orbit we must satisfy

dUeff (ro)

dr
=
GM

r2o
� `2

r3o
= 0! ro =

`2

GM
:

(b) The second derivative evaluated at this radius is

d2Ueff (ro)

dr2
= �

�
�2GM

r3o
+ 3

`2

r4o

�
= �

�
GM

`2

�3
(�2GM + 3GM) = �

(GM)
4

`6
:

The curvature is positive, hence circular orbits are stable. The frequency small
radial oscillations about ro is

! =
2�

�osc
=

q
(GM)

4
=`6 = (GM)

2
=`3:
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The orbital rate,
�
�; is found from

` = r2o
�
�!

�
� = `=r2o

�
� =

2�

�orb
= ` (GM)

2
=`4 = (GM)

2
=`3:

The angular velocities are identical, which means the orbital period is equal to
the period of radial oscillations. Hence the orbit must be closed.

8.14 (a) For a potential U = krn; the force is given by

F = �dU
dr

= �nkrn�1:

As long as nk > 0 this force is attractive.

(b) The e¤ective potential is

Ueff = kr
n +

L2

2�r2
:

At equilibrium (circular orbit) dUeff=dr vanishes, hence

dUeff (ro)

dr
= nkrn�1o � L2

�r3o
= 0! rn+2o =

L2

�nk
:

To determine if this orbit is stable we need to �nd d2Ueff=dr2;

d2Ueff (ro)

dr2
= n (n� 1) krn�2o + 3

L2

�r4o
=
1

r4o

�
n (n� 1) krn+2o + 3L2=�

�
d2Ueff (ro)

dr2
=

1

r4o

�
n (n� 1) k L

2

�nk
+ 3L2=�

�
=
1

r4o

�
(n+ 2)

L2

�

�
:

Hence this is greater than zero only if n > �2:

(c) The oscillation frequency is

! =
L

�r2o

p
n+ 2:

The orbital frequency is
�
� =

L

�r2o
:

Hence the ratio of the periods is

�osc = �orb=
p
n+ 2:
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This is consistent with the result in problem 8.12 for which n = �1: Clearly ifp
n+ 2 is a rational number, n=m; then

n�osc = m�orb = T:

This time T is the time required for the radial oscillations to undergo n complete
oscillations. If this is equal to an integer number of orbital periods then the
position of the orbit is idential to its position at time T previously and the orbit
is closed. Note if n = �1; 2; 7 then

p
n+ 2 = 1; 2; 3: For these values the period

for the radial oscillations is equal to, 1=2, or 1=3 of the orbital period. These
orbits are closed.

9


