
1 Lecture 9-25

1.1 Chapter 1 Newton�s Laws of Motion

1.1.1 Vectors

We will start with de�ning the three basis vectors that align themselves along
the three Cartesian coordinate axes such that the position vector �!r is given by,

�!r = xbx+ yby + zbz = xbex + ybey + zbez: (1)

It is common to use the carrot indicating a unit vector. It should be clear
from this de�ning equation that bx = bex etc. The reason for the choice of bei to
represent the basis comes from German for one, ein. On occasion (when it is
convenient) we will use the de�nition

�!r = r1be1 + r2be2 + r3be3 = 3X
i=1

ribei � ribei: (2)

Here the index i = 1; 2; 3 references x; y; z: Also we will use the Einstein nota-
tion (actually a close approximation to his notation) in which repeated indicies
representing components are summed over. The advantage of this notation is
clear from the equation above, the use of subscripts allows us to represent the
position vector (or any other vector) as a simple sum over indicies. If convenient,
we may use the short hand notation to indicate the set of all the components as

frig = (r1; r2; r3) : (3)

We will de�ne our vector to satisfy the linear addition property

�!r +�!s = (r1 + s1) bx+ (r2 + s2) by + (r3 + s3) bz = (ri + si) bei (4)

So to add vectors we simply add their components, the parallelogram rule.
Vectors also satisfy the linear property

c�!r = c (r1bx+ r2by + r3bz) = cr1bx+ cr2by + cr3bz = c (ribei) : (5)

For example, if an object of mass m has an acceleration �!a , then the resultant
force

�!
F will equal m�!a .

In de�ning a scalar (or dot) product between a pair of vectors, we �rst de�ne
the scalar product of our Cartesian basis to satisfy

bei � bej = �ij : (6)

Here �ij is the Kronecker delta symbol which has the properties

�ij =

�
1 i = j
0 i 6= j (7)
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With this de�nition we see immediately that

�!r � �!s = r1s1 + r2s2 + r3s3 = risi: (8)

The magnitude of a vector is found by taking the scalar product of the vector
with itself. The magnitude of the vector squared is given by

r2 = �!r � �!r = r21 + r22 + r23 =
X
i

r2i ; (9)

where in this equation we have also de�ned r = j�!r j : Note that we have used
the summation sign to avoid confusion with r2i which we will de�ne to be the
square of a single component. With these de�nitions, it can easily be shown
that the scalar product satis�es

�!r � �!s = rs cos �; (10)

where � is the angle between the direction of the two vectors. With this result
it is clear that

�!r � bei = ri = r cos �i; (11)

where �i is the angle between the vector and the corresponding coordinate axes.
The cosine of this angle is usually called the direction cosine, and they have the
property X

i

cos2 �i = 1: (12)

With these properties the expansion of a vector in its direction cosines is

�!r = r cos �ibei: (13)

One point that I wish to make here is that the components of a vector
depend on the coordinates used to describe the vector. However a vector is
a geometrical object and, as such, is independent of the coordinates. This is
because a vector depends not only on its components but also its set of basis
vectors which de�ne the coordinate system. So sometimes you see the notation

�!r !O (r1; r2; r3) : (14)

Here the symbol O indicates that (r1; r2; r3) are the components of
�!r in the

coordinate system O . This notation serves to emphasize that the components
of the vector are given in a speci�c coordinate system.
For example, under a rotation of the coordinate axes, the components change

even though the geometrical object, the vector itself, remains unchanged. This
is because the basis vectors also change. To illustrate this we will consider a
vector,

�!
V , lying in the x � y plane, with an angle � between the directions of

the x axis, bex; and �!V , so that
�!
V = Vxbex + Vybey = V (cos�bex + cos (�=2� �) bey)
�!
V = V (cos�bex + sin�bey) : (15)
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If we were to rotate the coordinate axis through an angle �; de�ning a coordinate
system O through its basis set bex and bey; then the vector would be expanded
as �!

