Solutions Assignment 8

7.38 (a) Using spherical polar coordinates for an inverted cone with a half angle α the relation between z and r is $z = r \cos \alpha$.

The Cartesian coordinates are

 $x = r \sin \alpha \cos \phi, \ y = r \sin \alpha \sin \phi, \ z = r \cos \alpha.$

The Cartesian components of the velocity are

 $\dot{x} = \dot{r}\sin\alpha\cos\phi - r\sin\alpha\sin\phi\phi, \ \dot{y} = \dot{r}\sin\alpha\sin\phi + r\sin\alpha\cos\phi\phi, \ \dot{z} = \dot{r}\cos\alpha.$

The kinetic energy is then

$$T = \frac{1}{2}m\left(\dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2}\right) = \frac{1}{2}m\left(\dot{r}^{2} + r^{2}\sin^{2}\alpha\phi^{2}\right)$$

In a uniform gravitational field the potential energy is $U = mgz = mgr \cos \alpha$. Hence the Lagrangian is

$$\mathcal{L} = \frac{1}{2}m\left(\dot{r}^2 + r^2\sin^2\alpha\phi^2\right) - mgr\cos\alpha.$$

(b) The Lagrange equations of motion are

$$r : \frac{\partial \mathcal{L}}{\partial r} = mr \sin^2 \alpha \phi^2 - mg \cos \alpha = \frac{d}{dt} mr = mr$$
$$\phi : \frac{\partial \mathcal{L}}{\partial \phi} = 0 \to \frac{\partial \mathcal{L}}{\partial \phi} = mr^2 \sin^2 \alpha \phi = \ell_z \quad (\text{const.})$$

Rewriting the radial equation we find

$$\frac{\ell_z^2}{m^2 r^3 \sin^2 \alpha} - g \cos \alpha = \ddot{r}.$$

If $\ell_z = 0$ the the acceleration parallel to the surface of the cone is $\ddot{z} = -g \cos \alpha$ which is exactly what you would obtain sliding down a frictionless surface with this incline. At equilibrium $\ddot{r} = 0$ and

$$\frac{\ell_z^2}{m^2 r_o^3 \sin^2 \alpha} = g \cos \alpha \to r_o^3 = \frac{\ell_z^2}{m^2 g \sin^2 \alpha \cos \alpha}$$

(c) If the particle is in equilibrium and given a slight kick so that $r = r_o + \epsilon$, the radial equation becomes

$$-3\frac{\ell_z^2}{m^2 r_o^4 \sin^2 \alpha} \epsilon = \overset{\cdots}{\epsilon}.$$

The solution to this equation is a stable simple harmonic oscillator with frequency

$$\omega^2 = 3 \frac{\ell_z^2}{m^2 r_o^4 \sin^2 \alpha} = \frac{3g \cos \alpha}{r_o} \frac{\ell_z^2}{m^2 g r_o^3 \sin^2 \alpha \cos \alpha} = \frac{3g \cos \alpha}{r_o}.$$

7.41 In cylindrical polar coordinates with $z = k\rho^2$ the Cartesian coordinates are

$$x = \rho \cos \omega t, \ y = \rho \sin \omega t, \ z = k \rho^2.$$

The Cartesian components for the velocity are

$$\dot{x} = \dot{\rho}\cos\omega t - \rho\omega\sin\omega t, \ y = \dot{x} = \dot{\rho}\sin\omega t + \rho\omega\cos\omega t, \ \dot{z} = 2k\rho\dot{\rho}$$

Hence the kinetic energy is

$$T = \frac{1}{2}m\left(\dot{\rho}^{2} + \rho^{2}\omega^{2} + 4k\rho^{2}\dot{\rho}^{2}\right)$$

Since the potential energy is $U = mgz = mgk\rho^2$ the Lagrangian is

$$\mathcal{L} = \frac{1}{2}m\left(\stackrel{\cdot}{\rho}^{2} + \rho^{2}\omega^{2} + 4k\rho^{2}\stackrel{\cdot}{\rho}^{2}\right) - mgk\rho^{2}.$$

