
Solutions Assignment 1

1.16 (b) Consider the vector �!r +�!s and its invariant scaler product

(�!r +�!s ) � (�!r +�!s ) = r2 + s2 + 2�!r � �!s :

Since we know that r2 and s2 are also invariant, the scalar product �!r � �!s must
also be invariant.

1.19 Consider the component form of the vector expression in problem
1.19:
d

dt
[�!a � (�!v ��!r )]i =

d

dt
ai�ijkvjrk =

�
ai�ijkvjrk + ai�ijk

�
vjrk + ai�ijkvj

�
rk

d

dt
[�!a � (�!v ��!r )]i =

�
ai�ijkvjrk + �ijkaiajrk + ai�ijkvjvk

The last two terms vanish due to the properties of the permutation symbol,
Hence

d

dt
[�!a � (�!v ��!r )]i =

�
ai�ijkvjrk

d

dt
[�!a � (�!v ��!r )] =

��!a � (�!v ��!r ) :

This problem can also be done by using the product rule when taking deriv-
atives,

d

dt
[�!a � (�!v ��!r )] =

��!a � (�!v ��!r ) +�!a �
� ��!v ��!r

�
+�!a �

�
�!v �

��!r
�
:

The third term vanishes since �!v �
��!r = �!v ��!v = 0: The second term is of the

form �!a �
� ��!v ��!r

�
= �!a � (�!a ��!r ) : The vector product inside the parathensis

is normal to both �!a and �!r : Hence the scalar product with �!a vanishes and we
are left with only the �rst term.

Vector Identity r
��!
A �

��!
B ��!r

��
=
�!
A��!B Consider the component form

of r
��!
A �

��!
B ��!r

��
:h

r
��!
A �

��!
B ��!r

��i
i
= @iAj�jk`Bkr` = Aj�jk`Bk�i`:

Here we have recognized that @ir` = �i`: Henceh
r
��!
A �

��!
B ��!r

��i
i
= Aj�jkiBk = �ijkAjBk =

��!
A ��!B

�
i
and

r
��!
A �

��!
B ��!r

��
=

�!
A ��!B:

This is the desired result.
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1.23 If
�!
b � �!v = �; and �!b ��!v = �!c where �; �!b ; and �!c are known then

the cross product
�!
b ��!c is

�!
b ��!c = �!b �

��!
b ��!v

�
=
�!
b
��!
b � �!v

�
��!v

��!
b � �!b

�
:

This leads to

�!v
��!
b � �!b

�
= �

�!
b ��!b ��!c ;

�!v = �
�!
b

�!
b � �!b

�
�!
b ��!c
�!
b � �!b

= �

�!
b

b2
�
�!
b ��!c
b2

:

1.32 Since the magnetic �eld at �!r 1 is given by
�!
B (�!r 1) =

�o
4�

q2
s2
(�!v 2 � bs) ;

we know that the magnetic force on the charge located at �!r 1 is

Fmag12 = q1

��!v 1 ��!B (�!r 1)� = �o
4�

q1q2
s2

(�!v 1 � (�!v 2 � bs)) ;
Fmag12 =

�o
4�

q1q2
s2

((�!v 1 � bs)�!v 2 � (�!v 1 � �!v 2) bs) :
Now �!v 1 and �!v 2 are orthogonal, �!v 1 � �!v 2 = 0: Additionally bs is a unit vector
so that the magnitude of Fmag12 is

jFmag12 j = �o
4�

q1q2
s2

j�!v 1 � bsj v2 � �o
4�

q1q2
s2
v1v2:

The ratio of the magnitudes Fmag12 =F el12 satis�es

Fmag12

F el12
� �o
4�

q1q2
s2
v1v2=

�
1

4��o

q1q2
s2

�
= �o�ov1v2:

Since �o�o = 1=c
2; we have

Fmag12 � v1v2
c2
F el12;

which is the desired result.