V = Vxbex + Vybey = V (cos (�� �) bex + sin (�� �) bey) : (16)

This transformation is easily visualized if you think of the case when � < �; but
it is also true for any value of �: Using the concept of direction cosines we can
expand the O basis in terms of the O basis and �nd

bex = cos � bex + sin �bey and bey = cos �bey � sin �bex (17)

Substituting this basis expansion into the expansion of
�!
V in O we �nd

�!
V = V (cos (�� �) (cos �bex + sin �bey) + sin (�� �) (cos �bey � sin �bex)) ;
�!
V = V (cos (�� �) cos � � sin (�� �) sin �) bex

+V (sin (�� �) cos � + cos (�� �) sin �) bey;
�!
V = V (cos�bex + sin�bey) ; (18)

which was our original expansion con�rming that the original vector was un-
changed, invariant. As an aside it is useful to note that the components of the
vector in O can also be expressed as

Vx = V cos (�� �) = V cos� cos � + V sin� sin �
= Vx cos � + Vy sin �; (19a)

Vy = V sin (�� �) = V sin� cos � � V cos� sin �
= �Vx sin � + Vy cos �: (19b)

The second kind of product between a pair of vectors is the vector (or cross)
product. If the vector �!p is given by �!p = �!r ��!s ; then it has components

px = rysz � rzsy; (20a)

py = rzsx � rxsz; (20b)

pz = rxsy � rysx: (20c)

The vector product can also be written equivalently as

�!r ��!s = det

24 bx by bz
rx ry rz
sx sy sz

35 ; (21)

where det stands for the determinant. Since interchanging a pair of rows (or
columns) changes the sign of a determinant, this expression makes clear that
interchanging the order of the vectors in the vector product changes the sign of
the resultant vector. The components of the resultant vector can also be given
by

pi =

3X
j;k=1

�ijkrjsk; (22)
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where �ijk is the Levi-Civita permutation symbol often just called the permu-
tation symbol. It has the properties

�ijk =
0 if any pair of indices are equal
+1 if i; j; k form an even permutation of 1; 2; 3
�1 if i; j; k form an odd permutation of 1; 2; 3

. (23)

An even permutation has an even number of exchanges in the position of the
indices. Cyclic permutations are always even, e.g. �123 = �231 = �312 = 1: An
odd permutation has an odd number of exchanges in the position of the indices.
These all amount to a single permutation from one of the cyclic permutations,
e.g. �213 = �321 = �132 = �1: An important property of the permutation symbol
is:

Sij`n= �kij�k`n= �i`�jn��in�j`. (24)

This property is often extremely useful in solving a variety of vector identities
involving vector products. As an example, we will use the permutation symbol
to express the components of a vector that results from the vector product of
three vectors. Consider the vector product

�!
t = �!p � (�!s ��!r ) : If we de�ne

�!u = �!s ��!r then the components of �!u are given by

uk = �k`ns`rn; (25)

where we have used ` and n as our dummy summation indices. Then the
components of

�!
t = �!p ��!u are expressed as

ti = �ijkpj�k`ns`rn: (26)

We can simplify this expression by �rst cyclically permuting the indices in the
�rst permutation index and note that �ijk = �kij . Since none the components
of the vectors in the vector product depend on the k index we can perform that
sum independent of those components. Substituting the the result in equation
(24) we �nd the components of

�!
t are

ti = pjs`rn (�i`�jn � �in�j`) = si (pjrj)� ri (pjsj) : (27)

The terms inside the parentheses are the scalar products �!p ��!r and �!p ��!s : This
expression for the components of

�!
t enables us to express the vector

�!
t via the

identity �!
t = �!p � (�!s ��!r ) = (�!p � �!r )�!s � (�!p � �!s )�!r : (28)

It is useful to note that this expresion makes it clear that the vector product,
�!p � (�!s ��!r ) ; is orthogonal to �!p ; as

�!p � �!t = �!p � ((�!p � �!r )�!s � (�!p � �!s )�!r ) = 0: (29)

Another useful notation in proving vector identities is to represent the par-
tial derivative @=@xi as @i: As an example of this notation consider the vector
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quantity r�
�
r��!A

�
. The ith component of this vector expression ish

r�
�
r��!A

�i
i
= �ijk@j�k`n@`An = (�i`�jn � �in�j`) @j@`Anh

r�
�
r��!A

�i
i
= @i (@jAj)� @j@jAi =

h
r
�
r � �!A

�
�r2�!A

i
i
; (30)

and we have easily veri�ed this well known vector identity.
Before we leave our discussion of the vector product we note that the am-

plitude of �!p = �!r ��!s is given by

j�!p j = p = rs sin �; (31)

where � is the angle between the two vectors �!r and �!s . We have already
shown that the vectors �!r and �!s are geometrical objects and independent of
the coordinate system used to describe them. As a result their scaler product
and angle between them is invariant. This argument allows us to conveniently
de�ne the x axis to be parallel to �!r : A rotation about this axis is all that is
required to have �!s lie in the x� y plane. In this coordinate system the vector
product �!r ��!s is perpendicular to the x� y plane (parallel to the z axis) and
pz = rxsy = rs cos �y where cos �y is the direction cosine between