The equation of motion is

$$\frac{\partial \mathcal{L}}{\partial \rho} = m\rho\omega^2 + 4mk\rho\dot{\rho}^2 - 2mgk\rho = m\frac{d}{dt}\left(\dot{\rho} + 4k\rho^2\dot{\rho}\right)$$
$$\rho\omega^2 + 4k\rho\dot{\rho}^2 - 2gk\rho = \left(1 + 4k\rho^2\right)\ddot{\rho} + 8k\rho\dot{\rho}^2$$
$$\rho\omega^2 - 2gk\rho = \left(1 + 4k\rho^2\right)\ddot{\rho} + 4k\rho\dot{\rho}^2.$$

At equilibrium $\dot{\rho} = \dot{\rho} = 0$. This means

$$\left(\omega^2 - 2gk\right)\rho_o = 0.$$

One of the solutions occurs at $\rho_o = 0$. For small fluctuations, $\rho = \epsilon$, about this position we find

$$\left(\omega^2 - 2gk\right)\epsilon = \ddot{\epsilon}$$

This is stable only if $2gk > \omega^2$. In that case the system oscillates at a frequency $\Omega^2 = 2gk - \omega^2$.

7.47 (a) The transformation between the Cartesian coordinates for N particles and the generalized coordinates only depends on a single generalized coordinate. Hence $\vec{r}_{\alpha} = \vec{r}_{\alpha}(q)$. This allows us to write the kinetic energy as

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \frac{\partial \overrightarrow{r}_{\alpha}}{\partial q} \cdot \frac{\partial \overrightarrow{r}_{\alpha}}{\partial q} \dot{q}^{2} = \frac{1}{2} A \dot{q}^{2},$$

where A is defined as

$$A \equiv \sum_{\alpha} m_{\alpha} \frac{\partial \overrightarrow{r}_{\alpha}}{\partial q} \cdot \frac{\partial \overrightarrow{r}_{\alpha}}{\partial q}.$$

With this definition is it clear that A is a positive definite quantity and may depend on q but not \dot{q} . The Lagrangian is then

$$\mathcal{L} = \frac{1}{2}Aq^{2} - U(q)$$

The Lagrange equation of motion is

$$\frac{\partial \mathcal{L}}{\partial q} = \frac{1}{2} \frac{dA}{dq} \dot{q}^2 - \frac{dU}{dq} = \frac{d}{dt} \left(A(q) \dot{q} \right) = \frac{dA}{dq} \dot{q}^2 + A \ddot{q}.$$

The equation of motion then becomes

$$\ddot{Aq} = -\frac{1}{2}\frac{dA}{dq}\dot{q}^2 - \frac{dU}{dq}.$$

(b)

At equilibrium $\ddot{q} = \dot{q} = 0$. Hence

$$\frac{dU\left(q_{o}\right)}{dq} = 0,$$

where q_o is a position of equilibrium (there may be no solutions or numerous possible solutions).

(c) Given a solution q_o then for small fluctuations about q_o , $q = q_o + \epsilon$ we find

$$\ddot{A\epsilon} = -\frac{\partial U(q_o + \epsilon)}{\partial q} = -\frac{d^2 U(q_o)}{dq^2}\epsilon.$$

This is a stable equilibrium only if

$$\frac{d^2 U\left(q_o\right)}{dq^2} > 0,$$

which implies that $U(q_o)$ is at least a local minimum for U.

7.50 The modified Lagrangian (with Lagrange multiplier) for this problem is

$$\mathcal{L} = \frac{1}{2}m_1x^2 + \frac{1}{2}m_2y^2 + m_2gy + \lambda(x+y).$$

The modified Lagrange equations for x and y are

$$\begin{array}{rcl} x & : & \lambda = m_1 \ddot{x} \\ y & : & m_2 g + \lambda = m_2 \ddot{y} \end{array}$$

From the constraint we must have $\ddot{x} = -\ddot{y}$. Multiplying the x equation by -1 and adding the two expressions while taking into account that $\ddot{x} = -\ddot{y}$, we find

$$\begin{array}{rcl} m_2g &=& (m_2+m_1)\ddot{y} \\ \ddot{y} &=& \frac{m_2}{m_2+m_1}g. \end{array}$$

The Lagrange multiplier is given by

$$\lambda = m_2 \left(\ddot{y} - g \right) = m_2 \left(\frac{m_2}{m_2 + m_1} - 1 \right) g$$

$$\lambda = \frac{m_1 m_2}{m_2 + m_1} g.$$

Since

$$F_{x}^{cstr} = \lambda\left(t
ight) rac{\partial f}{\partial x}, \text{ and } rac{\partial f}{\partial x} = 1,$$

we find that the constraint force is

$$F^{cstr} = \lambda = \frac{m_1 m_2}{m_2 + m_1}g.$$

This is the tension in the rope. All of these results match those obtained from free body diagrams using Newton's second law.

