Solutions Assignment 3

3.27 (a) The angular momentum of an object is $\vec{\ell}=\vec{r} \times \vec{p}$. Choosing the orbit of the planet to lie in the $x-y$ plane then \vec{r} and \vec{p} both lie in this plane as well. In polar coordinates we find that

$$
\begin{aligned}
\dot{\vec{r}} & =\frac{d}{d t}(r \widehat{r})=\frac{d r}{d t} \widehat{r}+r \frac{d \phi}{d t} \frac{d}{d \phi} \widehat{r}, \\
\dot{\vec{r}} & =\dot{r} \widehat{r}+r \dot{\phi} \widehat{\phi} .
\end{aligned}
$$

From the expressions for \widehat{r} and $\widehat{\phi}$ we find $\widehat{r} \times \widehat{\phi}=\widehat{z}$. Thus the angular momentum is

$$
\vec{\ell}=\vec{r} \times \vec{p}=m r^{2} \dot{\phi} \widehat{z}=m r^{2} \omega \widehat{z}
$$

where $\omega=d \phi / d t$.
(b) For a differential angular displacement, $d \phi$, the area inside the triangle is

$$
d A=\frac{1}{2} r^{2} d \phi
$$

Dividing by $d t$ we find

$$
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \phi}{d t}=\frac{1}{2} r^{2} \omega=\frac{\ell}{2 m} .
$$

Since angular momentum is conserved for central forces, we see that $d A / d t$ is constant. Thus an orbiting planet sweeps out equal areas in equal times.
3.32 The moment of inertia of a uniform solid sphere of mass M and radius R rotating about an axis (taken to be the z axis) that passes through its center is found from

$$
I=\int r_{z}^{2} d M=\rho \int \rho_{z}^{2} d V=\frac{3 M}{4 \pi R^{3}} \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} r_{z}^{2} r^{2} \sin \theta d \phi d \theta d r
$$

where r_{z} is the perpendicular distance from the z axis. In spherical coordinates $r_{z}=r \sin \theta$ and the momentum of inertia is

$$
\begin{aligned}
I & =\frac{3 M}{4 \pi R^{3}} \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} r^{4} \sin ^{3} \theta d \phi d \theta d r=\frac{3 M}{2 R^{3}} \int_{0}^{R} \int_{0}^{\pi} r^{4}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta d r \\
I & =\frac{3 M}{2 R^{3}} \frac{R^{5}}{5}\left(2-\frac{2}{3}\right)=\frac{2}{5} M R^{2}
\end{aligned}
$$

3.35 (b) The torque about the point P, the point of contact between the disc and the inclined plane, for a disk of mass M and radius R is

$$
\vec{\Gamma}^{e x t}=\vec{r} \times \vec{F}=R \widehat{y} \times M g(\sin \gamma \widehat{x}-\cos \gamma \widehat{y}),
$$

where γ is the angle of the plane relative to horizontal. Note that both the normal force and the frictional force pass through the point P and contribute no additional torques. We have defined the x axis to point down the inclined plane and the y axis normal to the plane. Performing the cross product we find

$$
\dot{\vec{L}}=\vec{\Gamma}^{e x t}=-M g R \sin \gamma \widehat{z}
$$

The minus sign comes from defining the z axis to point out of the plane and from the right hand rule, the disc rotates in the negative z direction. The rate of change for the magnitude of the angular momentum is

$$
\dot{L}=I \dot{\omega}=M g R \sin \gamma
$$

As stated in the problem, the momentum of inertia for a disk rotating about its circumference is $I=3 M R^{2} / 2$, thus

$$
\frac{3}{2} M R^{2} \dot{\omega}=M g R \sin \gamma \rightarrow \dot{\omega}=\frac{2 \sin \gamma}{3 R}
$$

