
18 Lecture 11-9

18.1 Chapter 7 Lagrange�s Equations (con)

18.1.1 Generalized Momenta, Ignorable Coordinates, and Conser-
vation Laws

As we have already mentioned for any system with n generalized coordinates
qi(i = 1; � � �; n); we refer to the n quantities @L=@qi = Fi as generalized forces
and @L=@ �qi = pi as generalized momenta. With this terminology the Lagrange
equation can be rewritten as

Fi (generalized force) =
d

dt
pi (generalized momentum): (1)

In particular if the Lagrangian is independent of a particular coordinate qi, the
Fi = @L=@qi = 0 and the corresponding generalized momentum pi is constant.
In general, the generalized forces and momenta are not the same as the usual
forces and momenta. As we saw in the example where we used cylindrical co-
ordinates, the � component of the generalized force was the torque, and the �
component of the generalized momentum was the angular momentum. In any
case when the Lagrangian is independent of a coordinate qi, the correspond-
ing generalized momentum is conserved. So when the interaction between two
particles only depends on the magnitude of the distance between them and is
independent of � the angular momentum is conserved. When the Lagrangian is
independent of a coordinate qi, that coordinate is often referred to as ignorable
or cyclic. Obviously it is a good idea, when possible, to choose coordinates
so that as many as possible are ignorable and their corresponding momenta
are constant. In fact, this is perhaps the main criteria in choosing generalized
coordinates for any given problem.
We can rephrase this by noting that when L is independent of a coordinate

qi, then L is unchanged, or invariant when qi varies. So we can also say that
if L is invariant under changes in a coordinate qi, then the corresponding mo-
mentum is conserved. This connection between the invariance of L and certain
conservation laws is the �rst of several similar results relating invariance un-
der transformations (translations, rotations, etc.) to conservation laws. These
results are known as Noether�s theorem.

Conservation of Total Momentum We already know from Newtonian me-
chanics that the total momentum of an isolated system of N particles is con-
served. Now let�s examine this result from a Lagrangian point of view. One of
the most prominent features of an isolated system is that it is translationally
invariant. By this we mean that if you transport all N particles through the
same distance �!� , then nothing physically signi�cant about the system changes.
We have already seen this when we discussed the internal interaction between
two particles where the interaction potential depended on �!r 1��!r 2: If we were
to transport this system then �!r 1 and �!r 2 would be replaced with �!r 1 +�!� and
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�!r 2+�!� respectively. However the interaction which only depends on �!r 1��!r 2
would remain unchanged. If the system contained N particles then we would
replace every position �!r � with �!r � +�!� ; that is

�!r 1 ! �!r 1 +�!� ; �!r 2 ! �!r 2 +�!� ; � ��; �!r N ! �!r N +�!� (2)

As with the two particle interaction potential, the potential energy for the N
particle system must be una¤ected by this displacement, so that

U (�!r 1 +�!� ;�!r 2 +�!� ; � � �;�!r N +�!� ; t) = U (�!r 1;�!r 2; � � �;�!r N ; t) : (3)

To state this more succinctly,
�U = 0; (4)

where �U denotes the change in U under the translation in equation (3). Clearly,
the velocities are unchanged and �T = 0 under this translation as well. There-
fore

�L = 0 (5)

under this translation. Since this result is true for any displacement �!� ; then
it must be true for an in�nitesimal translation in the x direction. Under that
translation all of the x coordinates x1; x2; � � �; xN increase by �; while the y and
z coordinates remain unchanged. For this translation

�L = � @L
@x1

+ � � �+ � @L
@xN

= 0: (6)

This implies that
NX
�=1

@L
@x�

= 0: (7)

Now using Lagrange�s equation we can rewrite each derivative as

@L
@x�

=
d

dt

@L
@
�
x�

=
d

dt
p�x;

where p�x is the x component of the momentum for particle �: Thus equation
(7) becomes

NX
�=1

d

dt

@L
@
�
x�

=
d

dt

NX
�=1

p�x =
d

dt
Px = 0; (8)

where Px is the x component of the total momentum de�ned by
�!
P =

PN
�=1

�!p :
By choosing the small displacement �!� successively in the y and z directions,
we can prove the same result for the y and z components. Thus we can reach
the conclusion that, provided the Lagrangian is unchanged by the translation in
equation (3), the total momentum of the N particles is conserved. This result
is an example of Noether�s theorem.
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Conservation of Energy As time advances the Lagrangian, L
�
q1; � � �; qn;

