
Solutions Assignment 7

7.16 The kinetic energy of a cylinder of mass m is given by

T =
1

2
m
�
x
2
+
1

2
I!2;

where
�
x is the velocity of the center of mass, I is the moment of inertia of the

disk about its center of mass, and ! is its angular velocity. If x is the linear
coordinate measured down an incline and the cylinder rolls without slipping
then the kinetic energy is

T =
1

2
m
�
x
2
+
1

2

�
1

2
mR2

�
�
x
2
=R2 =

3

4
m
�
x
2
;

where R is the radius of the disk. If the angle of the incline is �; then the
potential energy of the disk is

U = �mgx sin�:

The Lagrangian is

L = T � U = 3

4
m
�
x
2
+mgx sin�:

The Lagrange equation of motion is

d

dt

@L
@
�
x
� @L
@x

= 0! d

dt

3

2
m
�
x =

3

2
m
��
x = mg sin�:

Hence
��
x =

2

3
g sin�:

7.19 The acceleration of the block relative to the wedge was found to be

��
q1 =

M +m

M +m�m cos2 �g sin�;

while the acceleration of the wedge relative to the table is

��
q2 = � m

M +m

��
q1 cos� = �

m

M +m

M +m

M +m�m cos2 �g sin� cos�;
��
q2 = � m

M +m�m cos2 �g sin� cos�:

The acceleration of the block relative to the table,
��
x, is

��
x =

��
q2 +

��
q1 cos� = �

m

M +m�m cos2 �g sin� cos�+
M +m

M +m�m cos2 �g sin� cos�

��
x =

M

M +m�m cos2 �g sin� cos�:
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In the limit that M ! 0 the acceleration of the block relative to the table is
��
x = 0: This is as expected for if the wedge is massless, due to conservation of
momentum, the block will not accelerate in the horizontal direction. Meanwhile
a massless wedge will experience an acceleration (relative to the table) given by

��
q2 = �

1

sin2 �
g sin� cos� = �g cos�

sin�
:

This is also to be expected for the block will fall vertically with an acceleration
of g. This will result in the wedge accelerating to the left with an acceleration
of

��
q2 = �g cos�= sin�:

7.20 The kinetic energy for a bead on the helix is

T =
1

2
m
�
z
2
+
1

2
mR2

�
�
2

;

where z = ��: Since the potential energy due to the gravitational �eld is U =

mgz we will keep z as a generalized coordinate and replace
�
� with

�
z=�: The

Lagrangian is then

L = 1

2
m
�
z
2
+
1

2
m
R2

�2
�
z
2
�mgz = 1

2
m
�2 +R2

�2
�
z
2
�mgz:

The Lagrange equation is

@L
@z

=
d

dt

@L
@
�
z
! �mg = m�

2 +R2

�2
��
z:

The vertical acceleration is

��
z = � �2

�2 +R2
g:

In the limit that R ! 0;
��
z = �g; or the helix has become a vertical wire and

the bead is falling straight down.

7.22 The x and y coordinates for the pendulum bob are

x = l sin� and y = l (1� cos�) + 1
2
at2:

Hence the velocities in these directions are

�
x = l cos�

�
� and

�
y = l sin�

�
�+ at:

The kinetic energy of the bob is

T =
1

2
m

�
�
x
2
+

�
y
2
�
=
1

2
m

�
l2 cos2 �

�
�
2

+ l2 sin2 �
�
�
2

+ 2atl sin�
�
�+ a2t2

�
T =

1

2
m

�
l2
�
�
2

+ 2atl sin�
�
�+ a2t2

�
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The potential energy and Lagrangian of the bob are

U = mgy = mg

�
l (1� cos�) + 1

2
at2
�

L =
1

2
m

�
l2
�
�
2

+ 2atl sin�
�
�+ a2t2

�
�mg

�
l (1� cos�) + 1

2
at2
�
:

The equation of motion for the accelerating bob is

d

dt

@L

@
�
�
=
d

dt
m

�
l2
�
�+ atl sin�

�
=
@L
@�

= m

�
atl cos�

�
�� gl sin�

�
l2
��
�+ al sin�+ atl cos�

�
� = atl cos�

�
�� gl sin�

l
��
� = � (g + a) sin�:

Here we �nd the normal equation of motion for a pendulum except that g has
been replaced with g + a; which is what would be expected from Einstein�s
equivalence principle. Hence the angular frequency of small oscillations is ! =p
(g + a) =l