From the no slip condition

$$
\dot{v}=R \dot{\omega}=\frac{2}{3} \sin \gamma
$$

(c) The torque about the CM for the disc is

$$
\vec{\Gamma}^{e x t}=\vec{r} \times \vec{F}=-R \widehat{y} \times F_{f}(-\widehat{x})=-R F_{f} \widehat{z}
$$

where F_{f} is the magnitude of the frictional force. From the x component of Newton's second law

$$
M \dot{v}=M g \sin \gamma-F_{f} \rightarrow F_{f}=M \dot{v}-M g \sin \gamma
$$

Since the momentum of interia for the disc about its CM is $I=M R^{2} / 2$ we have (including the no slip condition, $R \dot{\omega}=\dot{v}$)

$$
\begin{aligned}
\Gamma^{e x t} & =\dot{L}=I \dot{\omega}=\frac{1}{2} M R^{2} \dot{\omega}=-R(M \dot{v}-M g \sin \gamma) \\
\frac{1}{2} M \dot{v} & =-M \dot{v}+M g \sin \gamma \\
\dot{v} & =\frac{2}{3} \sin \gamma
\end{aligned}
$$

Note that in keeping track of signs, $\dot{\omega}$ is defined to be positive when the disk is rotating so that it proceeds up the plane (think of the right hand rule).
3.37 The derivation of

$$
\frac{d}{d t} \vec{L}(\text { about } \mathrm{CM})=\vec{\Gamma}^{\mathrm{ext}}(\text { about } \mathrm{CM})
$$

was done in the discussion session, but is repeated here for reference. Defining $\vec{r}_{\alpha}^{\prime}$ as the position of mass particle α relative to the center of mass, $\vec{r}_{\alpha}^{\prime}=$ $\vec{r}_{\alpha}-\vec{R}$, the rate of change of the angular momentum about the center of mass (CM) is expressed as

$$
\begin{aligned}
\frac{d}{d t} \vec{L}_{\mathrm{CM}} & =\sum_{\alpha} \frac{d}{d t}\left(\vec{r}_{\alpha}^{\prime} \times m_{\alpha} \dot{\vec{r}}_{\alpha}^{\prime}\right)=\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times m_{\alpha} \stackrel{.}{r}_{\alpha}^{\prime} \\
\frac{d}{d t} \vec{L}_{\mathrm{CM}} & =\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime} \times\left(\ddot{\vec{r}}_{\alpha}-\overrightarrow{\vec{R}}\right) \\
\frac{d}{d t} \vec{L}_{\mathrm{CM}} & =\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}-\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime}\right) \times \ddot{\vec{R}}
\end{aligned}
$$

It is very straightforward to show that from the definition of the CM that $\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{\prime}=0$. Thus the expression reduces to

$$
\frac{d}{d t} \vec{L}_{\mathrm{CM}}=\sum_{\alpha} \vec{r}_{\alpha}^{\prime} \times \vec{F}_{\alpha}=\vec{\Gamma}_{\mathrm{CM}}^{\mathrm{ext}}
$$

Note that this is true even if the CM is accelerating, $\ddot{\vec{R}} \neq 0$!
4.3 (a) First consider the line intergal for $\vec{F}=-y \widehat{x}+x \widehat{y}$ along the path $P O Q$. This path integral is expressed as

$$
W=\int_{P}^{Q} \vec{F} \cdot d \vec{r}=-\int_{1}^{0}(y=0) d x+\int_{0}^{1}(x=0) d y=0
$$

(b) Now consider the line intergal for $\vec{F}=-y \widehat{x}+x \widehat{y}$ along the path $P Q$. This path integral is expressed as

$$
\begin{aligned}
W & =\int_{P}^{Q} \vec{F} \cdot d \vec{r}=\int_{(1,0)}^{(0,1)}\left(F_{x}(x, y) d x+F_{y}(x, y) d y\right) \\
W & =\int_{(0,1)}^{(0,1)}-y d x+x d y
\end{aligned}
$$