�
q1; � � �;

�
qn; t

�
;

evolves in time, both because of any explicit dependence on t and the implicit
dependence of t through the q�s and

�
q�s. Thus via the chain rule

dL
dt
=
@L
@t
+

nX
i=1

@L
@qi

�
qi +

nX
i=1

@L
@
�
qi

��
qi: (9)

Now from Lagrange�s equation we note that

@L
@qi

=
d

dt

@L
@
�
qi
=
d

dt
pi =

�
pi;

where pi is the generalized momentum associated with the coordinate qi: Sub-
stituting pi or

�
pi where appropriate in equation (9) results in

dL
dt

=
@L
@t
+

nX
i=1

�
pi
�
qi +

nX
i=1

pi
��
qi;

dL
dt

=
@L
@t
+
d

dt

nX
i=1

pi
�
qi: (10)

For many interesting systems, the Lagrangian does not depend explicitly on t
so that @L=@t = 0: When this is the case we have

d

dt

 
nX
i=1

pi
�
qi � L

!
= 0; (11)

and the quantity
Pn

i=1 pi
�
qi�L is conserved. The student should recognize this

as equivalent to the �rst integral to the Euler Lagrange equation that we inves-
tigated in our study of variational calculus. Now this quantity is so important
that it has its own symbol,

H =

nX
i=1

pi
�
qi � L; (12)

and is called the Hamiltonian. With these de�nitions we can now proclaim
that

If the Lagrangian L does not depend explicitly
on time, then the Hamilitonian H is conserved.

The discovery of any conservation law is a signi�cant event and is enough to
justify saying that the Hamiltonian is an important quantity. In fact, it goes
much further than this. The Hamiltonian H is the basis of the Hamiltonian
formulation of mechanics (as well as quantum mechanics, many body formalisms
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in the �eld of condensed matter physics, etc.), in just the same way that L is
the basis of Lagrangian mechanics.
The main signi�cance, for now at least, of the Hamiltonian is that in many

situations it is in fact just the total energy of the system. Speci�cally, provided
the relation between the generalized coordinates and the Cartesian coordinates
is time independent

�!r � = �!r � (q1; � � �; qn) ; (13)

then the Hamiltonian is just the total energy,

H = T + U: (14)

To prove this let us, we will �rst express the total kinetic energy T = 1
2

P
�m�

��!r
2

�

in terms of the generalized coordinates q1; � � �; qn: Using the chain rule we �nd

��!r � =
nX
i=1

@�!r �
@qi

�
qi: (15)

Forming the scaler product of this equation with itself we �nd

��!r
2

� =
nX
i=1

@�!r �
@qi

�
qi �

nX
j=1

@�!r �
@qj

�
qj ; (16)

where we used a di¤erent index for the second sum to avoid confusion. The
kinetic energy is now a triple sum which we can reorganize as

T =
1

2

X
�

m�

��!r
2

� =
1

2

X
�

m�

nX
i=1

@�!r �
@qi

�
qi �

nX
j=1

@�!r �
@qj

�
qj ;

T =
1

2

X
i;j

"X
�

m�
@�!r �
@qi

� @
�!r �
@qj

#
�
qi
�
qj =

1

2

X
i;j

Aij
�
qi
�
qj ; (17)

where we have de�ned

Aij = Aij (q1; � � �; qn) =
X
�

m�
@�!r �
@qi

� @
�!r �
@qj

: (18)

We can now evaluate the generalized momentum pi by di¤erentiating equa-
tion (17) with respect to

�
qi;

pi =
@L
@
�
qi
=
@T

@
�
qi
=

@

@
�
qi

1

2

X
lk

Alk
�
ql
�
qk;

pi =
1

2

X
lk

Alk
�
qk�li +

1

2

X
lk

Alk
�
ql�ki =

1

2

X
k

Aik
�
qk +

1

2

X
l

Ali
�
ql: (19)
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where �ij is the Kronecker delta with the property that �ij = 1 when i = j and
is zero otherwise. Now the dummy summation indices can be set to j.so that

pi =
1

2

X
j

Aij
�
qj +

1

2

X
j

Aji
�
qj =

X
j

Aij
�
qj ; (20)

where this last step is possible as can be seen from the de�ning equation (18)
Aij is symmetric in its indices, Aij = Aji: Now returning to the de�nition of

the Hamiltonian we can rewrite the sum over pi
�
qi asX

i

pi
�
qi =

1

2

X
;j

Aij
�
qj
�
qi = 2T: (21)