7.51 (a) The Lagrangian for the simple pendulum in terms of x and y (y positive in the downward direction) subject to the constraint $\sqrt{x^2 + y^2} = \ell$ is

$$\mathcal{L} = \frac{1}{2}m\left(x^{2} + y^{2}\right) + mgy + \lambda\sqrt{x^{2} + y^{2}}.$$

The modified Lagrange equations are

$$\begin{split} \lambda \frac{x}{\sqrt{x^2 + y^2}} &= m\ddot{x} \to \lambda \frac{x}{\ell} = m\ddot{x}, \\ mg + \lambda \frac{y}{\sqrt{x^2 + y^2}} &= m\ddot{y} \to mg + \lambda \frac{y}{\ell} = m\ddot{y}. \end{split}$$

Now

$$x/\ell = \sin \phi$$
 and $y/\ell = \cos \phi$,

Hence

$$\ddot{x} = \ell \frac{d}{dt} \left(\cos \phi \phi \right) = \ell \left(-\sin \phi \phi^2 + \cos \phi \phi \right),$$

$$\ddot{y} = \ell \frac{d}{dt} \left(-\sin \phi \phi \right) = \ell \left(-\cos \phi \phi^2 - \sin \phi \phi \right).$$

The two equations of motion are now

$$\lambda \sin \phi = m\ell \left(-\sin \phi \phi^2 + \cos \phi \phi \right),$$

$$mg + \lambda \cos \phi = m\ell \left(-\cos \phi \phi^2 - \sin \phi \phi \right).$$

If we multiply the x equation by $\cos \phi$, the y equation by $-\sin \phi$, and add we find

$$-mg\sin\phi = m\ell\phi$$

which is the usual pendulum equation.

To solve for the Lagrange multiplier multiply the x equation by $\sin \phi$, the y equation by $\cos \phi$, and add with the result

$$mg\cos\phi + \lambda = -m\ell\phi^2 \rightarrow \lambda = -mg\cos\phi - m\ell\phi^2.$$

Since

$$F_{x}^{cstr} = \lambda\left(t\right) \frac{\partial f}{\partial x} \text{ and } F_{y}^{cstr} = \lambda\left(t\right) \frac{\partial f}{\partial y}$$

we find

$$F_x^{cstr} = \lambda \frac{x}{\ell} = \lambda \sin \phi \text{ and } F_y^{cstr} = \lambda \frac{y}{\ell} = \lambda \cos \phi.$$

Hence the magnitude of the constraint force is $F^{cstr} = |\lambda| = mg \cos \phi + m\ell \phi^2$. This is the expression for the tension in the rod.

Area under string The maximum area under a string of length ℓ can be found via the method of Lagrange multipliers. Expressing the area as

$$A = \int y dx + \lambda \int \sqrt{1 + {y'}^2} dx.$$

The first integral of the Euler Lagrange equation results in

$$y + \lambda \sqrt{1 + {y'}^2} - \lambda y' \frac{y'}{\sqrt{1 + {y'}^2}} = y_o \to (y - y_o) \sqrt{1 + {y'}^2} = -\lambda$$
$$y'^2 = \frac{\lambda^2 - (y - y_o)^2}{(y - y_o)^2} \to \frac{(y - y_o) \, dy}{\sqrt{\lambda^2 - (y - y_o)^2}} = \pm dx$$
$$(x - x_o)^2 + (y - y_o)^2 = \lambda^2 \to y = y_o + \sqrt{\lambda^2 - (x - x_o)^2}$$

The last expression is the equation of a semicircle of radius $\lambda = R$ whose center is located at (x_o, y_o) . If the circle is to pass through the origin (0, 0) then

$$0 = y_o + \sqrt{R^2 - x_o^2},$$

and both y_o and the term inside the square root must vanish. This means that $y_o = 0$ and $x_o = R$. The expression is then

$$y = \sqrt{R^2 - (x - R)^2}.$$

The area under this semicircle is $A = \pi R^2/2$ and the length of the string is $\ell = \pi R$.