�!s and the y
axis. This angle is invariant and is the complement of the angle between �!r and
�!s : Hence equation (31) is true in any coordinate system. The direction of �!p
is given by the usual right-hand rule. The vector product plays an important
role in the discussion of rotational motion. For example, the torque on a body
about the origin is de�ned as the vector product

�!
T = �!r ��!F :

1.1.2 Di¤erentiation of vectors

Since much of physics involves the di¤erentiation of vectors we need to de�ne
how we di¤erentiate vectors. Initially we will consider a vector that only depends
on time and take its time derivative. For a scaler, the time derivative is given
by

dx

dt
= lim

�t!0

�x

�t
: (32)

In exactly the same way we de�ne the time derivative of a vector as.

d�!r
dt

= lim
�t!0

��!r
�t

; (33)

where
��!r = �!r (t+�t)��!r (t) : (34)

From this de�nition it can easily be shown that

d

dt
(�!r +�!s ) = d�!r

dt
+
d�!s
dt
; (35)

and
d

dt
(f�!r ) = df

dt
�!r + f d

�!r
dt
: (36)
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Since our Cartesian basis does not change in time, the time derivative of our
position vector is simply

d�!r
dt

=
dx

dt
bx+ dy

dt
by + dz

dt
bz = dri

dt
bei: (37)

Comparing this with the velocity vector

�!v = vxbx+ vxby + vxbz = vibei; (38)

we see that

vx =
dx

dt
etc. (39)

Note that this is true only because the basis vectors are constant in time (and
space). When we have to include the time dependence of the basis vectors things
get substantially more complicated.
What we have not mentioned is the choice of reference frames. A proper

choice can make the solution of many problems essentially trivial or at least much
simpler. (e.g. when proving �!r � �!s = rs cos � or j�!r ��!s j = rs sin �). There is
also the possibility of choosing frames that are moving relative to each other.
If they are moving with a uniform velocity then they are called inertial frames
and as we shall see Newton�s laws hold (at least when the relative velocities are
much smaller than the speed of light). If the frames are accelerating or rotating
(a form of acceleration) then Newton�s laws do not hold in their standard form.

1.1.3 Mass and Force

We will take the point of view that the amount of mass contained in an object is
simply the amount of stu¤ contained in the object. Given a balance in a uniform
gravitational �eld, the relative masses of two objects can be easily determined.
An alternate and equivalent way is shown in Figure 1-1. In an inertial balance
two masses are equal if and only if a force applied at the rod�s midpoint causes

Figure 1-1. An inertial balance compares the masses of m1 and m2 that are
attached to the opposite ends of a rigid rod. The masses are equal if and only
if a force applied to the rod�s midpoint causes them to accelerate at the same

rate so that the rod does not rotate.
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them to accelerate at the same rate. Since in a uniform gravitational �eld equal
masses weigh the same, it is often easier to simply use a spring balance to
determine the amount of mass in an object. A spring balance can also be used
to measure the relative strengths of separate forces.

1.1.4 Newton�s First and Second Laws

First we consider a particle or a point mass. Later on we will expand this
concept but NTL there are many situations where this concept is an excellent
approximation to the physical problem of interest. Newton�s �rst two laws
should be familiar to you. The �rst is given as

In the absence of forces, a particle moves with a uniform velocity �!v . (40)

This is often referred to the law of inertia. The second of Newton�s laws states
that if a net force

�!
F acts on a particle of mass m; this results in an acceleration

of the particle given by
�!
F = m�!a : (41)

Here �!a is de�ned as
�!a = d�!v

dt
�

��!v ; or �!a = d2�!r
dt2

�
���!r : (42)

Newton�s second law can also be written as

�!
F =

��!p ; (43)

where �!p = m�!v is de�ned to be the momentum of our point particle. In fact,
with the proper de�nitions for

�!
F , �!p , and the time derivative, it is this form that

is also correct in special relativity. Clearly both of these laws are intended to be
applied in inertial frames and are no longer true in these forms in accelerating
frames. Newton�s second law is also often referred to as the equation of motion,
EOM.
Most philosphers of science consider Newton�s second law as the de�nition

of a force. The quantities of mass, length, and time are well de�ned. Hence the
quantity force,

�!
F , is de�ned in terms of these quantities via Newton�s second

law.