Therefore
H =

X
i

pi
�
qi � L = 2T � (T � U) = T + U: (22)

Thus we see that, provided the transformation between the Cartesian coordi-
nates and the generalized coordinates is time independent, the Hamiltonian H
is just the total energy of the system.
We have already proved that if the Lagrangian is independent of time then

the Hamiltonian is conserved. So we now see that the time independence of the
Lagrangian, together with the time independence of the transformation between
the Cartesian coordinates and the generalized coordinates, implies the conser-
vation of energy. We can rephrase the time independence of the Lagrangian L
by saying that L is unchanged by translations in time, t! t+�: Thus the result
that we have just proved is that the invariance of L under a time translation is
related to the conservation of energy in much the same way that the invariance
of L under a spatial translation is related to the conservation of momentum.
Both of these results are manifestations of Noether�s famous theorem.

Example - Bead on a Spinning Wire Hoop (again) At this point,
the student may be tempted to ask, "When is the Hamiltonian conserved and
the energy isn�t?" It is a fair question, and an excellent example to consider
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Figure 7.6 A bead is free to move around a frictionless wire hoop, which is
spinning at a �xed rate !:

again is the bead on a spinning hoop in a uniform gravitational �eld as shown
in �gure 7.6. We previously noted that the kinetic energy and potential energies
are

T =
1

2
mR2

�
�
�
2

+ sin2 �!2
�

and U = mgR (1� cos �) : (23)

The Lagrangian is simply L = T � U and from equation (23) it has no explicit
dependence on time. This means that the Hamiltonian must be conserved. Now
the Hamiltonian for this system is

H = p�
�
� � L; (24)

where

p� =
@L

@
�
�
= mR2

�
�: (25)

Simply substituting this result into the expression for the Hamiltonian yields

H = mR2
�
�
2

� 1
2
mR2

�
�
�
2

+ sin2 �!2
�
+mgR (1� cos �) ;

H =
1

2
mR2

�
�
�
2

� sin2 �!2
�
+mgR (1� cos �) : (26)

This expression, the Hamiltonian, is the quantity which is conserved for this
system.
Now we need to compare this with the total energy for the bead on the

spinning wire. The energy is given by T + U , or

E =
1

2
mR2

�
�
�
2

+ sin2 �!2
�
+mgR (1� cos �) : (27)

These are not equivalent quantities as the term mR2 sin2 �!2=2 appears with a
plus sign in the expression for the energy and a negative sign in the expression
for the Hamiltonian. The physics is pretty clear, to conserve energy, E = const;
the hoop must slow down as the bead rises through the gravitational �eld, and
this is seen in the expression for the energy. But that is not the system described
by the Hamiltonian, for the system that we have been considering the hoop is
rotating at a constant rate, !; independent of the height of the bead. What is
happening here is while the motor is keeping the hoop spinning at a constant
rate it is compensating for the changes in energy as the bead changes its position
on the hoop. In other words the spinning hoop in this example is not an isolated
system. So while the total energy of the bead on the spinning hoop combined
with the energy supplied (or removed) by the motor is conserved, the energy of
just the bead on the hoop is not. For this system of a bead on a spinning hoop,
it is the Hamiltonian that is conserved while the energy isn�t.
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The proof that equated the Hamiltonian with the energy assumed that the
relations between the Cartesian coordinates and the generalized coordinates are
time independent

�!r � = �!r � (q1; � � �; qn) :

Whereas the relationships between the Cartesian coordinates and the single
generalized coordinate for the system of interest are

x = R sin � cos!t; y = R sin � sin!t; z = R (1� cos �) ; (28)

where x and y are measured from the axis of rotation and z is measured from the
bottom of the hoop. The time dependence of the relationship in equation (28)
are obvious, so that the initial premise which required that such a relationship
was time independent was violated. Hence the Hamiltonian and the energy did
not have to be equivalent.
If the angle around the axis of rotation were a new generalized coordinate,

�; rather than !t with ! �xed, then this time dependence would disappear and
the Hamiltonian would be equal to the total energy. To verify this is left as an
exercise for the student. From a physical point of view, this coordinate would
allow for the spinning hoop to change its rate as the bead moved around the
hoop thus conserving energy.
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