
Solutions Assignment 2

2.19 (a) The EOM for a particle in a vacuum are

��
x = 0 and

��
y = �g:

Integrating these equations for a particle starting from the origin with initial
velocities vxo and vyo yields

x (t) = vxot and y (t) = �
1

2
gt2 + vyot:

The trajectory, y (x), is then

y (t = x=vxo) =
vyo
vxo

x� 1
2

g

v2xo
x2:

(b) Equation 2.37 in the text is

y =
vyo + vter
vxo

x+ vter� ln

�
1� x

vxo�

�
:

In the limit of small resistance both � and vter = g� become very large. This
enables us to expand the log function as

ln

�
1� x

vxo�

�
= �

�
x

vxo�
+
1

2

x2

v2xo�
2
+
1

3

x3

v3xo�
3
+ � � �

�
:

Substituting this expansion into the equation for the trajectory yields

y ' vyo + vter
vxo

x� vter�
�

x

vxo�
+
1

2

x2

v2xo�
2
+
1

3

x3

v3xo�
3

�
;

y ' vyo
vxo

x� g
�
1

2

x2

v2xo
+
1

3

x3

v3xo�

�
= yvac �

g

3

x3

v3xo�
:

The leading order term agrees with the vacuum expression, and the �rst order
correction shows that the height is reduced for even small drag e¤ects.

2.39 (a) The EOM and its integral for a cyclist are

m
dv

dt
= �cv2 � f;Z v

v0

dv

f + cv2
=

1

c

Z v

v0

dv

f=c+ v2
= � 1

m

Z t

0

dt = � t

m
:

As a change in variables let v=
p
f=c tan � ! f=c + v2 = (f=c) = cos2 � and

dv =
p
f=c= cos2 �: The integral of the EOM then becomes

� t

m
=

1

c

r
c

f

�
tan�1

p
c=fv � tan�1

p
c=fv0

�
t =

mp
fc

�
tan�1

p
c=fv0 � tan�1

p
c=fv

�
:
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(b) For c = :2N= (m= sec)2 ; m = 80kg; and f = 3N; the times to slow are
given by the expression

t = 103:3
�
tan�1 5:164� tan�1 :2582v

�
:

For an initial speed v0 = 20m=s the time required to slow to 15m=s, 10m=s,
5m=s, and 0m=s are

v (m=s) 15 10 5 0
t (s) 6:3 18:4 48:3 142:5

:

2.41 For a baseball thrown vertically upward with a velocity of v0; the
EOM is

m
dv

dt
= �mg � cv2 = �mg

�
1 + v2=v2ter

�
dv

dt
= �g

�
1 + v2=v2ter

�
;

where v2ter = mg=c: Since dv=dt = v (dv=dy) we can writeZ v

v0

v

1 + v2=v2ter
dv= �g

Z y

0

dy

For the maximum height v = 0: This leads to

v2ter
2

Z 0

v0

1

1 + v2=v2ter
d
�
v2=v2ter

�
= �v

2
ter

2
ln
�
1 + v20=v

2
ter

�
= �gymax;

or

ymax =
v2ter
2g

ln
�
1 + v20=v

2
ter

�
:

In a vacuum v2ter !1: Expanding the natural log we �nd

ymax =
v2ter
2g

ln
�
1 + v20=v

2
ter

�
=
v2ter
2g

�
v20=v

2
ter � v40=2v4ter + � � �

�
ymax =

v20
2g

�
1� v20

2v2ter
+ � � �

�
As expected the maximum height is reduced in the presence of drag. For a
baseball thrown upward with a velocity of v0 = 20m= sec and a terminal veloc-
ity of vter = mg=c =

p
:15� 9:8= (:25� 49) = 35m=s;the maximum height is

ymax = 17:1m as compared to v20=2g = 20:4m in a vacuum.
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2.42 For a baseball dropped from the elevation ymax of problem 2.41 (y is
now positive going down) the EOM and its integral are

m
dv

dt
= mg � cv2 = mg

�
1� v2=v2ter

�
dv

dt
= v

dv

dy
= g

�
1� v2=v2ter

�
;Z V

0

vdv

1� v2=v2ter
=

vter
2

Z V

0

1

1� (v2=v2ter)
d
�
v2=v2ter

�
=

Z ymax

0

gdy;

gymax = �vter
2
ln
�
1� V 2=v2ter

�
where V is the velocity when the ball returns to the ground. Using the expression
for ymax obtained in problem 2.41 yields

vter
2
ln
�
1� V 2=v2ter

�
= �vter

2
ln
�
1 + v20=v

2
ter

�
1� V 2=v2ter = 1=

�
1 + v20=v

2
ter

�
;