1.1.5 Newton�s Third Law

If you are leaning against a wall, it is clear that the wall is exerting a force back
onto you. This is often stated as, for every action there is an equal and opposite
reaction. To be more precise Newton�s third law is stated as, �if object 1 exerts
a force

�!
F 21 on object 2, then object 2 always exerts an equal and opposite

reaction force on object 1�, or

�!
F 21 = �

�!
F 12 (44)

Think of the gravitational force between the Earth and the Moon.
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Figure 1-2. Newton�s third law states that the reaction force exerted on
object 1 by object 2 is equal and opposite to the force exerted by 2 on 1, i.e.

F12 = �F21

As an example we will consider two particles. Assume that an external force
is present, and they interact with each other as well. The net force,

�!
F 1 on

particle 1 is
�!
F 1 =

�!
F 12 +

�!
F ext
1 =

��!p 1; (45)

where
��!p 1 is the rate of change in the momentum of particle 1 and similarly

�!
F 2 =

�!
F 21 +

�!
F ext
2 =

��!p 2: (46)

De�ning the total momentum of the system as
�!
P = �!p 1 +�!p 2; then the rate of

change of the total momentum is

��!
P =

��!p 1 +
��!p 2 =

�!
F 12 +

�!
F ext
1 +

�!
F 21 +

�!
F ext
2 : (47)

Because of Newton�s third law the internal forces cancel and

��!
P =

�!
F ext
1 +

�!
F ext
2 =

�!
F ext ; (48)

where we have de�ned �!
F ext =

�!
F ext
1 +

�!
F ext
2 : (49)

This is an important result as it asserts that if there are no external forces,
�!
F ext = 0; then

��!
P = 0; and the total momentum for the pair of particles is

conserved. Additionally, the rate of change for the total momentum of the
system is determined only by the external force acting on the pair of particles.
The analysis for a system of N particles is a straightforward extension of

that used for a two particle system. Consider a particle designated by �: The
net force on this particle given by

�!
F � =

NX
� 6=�

�!
F �� +

�!
F ext
� =

��!p �: (50)
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Here the sum over � includes all of the particles other than the � particle as it
does not exert a force on itself. This sum is true for any of the N particles in
the multiparticle system. The total momentum for this system is given by the
sum

�!
P =

NX
�=1

�!p �: (51)

The sum here covers all N particles. Di¤erentiating this expression with respect
to time we �nd

��!
P =

NX
�=1

��!p � =
NX
�=1

�!
F � (52)

From equation (50) this sum is given by

NX
�=1

�!
F � =

NX
�=1

NX
� 6=�

�!
F �� +

NX
�=1

�!
F ext
� : (53)

The double sum is a sum over � and � such that all terms in which � = � are
omitted. Imagine a matrix in which you sum over all of the terms except for
those on the diagonal. Since � and � are dummy summation indices we can
exchange them and write

NX
�=1

NX
� 6=�

�!
F �� =

NX
�;� (�6=�)

�!
F �� =

NX
�;� (�6=�)

�!
F ��: (54)

In this last step, interchanging the dummy summation indices amounts to sim-
ply performing the sum in a di¤erent order, but it results in the same total
sum. From Newton�s third law we know that

�!
F �� = ��!F ��: Hence this sum

must vanish. It might add some insight to note that the matrix given by the
components

�!
F �� is an antisymmetric matrix in which

�!
F �� = �

�!
F �� and as in

any antisymmetric matrix the diagonal term,
�!
F ��; vanishes. Summing all of

the terms in this matrix also vanishes. Since this term vanishes equations (52)
and (53) become

��!
P =

NX
�=1

�!
F � =

NX
�=1

�!
F ext
� : (55)

This is analogous to the result for the two particle system in that the rate of
change for the total momentum of all of the particles is given by the sum of the
external forces. Clearly in the absence of any external force the total momentum
of the N particle system is conserved.
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