1.39 (a) Using the coordinates suggested in the text, the equation of mo-
tion in the x and y directions are

m
d2x

dt2
= �mg sin� and md

2y

dt2
= �mg cos�;

with initial conditions x (t = 0) = y (t = 0) = 0;
�
x (t = 0) = vo cos �; and

�
y (t = 0) = vo sin �: First it is necessary to determine the time the ball is above
the plane. Integrating the EOM for the y coordinate we �nd

dy

dt
= � (g cos�) t+ vo sin �:

2



Integrating one more time yields

y (t) = �g cos�
2

t2 + (vo sin �) t:

From this result it is clear that the ball is at y = 0 both initially, t = 0; and at
t = T = 2vo sin �=g cos�; where I have de�ned T as the total time for the �ight
of the ball. To �nd the range up the plane, we now need to integrate the EOM
for the x coordinate and then evaluate it at t = T . The �rst integration yields

dx

dt
= � (g sin�) t+ vo cos �:

Integrating once more yields

x (t) = �g sin�
2

t2 + (vo cos �) t:

The range is then

R = x (T ) = �g sin�
2

�
2vo sin �

g cos�

�2
+ (vo cos �)

2vo sin �

g cos�
;

R = 2v2o sin � [� sin� sin � + cos � cos�] =g cos2 �

The term in the square braces simpli�es to cos (� + �) and we �nd

R = 2v2o sin � cos (� + �) =g cos
2 �;

which is the desired result.
(b) To �nd the value of � that results in the maximum range, Rmax; we �nd

the value of � for which dR=d� = 0:

dR

d�
=

2v2o
g cos2 �

(cos � cos (� + �)� sin � sin (� + �))

dR

d�

����
�o

=
2v2o

g cos2 �
cos (�+ 2�o) = 0! �+ 2�o = �=2

�o = (�=2� �) =2:

The maximum range, Rmax, is

Rmax = R (�o) = 2v
2
o sin (�=4� �=2) cos (�=4 + �=2) =g cos2 �:

Using the trigonometric identity

cos (�=4 + �=2) = cos (�=2� (�=4� �=2)) = sin (�=4� �=2) ;

we �nd

sin (�=4� �=2) cos (�=4 + �=2) = sin2 (�=4� �=2) = 1

2
(1� cos (�=2� �))

sin (�=4� �=2) cos (�=4 + �=2) =
1

2
(1� sin�) :
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The maximum range is then

Rmax = v2o (1� sin�) =g cos2 � = v2o (1� sin�) =g
�
1� sin2 �

�
;

Rmax = v2o=g (1 + sin�) ;

which is the desired result.

1.40 (a) From problem 1.39 we can �nd the solution for the ball�s position
as a function of time by taking the limit as � ! 0: This yields the well known
result

x (t) = (vo cos �) t and y (t) = �
1

2
gt2 + (vo sin �) t:

(b) If r(t) is the ball�s distance from the origin then r2(t) is given by

r2(t) = x2 (t) + y2 (t) ;

r2(t) =
�
v2o cos

2 �
�
t2 +

1

4
g2t4 � gvo sin �t3 +

�
v2o sin

2 �
�
t2

r2(t) = v2ot
2 � gvo sin �t3 +

1

4
g2t4:

Now if r(t) is continually increasing, then r2(t) is also continuing to increase.
The condition for this is

dr2(t)

dt
� 0;

This leads to

dr2(t)

dt
= 2v2ot� 3gvo sin �t2 + g2t3 = t

�
2v2o � 3gvo sin �t+ g2t2

�
� 0:

Since t � 0 we only have to concern ourselves with the quadratic f (t) = 2v2o �
3gvo sin �t+ g

2t2 � 0: If f (t) � 0 for all time, then this quadratic never crosses
the f = 0 axis. Hence the discriminate for this quadratic must always be less
than zero. This leads to

9g2v2o sin
2 � � 8g2v2o � 0! 9 sin2 � � 8

sin � �
p
8=9 = 2

p
2=3

� � 1:23rad ' 70:5�:

1.45 If a vector �!v (t) that has a constant magnitude then �!v (t) ��!v (t) = �
a constant. If we take the time derivative of this quantity then

d

dt
�!v (t) � �!v (t) = 2�!v (t) � d

�!v (t)
dt

= 0;

that is the two vectors �!v (t) and d�!v (t) =dt = �!a (t) are necessarily orthogonal.
Conversely if

�!v (t) � d
�!v (t)
dt

= 0;
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then Z
�!v (t) � d

�!v (t)
dt

dt =

Z
�!v (t) � d�!v (t) = 1

2
�!v (t) � �!v (t) = const:

This is a handy result as it applies not only to the scenarios discussed by Taylor,
but also to the 4-velocity in relativity, special or general. But that is for another
discussion.