V 2=v2ter = 1� 1=
�
1 + v20=v

2
ter

�
= v20=v

2
ter=

�
1 + v20=v

2
ter

�
;

V = v0=
q
1 + v20=v

2
ter = v0vter=

q
v2ter + v

2
0

It is of interest to examine this result for small drag, v0=vter << 1; and large
drag, vter=v0 << 1: These results are

v0=vter < < 1 : V = v0=
q
1 + v20=v

2
ter ' v0

�
1� 1

2

v20
v2ter

�
;

v0=vter > > 1 : V = vter=
q
1 + v2ter=v

2
0 ' vter

�
1� 1

2

v2ter
v20

�
:

In the case of small drag the return velocity is slightly less than the initial
velocity while for large drag the return velocity is slightly less than the terminal
velocity. For the case of the baseball in problem 2.41;

V = 20� 35=
p
202 + 352 = 17:4m=s;

as compared to a return velocity of 20m=s in a vacuum.

2.49 (a) From Euler�s theorem

z = ei� = cos � + i sin �:

Thus we can write

e2i� = cos 2� + i sin 2� =
�
ei�
�2
= (cos � + i sin �)

2

e2i� = cos2 � � sin2 � + 2i sin � cos �:

Equating real and imaginary parts we �nd

cos 2� = cos2 � � sin2 � and sin 2� = 2 sin � cos �:

3



2.55 (a) Now consider crossed E and B �elds,
�!
E = Eby and �!B = Bbz: The

EOM is

m
d�!v
dt

= q (Eby +�!v �Bbz) :
Separating this vector equation into its components yields

dvx
dt

= !vy;
dvy
dt

=
qE

m
� !vx; and

dvz
dt

= 0;

where ! = qB=m: The initial conditions are vx = vx0 with all other initial
component velocities vanishing. This allows us to integrate the equation for the
z component and �nd

vz = 0! z = z0:

De�ning z0 = 0; the particle remains in the plane de�ned by z = 0:
(b) Note from the equation for dvy=dt; that if vx0 = qE=m! = E=B our

remaining EOM at t = 0 reduce to

dvy
dt

= 0;
dvx
dt

= !vy:

After a time �t we see these equations imply

vy = vy0 +
dvy
dt
�t = vy0:

From the initial condition vy0 = 0; the expression for vx after a time �t becomes

vx = vx0 +
dvx
dt
�t = vx0 + !vy0�t = vx0:

Continuing this integration process yields vy = 0 and vx = vx0 for all time.
(c) To solve these equations for a general initial vx0 it is convenient to de�ne

vx = ux + qE=m! so that ux is the velocity di¤erence between vx and the drift
velocity vx0 = qE=m! = E=B: The EOM of interest then reduce to

dux
dt

= !vy;
dvy
dt

= �!ux:

We have already solved these EOM. For this initial condition these solutions are

ux = ux0 cos!t! vx = E=B + (vx0 � E=B) cos!t
vy = �ux0 sin!t! vy = � (vx0 � E=B) sin!t:

3.4 (a) Assuming that the velocity of the hobos relative to the �atcar is u;
then from the conservation of momentum after both hobos jump we �nd

mfcvf � 2mh (u� vf ) = 0! vf =
2mh

mfc + 2mh
u:
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(b) If the hobos jump one after the other (with velocity relative to the �atcar
remains u for both hobos) then after the �rst hobo jumps the velocity of the
�at car v0f is found from

(mfc +mh) v
0
f �mh

�
u� v0f

�
= 0! v0f =

mh

mfc + 2mh
u:

After the second hobo jumps the conservation of momentum yields

mfcvf �mh (u� vf ) = (mfc +mh) v
0
f

(mfc +mh) vf = mhu+ (mfc +mh)
mh

mfc + 2mh
u

vf =

�
mh

mfc +mh
+

mh

mfc + 2mh

�
u

Since
mh

mfc +mh
>

mh

mfc + 2mh
;

we have
mh

mfc +mh
+

mh

mfc + 2mh
>

2mh

mfc + 2mh
;

and vf for process (b) is greater than vf for part (a). Algebraically you could
also take the ratio of the �nal velocity for process (b), vb; to that for (a), va:
This results in

vb=va =

�
mh

mfc +mh
+

mh

mfc + 2mh

�
mfc + 2mh

2mh

vb=va =

�
mfc + 2mh

mfc +mh
+ 1

�
1

2
=
2mfc + 3mh

2mfc + 2mh
> 1:

3.11 (a) In a time dt the change in momentum from Newton�s 2nd law is

F extdt = dp = (m+ dm) (v + dv)�mv + dm (u� v) = mdv + udm;

where F is any external force. Hence

m
dv

dt
= F ext � udm

dt
:

(b) In a gravitational �eld F ext = �mg and the EOM takes the form

m
dv

dt
= �mg � udm

dt
:

Assuming that the rocket ejects mass at a constant rate, m = m0 � kt we �nd

(m0 � kt)
dv

dt
= � (m0 � kt) g + ku:
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Separating and then integrating to solve for v;

dv =

�
�g + ku

m0 � kt

�
dt

v = u ln
m0

m0 � kt
� gt = u ln m0

m (t)
� gt

This is exactly what one would expect given the solution for the velocity of a
rocket in the absence of a gravitational �eld.
(c) For the data m0 = 2 � 106kg; m (2min) = 106kg; and u = 3000m= sec

the approximate velocity of the shuttle after 2min is

v = �9:8� 120 + 3000 ln 2 = 903m=s

In free space (g = 0) the velocity would be

v = 3000 ln 2 = 2080m=s:

(d) The rocket would remain on the launch pad reducing its mass until
udm=dt � mg:

3.13 From problem 3.11 the rocket�s height is given by

y (t) =

Z t

0

�
u ln

m0

m0 � kt
� gt

�
dt = �

Z t

0

u ln
m0=k � t
m0=k

dt� 1
2
gt2;

y (t) = u (m0=k � t) ln
(m0 � kt)
m0

� 1
2
gt2 + ut;

y (t) = �u
k
m ln

m0

m
� 1
2
gt2 + ut:

From the data in problem 3.7, m0 = 2 � 106kg; m (t = 2min) = 106kg; and
vex = 3000m= sec :; after 2min

y (t = 2min) = � 3000

106=120
106 ln 2� 1

2
9:8 (120)

2
+ 3000 (120)

y (t = 2min) ' �2:50� 105m� :7� 105m+ 3:6� 105m = 40; 000m

3.22 The CM is found from the expression

�!
R =

1

M

Z
�!r dm:

For an object of uniform density, it is convenient to express the mass ele-
ment as dm = �dV where � is the mass per unit volume. For this exam-
ple � = 3M=2�R3: The volume element in spherical coordinates is dV =
drr sin �d�rd� = r2dr sin �d�d�: For a hemisphere the coordinates �; �; r range
from 0! 2�; 0! �=2; and 0! R respectively. Due to symmetry the x and y
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coordinates for the CM are both zero. The integral for the z coordinate of the
CM of a hemisphere is

zCM =
3

2�R3

Z R

0

Z �=2

0

Z 2�

0

zr2dr sin �d�d� =
3

R3

Z R

0

Z �=2

0

zr2dr sin �d�

In spherical coordinates z = r cos �; hence

zCM =
3

R3

Z R

0

r3dr

Z �=2

0

cos � sin �d� =
3

R3

Z R

0

r3dr

Z �=2

0

1

2
d
�
sin2 �

�
;

zCM =
3

R3
R4

4

1

2
=
3

8
R:

Uniform Rod After the impulse the linear momentum of the rod is

F�t = mvcm ! vcm = F�t=m:

The angular momentum about its center of mass is

F�tl=2 = I! =
1

12
ml2!:

Eliminating F�t in terms of vcm we �nd

mvcml=2 = ml
2!=12! ! = 6vcm=l:

Immediately after the impulse the velocity of the end of the rod struck by the
impulsive force is

v1 = vcm + !l=2 = 4vcm:

The velocity of the opposite end of the rod at this point is

v2 = vcm � !l=2 = �2vcm:
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