
Solutions Assignment 6

6.16 Using the hint given in the problem, the distance between two points
on a sphere of radiuis R is

L =

Z 2

1

q
R2d�2 +R2 sin2 �d�2 = R

Z �2

�1

q
1 + sin2 ��02d�:

Since in this form the integrand is independent of � the Euler-Lagrange equation
reduces to

@

@�0

q
1 + sin2 ��02 =

sin2 ��0p
1 + sin2 ��02

= �:

Now with full generality we can assume that the curve originates at � = 0;
i.e. choose the initial point to be the North Pole. This forces � = 0: Now for
arbitrary � the equation reduces to �0 = 0 or

� = �o:

This is corresponds to a line of longitude all of which are great circles.

6.18 Solution (i): In plane polar coordinates the distance between points
1 and 2 is

L =

Z 2

1

q
dr2 + r2d�2 =

Z 2

1

q
1 + r2�02dr:

Since the integrand is independent of �; the Euler-Lagrange equation reduces
to

@

@�0

q
1 + r2�02 =

r2�0p
1 + r2�02

= �a:

Solving for �0 yields

�0 = � a

r
p
r2 � a2

! �� �o = �
Z

a

r
p
r2 � a2

dr:

Let r = a= sin � so that r2 � a2 = a2 cot2 � and dr = �a cos �d�= sin2 �: The
integral now becomes

�� �o =
Z

sin �

a2 cot �

a2 cos �

sin2 �
d� =

Z
d� = �:

Taking the sine of both sides yields

r sin � = r sin (�� �o) = a:

Expanding sin (�� �o) and recognizing that x = r cos� and y = r sin� yields

y cos�o � x sin�o = a! y = x tan�o + a= cos�o = x tan�o + b;
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which is the equation of a straight line.
Solution (ii):

L =

Z 2

1

q
dr2 + r2d�2 =

Z 2

1

p
r02 + r2d�:

Since the integrand is independent of � we can use the �rst integral of the
resulting Euler Lagrange equation with the result,p

r02 + r2 � r0 @
@r0

p
r02 + r2 =

p
r02 + r2 � r02p

r02 + r2
= �1=a

r2 = a
p
r02 + r2 ! r2

�
r2 � a2

�
= a2r02 ! d�

dr
= � a

r
p
r2 � a2

�� �o = �
Z

adr

r
p
r2 � a2

:

This is the same integral obtained in part (i).

6.22 To �nd the maximum area enclosed above the x axis by a string of
length ` that originates at the origin and teminates somewhere along the positive
x axis we consider the integral

A =

Z
y (x) dx:

But we need to rewrite this integral in terms of ds =
p
dx2 + dy2 with the

length of the string �xed at `: Solving for dx yields

dx =
p
ds2 � dy2 =

q
1� (dy=ds)2ds:

Now y is a function of s and the area integral is

A =

Z `

0

y (s)

q
1� (dy=ds)2ds =

Z `

0

y
p
1� y02ds:

Now f (y; y0) is independent of s; hence we can exploit the �rst integral expres-
sion for the Euler Lagrange equation with the result

f � y0 @f
@y0

= y
p
1� y02 + y0y y0p

1� y02
= a

y
�
1� y02

�
+ yy02 = y = a

p
1� y02

a2 � y2 = a2 (dy=ds)2 !
p
a2 � y2 = ady=ds

adyp
a2 � y2

= ds:

De�ne y = a sin � ! dy = a cos �d� and the integral becomes

s� so =
Z
a2 cos �d�

a cos �
= a� ! a sin

s� so
a

= a sin � = y:
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Since the curve starts at the origin (x = y = s = 0), so = 0 and the expression
for y (s) becomes

y = a sin
s

a
:

Hence the curve not only intersects the x axis at the origin but again when
s = �a = `: Now �

dy

ds

�2
= 1�

�
dx

ds

�2
= cos2

s

a

dx

ds
= sin

s

a
:

To satisfy the condition x (s = 0) = 0 we �nd x = a (1� cos s=a) : This means
that (x� a)2 + y2 = a2 = `2=�2 and in general s = a�: So this curve is a
semicircle of radius a centered at x = a with a length ` = �a: Note that we are
measuring � as positive in the clock wise direction starting from a radial line
that originates from (a; 0) and ending at the origin.

6.25 The time to fall from from rest at P0 toe the bottom of the cycloid,
P , is

T =

Z P

0

p
dx2 + dy2

v
=

1p
2g

Z P

0

p
dx2 + dy2p
y � y0

:

For the cycloid
y = a (1� cos �) ; and x = a (� � sin �) ;

so that
dy = a sin �d�; and dx = a (1� cos �) d�:

Substituting these results into the integral for the time yields

T =
1p
2g

Z �

�0

a

q
(1� cos �)2 + sin2 �

p
a
p
(1� cos �)� (1� cos �0)

d�

T =

r
a

2g

Z �

�0

p
2� 2 cos �p
cos �0 � cos �

d� =

r
a

g

Z �

�0

p
1� cos �p

cos �0 � cos �
d�:

Rewritting the integral as

T =

r
a

g

Z �

�0

p
1� cos �p

(1 + cos �0)� (1 + cos �)
d�;

and making use of half angle relations yields

T =

r
a

g

Z �

�0

q
sin2 �=2p

cos2 �0=2� cos2 �=2
d� =

r
a

g

Z �

�0

sin �=2p
cos2 �0=2� cos2 �=2

d�:
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De�ne u = cos �=2! 2du = � (sin �=2) d�: With this substitution we �nd

T =

r
a

g

Z 0

u0

�2p
u20 � u2

du = 2

r
a

g

Z u0

0

dup
u20 � u2

:

With one more change in variables, u = u0 sin�! du = u0 cos�d�; we �nd

T = 2

r
a

g

Z �=2

0

u0 cos�d�

u0 cos�
= �

r
a

g
:

This result is independent of �0: So the period is constant whereas with a simple
pendulum the period is only constant for small amplitude oscillations.