2.11 (a) For an object thrown upward with linear drag the EOM for the
y coordinate (positive in upward direction) is

m
dv

dt
= �mg � bv!dv

dt
= �g � v=� = �v + vter

�

where � = m=b and vter = g� = mg=b. With an initial upward velocity of v0
we �nd

dv

dt
= �v+vter

�
! dv

v+vter
= �dt

�
;

ln
v+vter
v0+vter

= � t
�
! v+vter = (v0+vter) e

�t=�

v = v0e
�t=� � vter

�
1� e�t=�

�
:

Integrating this expression we �nd that the y coordinate satis�es

y (t) = �vtert+ (v0+vter) �
�
1� e�t=�

�
:

(b) The upward velocity reaches its peak at a time T which occurs when
v = 0; or

e�T=� = vter= (v0+vter)

T = � ln (v0+vter) =vter = � ln (1+v0=vter) :

The maximum value, ymax = y (T ) ; is given by

ymax = y (T ) = �vterT + (v0+vter) �
�
1� e�T=�

�
ymax = �vter� ln (1+v0=vter) + vter� (1 + v0=vter)

�
1� (1+v0=vter)�1

�
ymax = v0� � vter� ln (1+v0=vter) :

(c) As the drag is reduced (� !1) we �nd that v0=vter = v0=g� � 1: In
this limit we �nd

ln (1+v0=vter) = ln (1+v0=g�) =
v0
g�
� 1
2

�
v0
g�

�2
+ � � �:
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The maximum height in this limit is

ymax = v0� � g�2 ln (1+v0=g�) ' v0� � g�2
 
v0
g�
� 1
2

�
v0
g�

�2
+
1

3

�
v0
g�

�3!

ymax ' �g�2
 
�1
2

�
v0
g�

�2
+
1

3

�
v0
g�

�3!
=
1

2

v20
g
� 1
3

v30
g2�

=
1

2

v20
g

�
1� 2

3

v0
vter

�
:

Note that the leading term is what you would expect for zero drag. The �rst
order correction shows that the drag reduces the maximum height.

2.12 In one dimension, if a force only depends on the spatial coordinate,
x; then the EOM is

F (x) = m
d2x

dt2
:

Using the chain rule we can write the second derivative of x as

d2x

dt2
=
d

dx

�
dx

dt

�
dx

dt
=
1

2

d

dx

�
dx

dt

�2
:

This allows us to integrate the EOM,

F (x) =
m

2

d

dx

�
dx

dt

�2
Z
F (x) dx =

m

2

Z
d

�
dx

dt

�2
=
m

2

�
dx

dt

�2
� m
2
v2o�

dx

dt

�2
= v2 = v2o +

2

m

Z
F (x) dx;

which is the desired result.
Of interest here is the result that we obtain after multiplying by m=2: We

then �nd
1

2
mv2 � 1

2
mv2o =

Z
F (x) dx:

For those that have some familiarity with the relation between work and kinetic
energy, they should recognize that the change in kinetic energy of the particle
is equal to the work done on the particle by the force F .
If in fact F is constant then the term involving the integral becomes

2

m

Z
F (x) dx = 2

F

m
�x = 2a�x;

where acceleration a is constant. This leads to the well known kinematic relation

v2 = v2o + 2a�x;

whenever a is constant.
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2.13 For problem 2.12, when F = �kx with initial conditions x (t = 0) =
xo; v (t = 0) = vo = 0; the result can be written

m

2

�
dx

dt

�2
= �

Z x

xo

kxdx = �1
2
kx2 +

1

2
kx2o�

dx

dt

�2
= !2

�
x2o � x2

�
;

where !2 = k=m: Taking the square root (using the minus sign for as t increases
x decreases) we see that

dx

dt
= �!

p
x2o � x2 !

dxp
x2o � x2

= �!dt

�!t =

Z x

xo

dxp
x2o � x2

:

Letting x = xo cos � the integral becomes

�!t = �
Z �

0

xo sin �

xo sin �
d� = ��:

Thus the solution is x = xo cos!t:
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