8.3 The Lagrangian for this problem is (y is measured upward from the table top) is

$$\mathcal{L} = \frac{1}{2}m_1y_1^2 + \frac{1}{2}m_2y_2^2 - \frac{1}{2}k(y_1 - y_2 - L)^2 - m_1gy_1 - m_2gy_2.$$

Defining the center of mass coordinate, $Y = (m_1y_1 + m_2y_2)/(m_1 + m_2)$, and the relative coordinate, $y = y_1 - y_2$, the Lagrangian takes the form

$$\mathcal{L} = \frac{1}{2}MY^{2} + \frac{1}{2}\mu \dot{y}^{2} - \frac{1}{2}k(y-L)^{2} - m_{1}g\left(Y + \frac{m_{2}}{M}y\right) - m_{2}g\left(Y - \frac{m_{1}}{M}\right)$$

$$\mathcal{L} = \frac{1}{2}MY^{2} + \frac{1}{2}\mu \dot{y}^{2} - \frac{1}{2}k(y-L)^{2} - MgY.$$

The two Lagrange equations of motion with their solutions are

$$Y : \frac{\partial \mathcal{L}}{\partial Y} = -Mg = M \overset{\cdots}{Y} \rightarrow Y(t) = -\frac{1}{2}gt^2 + V_0t + Y_0$$
$$y : \frac{\partial \mathcal{L}}{\partial y} = -k(y - L) = \mu \overset{\cdots}{y} \rightarrow y = L + A\sin(\omega t - \delta),$$

where $\omega^2 = k/\mu$. The initial conditions for the relative coordinate lead to

$$y(t = 0) = L \rightarrow \delta = 0,$$

$$\dot{y}(t = 0) = -v_0 \rightarrow A = -v_0/\omega,$$

$$y(t) = L - v_0/\omega \sin \omega t.$$

The initial conditions for the center of mass coordinate lead to

$$Y(t = 0) = \frac{m_2 L}{M} = Y_0$$

$$\dot{Y}(t = 0) = \frac{m_1 v_0}{M} = V_0$$

$$Y(t) = \frac{m_2 L}{M} + \frac{m_1 v_0}{M} t - \frac{1}{2}gt^2.$$

8.9 (a) The Lagrangian in terms of \vec{r}_1 and \vec{r}_2 for this problem $(m_1 = m_2 = m)$ is

$$\mathcal{L} = \frac{1}{2}m\left(\overrightarrow{\overrightarrow{r}_{1}} + \overrightarrow{\overrightarrow{r}_{2}}\right) - \frac{1}{2}k\left(|\overrightarrow{r}_{1} - \overrightarrow{r}_{2}| - L\right)^{2}.$$

In terms of \overrightarrow{R} and \overrightarrow{r} the Lagrangian is

$$\mathcal{L} = m \overrightarrow{R}^{2} + \frac{1}{4} m \overrightarrow{r}^{2} - \frac{1}{2} k \left(r - L \right)^{2} = \mathcal{L}_{CM} + \mathcal{L}_{rel}.$$

(c) In terms of r and ϕ the Lagrangian for the relative coordinates is

$$\mathcal{L}_{rel} = \frac{1}{4}m\left(\dot{r}^{2} + r^{2}\dot{\phi}^{2}\right) - \frac{1}{2}k(r-L)^{2}.$$

The two equations of motion are

$$\phi : \frac{\partial \mathcal{L}_{rel}}{\partial \phi} = \frac{1}{2}mr^2 \dot{\phi} = \ell = \text{const}$$

$$r : \frac{\partial \mathcal{L}_{rel}}{\partial r} = \frac{1}{2}mr \dot{\phi}^2 - k(r-L) = \frac{1}{2}m\ddot{r}$$

$$r : \frac{1}{2}\frac{\ell^2}{mr^3} - k(r-L) = \frac{1}{2}m\ddot{r}.$$

If $r = r_o$ and $\dot{r} = 0$ then the motion is a circle with radius r_o where

$$\frac{1}{2}\frac{\ell^2}{mr_o^3} = k\left(r_o - L\right).$$

If $\dot{\phi} = 0$ then the angular momentum vanishes, $\ell = 0$, and

$$-k\left(r-L\right) = \frac{1}{2}m\ddot{r}.$$

This is the equation for oscillating motion about r = L with a frequency $\omega^2 = 2k/m$.