7.27 For the double Atwood machine we will assume that the coordinate
(pointed downward) for the mass 4m is y. The coordinate (again pointed down-
ward) from the second pulley to the mass 3m is x. Using these coordinates the
kinetic energy of the three masses is

T =
1

2
4m

�
y
2
+
1

2
3m
�
� �
y +

�
x
�2
+
1

2
m
�
� �
y � �

x
�2

T =
1

2
4m

�
y
2
+
1

2
3m

�
�
x
2
� 2 �y �x+ �

y
2
�
+
1

2
m

�
�
x
2
+ 2

�
y
�
x+

�
y
2
�

T =
m

2

�
4
�
x
2
� 4 �y �x+ 8 �y

2
�
:

The potential energy (to within a constant) is

U = �4mgy � 3mg (x� y)�mg (�x� y) = �2mgx:

Hence the Lagrangian is

L = m

2

�
4
�
x
2
� 4 �y �x+ 8 �y

2
�
+ 2mgx:

The equations of motion are

d

dt

@L
@
�
x

=
d

dt

m

2

�
8
�
x� 4 �y

�
=
@L
@x

= 2mg

2
��
x� ��

y = g
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and
d

dt

@L
@
�
y

=
d

dt

m

2

�
�4 �x+ 16 �y

�
=
@L
@y

= 0

��
x = 4

��
y

Solving for
��
y we �nd

��
y = g=7:

The masses attached to the second pulley are accelerating, hence the tension in
the string supporting this pulley is not equal to 4mg.

7.29 Using the hint provided in the problem, the Cartesian coordinates for
the bob whose support is attached to the edge of a wheel, as measured from the
center of the wheel are

x = R cos!t+ l sin�;

y = R sin!t� l cos�:

Taking the time derivative of these expressions yields

�
x = �!R sin!t+ l cos�

�
�;

�
y = !R cos!t+ l sin�

�
�:

We can now write the kinetic energy as

T =
1

2
m

�
!2R2 � 2!Rl (sin!t cos�� cos!t sin�)

�
�+ l2

�
�
2�
;

T =
1

2
m

�
l2
�
�
2

+ !2R2 + 2!Rl sin (�� !t)
�
�

�
:

The potential energy is simply U = mgy = mg (R sin!t� l cos�) : Therefore
the Lagrangian is

L = 1

2
m

�
l2
�
�
2

+ !2R2 + 2!Rl sin (�� !t)
�
�

�
+mg (l cos��R sin!t) :

For the Lagrange equations we need

@L
@�

= m!Rl cos (�� !t)
�
��mgl sin� and

@L

@
�
�
= ml2

�
�+m!Rl sin (�� !t) :

Thus the Lagrange equation is

!R cos (�� !t)
�
�� g sin� =

d

dt

�
l
�
�+ !R sin (�� !t)

�
;

!R cos (�� !t)
�
�� g sin� = l

��
�+ !R cos (�� !t)

�
�� !2R cos (�� !t) ;

l
��
� = �g sin�+ !2R cos (�� !t) :

Note that as ! ! 0 this equation of motion becomes that for a simple pendulum.
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7.30 (a) The Cartesian coordinates of the bob are inside an accelerating
railroad car are

x =
1

2
at2 + l sin� and y = l cos�;

where we are measuring y as positive in the downward direction. Taking the
time derivative of these expressions yields

�
x = at+ l cos�

�
� and

�
y = �l sin�

�
�:

Thus the kinetic energy of the bob is

T =
1

2
m

�
a2t2 + l2

�
�
2

+ 2atl cos�
�
�

�
;

and the potential energy is U = �mgy = �mgl cos�: Thus the Lagrangian is

L = T � U = 1

2
m

�
a2t2 + l2

�
�
2

+ 2atl cos�
�
�

�
+mgl cos�:

The quantities required for the Lagrange equation for the � coordinate are

@L
@�

= �matl sin�
�
��mgl sin� and

@L

@
�
�
= ml2

�
�+matl cos�:

Thus the Lagrange equation is

l
��
� = �g sin�� a cos�:

Using the suggestion in the problem we factor out
p
a2 + g2 and �nd

l
��
� = �

p
a2 + g2

 
gp

a2 + g2
sin�+

ap
a2 + g2

cos�

!

l
��
� = �

p
a2 + g2 (cos�o sin�+ sin j�oj cos�)

l
��
� = �

p
a2 + g2 sin (�+ �o) :

(b) At equilibrium
��
� = 0; so that � at equilibrium is given by

sin (�+ �o) = 0! � = ��o = � tan�1 a=g:

If the bob is slightly displaced from from equilibrium so that � = ��o + ��;
where �� << 1; then the equation of motion becomes

l
��
�� = �

p
g2 + a2 sin �� ' �

p
g2 + a2��:

The minus sign denotes that this is a restoring force. So this is a position of
stable equilibrium with a frequency given by !2 =

p
g2 + a2=l:
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7.33 The kinetic energy of the soap bar is

T =
1

2
m
�
x
2
+
1

2
mx2!2;

where x is the distance of the soap from the edge about which the plate pivots.
The potential energy is U = mgx sin!t: Hence the Lagrangian is

L =1
2
m
�
x
2
+
1

2
mx2!2 �mgx sin!t:

The Lagrange equation of motion for the soap bar is

@L
@x

= m!2x�mg sin!t = d

dt

@L
@
�
x
= m

��
x:

The equation of motion is

��
x� !2x = �g sin!t:

Which is the required result
(b) The homogeneous and particular solutions are of the form

xh (t) = A sinh!t+B cosh!t;

xp (t) = C sin!t:

For the particular solution we must have

�2!2C = �g ! C = g=2!2:

From the initial conditions x (0) = x0 and
�
x (0) = 0 we �nd

x0 = B; and 0 = A! + C! ! A = �g=2!2:

Hence the solution is

x (t) = x0 cosh!t� g=2!2 sinh!t+ g=2!2 sin!t:

7.35 If the radius of the hoop is R then the x and y coordinates of the
bead are

x = R cos!t+R cos (�+ !t) and y = R sin!t+R sin (�+ !t) :

The velocities in the x and y directions are

�
x = �!R sin!t�

�
! +

�
�

�
R sin (�+ !t) ;

�
y = !R cos!t+

�
! +

�
�

�
R cos (�+ !t) :
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The kinetic energy is then

T =
1

2
m

 
!2R2 +

�
! +

�
�

�2
R2

!

+
1

2
m

�
2!

�
! +

�
�

�
R2 (sin!t sin (�+ !t) + cos!t cos (�+ !t))

�
;

T =
1

2
m

 
!2R2 +

�
! +

�
�

�2
R2 + 2!

�
! +

�
�

�
R2 cos�

!
:

Since there is no potential energy this is also the Lagrangian. The Lagrange
equation of motion is

@L
@�

= �m!
�
! +

�
�

�
R2 sin�

=
d

dt

@L

@
�
�
=
d

dt

�
mR2

�
! +

�
�

�
+m!R2 cos�

�
;

�!
�
! +

�
�

�
sin� =

d

dt

�
! +

�
�+ ! cos�

�
=

��
�� ! sin�

�
�;

��
� = �!2 sin�:

This the same equation as that for a pendulum with g=l replaced by !2: Clearly
the frequency of oscillations for small amplitudes is !:

7.37 (a) The polar coordinates of the �rst mass are (r; �) and the coordi-
nates of the second mass is z = l� r; where z is measured downward. The total
kinetic energy of both masses is

T =
1

2
m

�
�
r
2
+ r2

�
�
2

+
�
z
2
�
=
1

2
m

�
2
�
r
2
+ r2

�
�
2�
;

while the potential energy is

U = �mgz = �mg (L� r) = mgr + const:

Thus the Lagrangian is

L = 1

2
m

�
2
�
r
2
+ r2

�
�
2�
�mgr:

(b) The Lagrange equation for the � coordinate is

d

dt
mr2

�
� = 0! L = mr2

�
�;

where L is the angular momentum which is conserved. The Lagrange equation
for the radial coordinate is

@L
@r

= mr
�
�
2

�mg = d

dt

@L
@
�
r
=
d

dt

�
2m

�
r
�
= 2m

��
r:
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(c) Eliminating
�
� from the radial equation in terms of L the angular mo-

mentum we �nd
L2

mr3
�mg = 2m��

r:

For a circular orbit at r = ro we have

L2

mr3o
= mg ! r3o =

L2

m2g
:

In Newtonian terms, this is the equilibrium that occurs when the centripetal
acceleration L2=m2r3o equals the acceleration due to the gravitational �eld, g.
(c) If the particle on the table is given a small radial nudge, r = ro + � (t) ;

then the radial equation becomes

L2

m (ro + �)
3 �mg =

L2

mr3o
� 3 L

2�

mr4o
�mg = �3 L

2�

mr4o
= 2m

��
�;

or
��
� = �3

2

L2

m2r4o
�:

This is a stable oscillation with a frequency of ! =
p
3=2L=mr2o:
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