Along this path, $y=1-x$, so that

$$
W=\int_{1}^{0}-(1-x) d x-\int_{1}^{0} x d x=-\int_{1}^{0} d x=1
$$

(c) Now consider the line integral for $\vec{F}=-y \widehat{x}+x \widehat{y}$ along the circular path $P Q$. First we will rewrite the force in polar coordinates along the unit circle. In these coordinates $x=\cos \phi$ and $y=\sin \phi$; and $\widehat{x}=\cos \phi \widehat{r}-\sin \phi \widehat{\phi}$ and $\widehat{y}=\sin \phi \widehat{r}+\cos \phi \widehat{\phi}$ so that

$$
\begin{aligned}
& \vec{F}=-y \widehat{x}+x \widehat{y}=-\sin \phi(\cos \phi \widehat{r}-\sin \phi \widehat{\phi})+\cos \phi(\sin \phi \widehat{r}+\cos \phi \widehat{\phi}) \\
& \vec{F}=\widehat{\phi}
\end{aligned}
$$

The path integral then becomes

$$
W=\int_{P}^{Q} \vec{F} \cdot d \vec{r}=\int_{0}^{\pi / 2} d \phi=\pi / 2
$$

4.4 (a) Since it is a radial force, the angular momentum is conserved so that

$$
\ell=m r_{o}^{2} \omega_{o}=m r^{2} \omega \rightarrow \omega=\frac{\ell}{m r^{2}}=\frac{r_{o}^{2}}{r^{2}} \omega
$$

(b) From lecture 2, we know that (assuming \ddot{r} is small) the force on the string is $F=m a_{\phi}=m r \omega^{2}$. The work pulling on the string is then
$W=\int_{r_{o}}^{r} F d r=-\int_{r_{o}}^{r} m r \omega^{2} d r=-\int_{r_{o}}^{r} \frac{\ell^{2}}{m r^{3}} d r=\frac{1}{2} \frac{\ell^{2}}{m}\left(\frac{1}{r^{2}}-\frac{1}{r_{o}^{2}}\right)=\frac{1}{2} m r_{o}^{4} \omega_{o}^{2}\left(\frac{1}{r^{2}}-\frac{1}{r_{o}^{2}}\right)$,
where the minus sign comes from F being in the opposite direction of $d r$.
(c) The change in KE is

$$
\Delta K E=\frac{1}{2} \frac{\ell^{2}}{m}\left(\frac{1}{r^{2}}-\frac{1}{r_{o}^{2}}\right)=\frac{1}{2} m r_{o}^{4} \omega_{o}^{2}\left(\frac{1}{r^{2}}-\frac{1}{r_{o}^{2}}\right)
$$

which is the same as the work done as it had to be.
4.7 (a) The force of gravity on Planet X is $\vec{F}=-m \gamma y^{2} \widehat{y}$. The work done by gravity moving the mass m from \vec{r}_{1} to \vec{r}_{2} is

$$
\begin{aligned}
W\left(\vec{r}_{1} \rightarrow \vec{r}_{2}\right) & =\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d \vec{r}=-\int_{\vec{r}_{1}}^{\vec{r}_{2}} m \gamma y^{2} d y=-\int_{y_{1}}^{y_{2}} m \gamma y^{2} d y \\
W\left(\vec{r}_{1} \rightarrow \vec{r}_{2}\right) & =-\frac{1}{3} m \gamma\left(y_{2}^{3}-y_{1}^{3}\right)
\end{aligned}
$$

Since the work done only depends on the end points, it is a conservative force. The potential energy for this gravitational field is

$$
U(y)=\frac{1}{3} m \gamma y^{3}
$$

(c) The energy for a stationary mass at a height h is

$$
E=\frac{1}{3} m \gamma h^{3}=\frac{1}{2} m \dot{y}^{2}+\frac{1}{3} m \gamma y^{3},
$$

where y is measured from the ground. When $y=0$, the velocity is

$$
\dot{y}=\sqrt{2 \gamma h^{3} / 3}
$$

4.18 (a) From equation (4.35) in the text $d f=\nabla f \cdot d \vec{r}$. If the differential displacement vector $d \vec{r}$ lies in a surface defined by $f=$ const. then $d f=0$. From that we see