8.12 (a) The effective potential is

$$U_{eff} = -\frac{G\mu M}{r} + \frac{1}{2}\frac{L^2}{\mu r^2} = \mu \left(-\frac{GM}{r} + \frac{1}{2}\frac{\ell^2}{r^2}\right).$$

To find the radius for a circular orbit we must satisfy

$$\frac{dU_{eff}\left(r_{o}\right)}{dr} = \frac{GM}{r_{o}^{2}} - \frac{\ell^{2}}{r_{o}^{3}} = 0 \rightarrow r_{o} = \frac{\ell^{2}}{GM}.$$

(b) The second derivative evaluated at this radius is

$$\frac{d^2 U_{eff}\left(r_o\right)}{dr^2} = \mu \left(-2\frac{GM}{r_o^3} + 3\frac{\ell^2}{r_o^4}\right) = \mu \left(\frac{GM}{\ell^2}\right)^3 \left(-2GM + 3GM\right) = \mu \frac{(GM)^4}{\ell^6}.$$

The curvature is positive, hence circular orbits are stable. The frequency small radial oscillations about r_o is

$$\omega = \frac{2\pi}{\tau_{osc}} = \sqrt{\left(GM\right)^4/\ell^6} = \left(GM\right)^2/\ell^3.$$

The orbital rate, $\dot{\phi}$, is found from

$$\begin{split} \ell &= r_o^2 \dot{\phi} \rightarrow \dot{\phi} = \ell/r_o^2 \\ \dot{\phi} &= \frac{2\pi}{\tau_{orb}} = \ell \left(GM\right)^2/\ell^4 = \left(GM\right)^2/\ell^3 . \end{split}$$

The angular velocities are identical, which means the orbital period is equal to the period of radial oscillations. Hence the orbit must be closed.

8.14 (a) For a potential $U = kr^n$, the force is given by

$$F = -\frac{dU}{dr} = -nkr^{n-1}.$$

As long as nk > 0 this force is attractive.

(b) The effective potential is

$$U_{eff} = kr^n + \frac{L^2}{2\mu r^2}.$$

At equilibrium (circular orbit) dU_{eff}/dr vanishes, hence

$$\frac{dU_{eff}(r_o)}{dr} = nkr_o^{n-1} - \frac{L^2}{\mu r_o^3} = 0 \to r_o^{n+2} = \frac{L^2}{\mu nk}$$

To determine if this orbit is stable we need to find $d^2 U_{eff}/dr^2,$

$$\begin{aligned} \frac{d^2 U_{eff}\left(r_o\right)}{dr^2} &= n\left(n-1\right) k r_o^{n-2} + 3\frac{L^2}{\mu r_o^4} = \frac{1}{r_o^4} \left(n\left(n-1\right) k r_o^{n+2} + 3L^2/\mu\right) \\ \frac{d^2 U_{eff}\left(r_o\right)}{dr^2} &= \frac{1}{r_o^4} \left(n\left(n-1\right) k \frac{L^2}{\mu n k} + 3L^2/\mu\right) = \frac{1}{r_o^4} \left((n+2)\frac{L^2}{\mu}\right). \end{aligned}$$

Hence this is greater than zero only if n > -2.

(c) The oscillation frequency is

$$\omega = \frac{L}{\mu r_o^2} \sqrt{n+2}.$$

The orbital frequency is

$$\dot{\phi} = \frac{L}{\mu r_o^2}.$$

Hence the ratio of the periods is

$$\tau_{osc} = \tau_{orb} / \sqrt{n+2}.$$

This is consistent with the result in problem 8.12 for which n = -1. Clearly if $\sqrt{n+2}$ is a rational number, n/m, then

$$n\tau_{osc} = m\tau_{orb} = T.$$

This time T is the time required for the radial oscillations to undergo n complete oscillations. If this is equal to an integer number of orbital periods then the position of the orbit is idential to its position at time T previously and the orbit is closed. Note if n = -1, 2, 7 then $\sqrt{n+2} = 1, 2, 3$. For these values the period for the radial oscillations is equal to, 1/2, or 1/3 of the orbital period. These orbits are closed.