7.3 The Lagrangian for this problem is

L = T � U = 1

2
m

�
�
x
2
+

�
y
2
�
� 1
2
k
�
x2 + y2

�
:

The two Lagrange equations are

d

dt

@L
@
�
x
� @L
@x

= m
��
x+ kx = 0

d

dt

@L
@
�
y
� @L
@y

= m
��
y + ky = 0:

This represents periodic oscillations of the same period in both the x and y
directions. The resulting motion will be ellipses like those shown in �gure 5.8.

7.8 (a) The potential energy of the spring with natural length ` in this
con�guration is

U =
1

2
k (x1 � x2 � `)2 :

Hence the Lagrangian is

L = T � U = 1

2
m

�
�
x
2

1 +
�
x
2

2

�
� 1
2
k (x1 � x2 � `)2

(b,c) Consider the variables

X =
1

2
(x1 + x2) and x = x1 � x2 � `:

The time derivatives are

2
�
X =

�
x1 +

�
x2; and

�
x =

�
x1 �

�
x2:

Solving for
�
x1 and

�
x2 in terms of

�
X and

�
x results in

�
x1 =

�
X +

�
x=2; and

�
x2 =

�
X � �

x=2:
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Substituting these coordinates into the Lagrangian yields

L =
1

2
m

 �
�
X +

�
x=2

�2
+

�
�
X � �

x=2

�2!
� 1
2
kx2

L =
1

2
m

�
2
�
X
2

+
�
x
2
=2

�
� 1
2
kx2 =

1

2

�
2m

�
X
2

+
m

2

�
x
2
�
� 1
2
kx2:

The two Lagrange equations and their solutions are

d

dt

@L

@
�
X
� @L
@X

= 2m
��
X = 0!

�
X = const

d

dt

@L
@
�
x
� @L
@x

=
m

2

��
x+ kx = 0! x = A cos (!t� �) where !2 = 2k=m:

The coordinate X is the center of mass coordinate. Since there are no exter-
nal forces (only the internal interaction of the spring) the momentum and/or
velocity of the center of mass is constant. On the other hand the coordinate
for the extension of the spring (relative coordinate between the two masses)
undergoes simple harmonic oscillation with an angular frequency resulting from
!2 = 2k=m: To understand where the factor of 2 comes from we �rst note that
in the frame of the center of mass the center of the spring is �xed. If either
mass moves by an amount �x then the mass on the other end of the spring must
move in the opposite direction an amount ��x: Hence the spring is stretched
twice the amount that either mass moves. Hence the e¤ective spring constant
2k:

7.10 For the cone the z coordinate is expressed as � = z tan�: Hence the
Cartesian coordinates for an object con�ned to the surface of this cone are

x = � cos�; y = � sin�; z = �= tan�:

The coordinates � and � are

� =
p
x2 + y2 = z tan�; � = tan�1 y=x:

7.14 The moment of inertia for a uniform disk rotating about its center is
I = mR2=2: The kinetic energy for the disk is

T =
1

2
m
�
x
2
+
1

2
I!2 =

1

2
m
�
x
2
+
1

4
mR2!2 =

3

4
m
�
x
2
;

where we have used the nonslip condition for the yoyo,
�
x = R!. The potential

energy of the yoyo is U = �mgx: Hence the Lagrangian is

L = 3

4
m
�
x
2
+mgx;

with the resulting Lagrange equation

d

dt

@L
@
�
x
� @L
@x

=
3

2
m
��
x�mg = 0! ��

x = 2g=3:
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Integrand of the form f (y; y0; y00; x) Assume that we want to �nd the
path for which the integral, I, is stationary, where the integrand depends on y,
y0, and y00, as well as the independent parameter x,

I =

Z 2

1

f (y; y0; y00; x) dx:

Again if we have a small deviation, � (x) ; from the stationary path then

�I =

Z 2

1

�
@

@y
f (y; y0; y00; x) � (x) +

@

@y0
f (y; y0; y00; x) �0 (x) +

@

@y00
f (y; y0; y00; x) �00 (x)

�
dx = 0:

The derivation here for the �rst two terms is identical to that shown in class.
So we will concentrate on the third term. Integrating the third terms by parts
yieldsZ 2

1

@

@y00
f (y; y0; y00; x) �00 (x) dx = �

Z 2

1

�
d

dx

@

@y00
f (y; y0; y00; x)

�
�0 (x) dx

+

�
@

@y00
f (y; y0; y00; x) �0 (x)

�x2
x1

:

Since the constraints now include

�0 (x1) = �
0 (x2) = 0;

we see that the last term in this equation vanishes and we are left with

�I =

Z 2

1

�
@

@y
f (y; y0; y00; x)�

�
d

dx

@

@y0
f (y; y0; y00; x)

��
� (x) dx

�
Z 2

1

d

dx

@

@y00
f (y; y0; y00; x) �0 (x) dx:

Integrating the last term by parts one more time subject to the usual constraints,

� (x1) = � (x2) = 0;

yields

�I =

Z 2

1

�
@

@y
f (y; y0; y00; x)� d

dx

@

@y0
f (y; y0; y00; x) +

d2

dx2
@

@y00
f (y; y0; y00; x)

�
� (x) dx = 0:

Since � (x) is arbitrary we have the expression

@

@y
f (y; y0; y00; x)� d

dx

@

@y0
f (y; y0; y00; x) +

d2

dx2
@

@y00
f (y; y0; y00; x) = 0

as the equation that f must satisfy in order for I to be a �stationary�integral.
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