$$
\nabla f \cdot d \vec{r}=0
$$

when $d \vec{r}$ lies in a surface defined by $f=$ const., thus ∇f is \perp to a surface of constant f.
(b) Now let $d \vec{r}=\epsilon \widehat{u}$ where ϵ is small and \widehat{u} is a unit vector that points in an arbitrary direction. Thus

$$
d f=\nabla f \cdot d \vec{r}=\epsilon \nabla f \cdot \widehat{u}=\epsilon|\nabla f| \cos \theta
$$

where $d f$ is the change in f in the direction of \widehat{u}. This is a maximum when $\cos \theta=1$ which occurs when \widehat{u} points in the direction of ∇f.
4.19 (a) A surface defined by $f=x^{2}+4 y^{2}=$ const. is a elliptic surface. The intersection of any plane orthogonal to the z axis with this surface will form a ellipse with the semimajor axis, which is parallel to the x axis, being twice that of the semiminor axis, which is parallel to the y axis.
(b) The unit normal to this surface is in the direction of ∇f which yields

$$
\begin{gathered}
\nabla f=2 x \widehat{x}+8 y \widehat{y} \rightarrow \widehat{n}=\frac{x \widehat{x}+4 y \widehat{y}}{\sqrt{x^{2}+16 y^{2}}} \\
\widehat{n}(1,1,1)=\frac{\widehat{x}+4 \widehat{y}}{\sqrt{17}}
\end{gathered}
$$

Moving in the direction of \widehat{n} will maximize the rate of change in f.
4.23 First all three forces only depend on position. It only remains to check $\nabla \times \vec{F}$.
(a) If $\vec{F}=k x \widehat{x}+2 k y \widehat{y}+3 k z \widehat{z}$, then

$$
\nabla \times \vec{F}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \widehat{x}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \widehat{y}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \widehat{z}=0
$$

This force is conservative. The corresponding potential is

$$
U=-k\left(\frac{1}{2} x^{2}+y^{2}+\frac{3}{2} z^{2}\right)
$$

(b) If $\vec{F}=k y \widehat{x}+k x \widehat{y}$, then

$$
\begin{aligned}
\nabla \times \vec{F} & =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \widehat{x}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \widehat{y}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \widehat{z} \\
\nabla \times \vec{F} & =k\left(\frac{\partial x}{\partial x}-\frac{\partial y}{\partial y}\right) \widehat{z}=0
\end{aligned}
$$

This force is conservative. The potential is

$$
U(x, y)=-k x y
$$

(c) If $\vec{F}=-k y \widehat{x}+k x \widehat{y}$, then

$$
\begin{aligned}
\nabla \times \vec{F} & =\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \widehat{x}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \widehat{y}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \widehat{z} \\
\nabla \times \vec{F} & =\left(k \frac{\partial x}{\partial x}+k \frac{\partial y}{\partial y}\right) \widehat{z}=2 k \widehat{z} \neq 0
\end{aligned}
$$

This force is not conservative.
4.34 (a) The vertical distance that the mass hangs down on a pendulum of length ℓ is $\ell \cos \phi$. Since at equilibrium it is a length ℓ below the pivot the potential energy measured above equilibrium is

$$
U(\phi)=m g \ell(1-\cos \phi)
$$

The total energy is

$$
E=\frac{1}{2} m(\dot{\ell \phi})^{2}+m g \ell(1-\cos \phi)
$$

(b) Differentiating this expression wrt t yields

$$
m \ell^{2} \dot{\phi} \ddot{\phi}+m g \ell \sin \phi \dot{\phi}=0
$$

or

$$
m \ell^{2} \ddot{\phi}+m g \ell \sin \phi=0 \rightarrow I \alpha=-F \ell \sin \phi=-|-\vec{r} \times m g \widehat{y}|=\Gamma
$$

(c) If $\phi \ll 1$ then $\sin \phi \simeq \phi$ and our EOM becomes

$$
\ddot{\phi}+\frac{g}{\ell} \phi=0 .
$$

This differential equation has as solutions

$$
\phi=A \sin \omega t+B \cos \omega t
$$

where $\omega^{2}=g / \ell$ or a period of $\tau=2 \pi \sqrt{\ell / g}$.

