
17 Lecture 11-4

17.1 Chapter 7 Lagrange�s Equations (con)

17.1.1 Examples of Lagrange�s Equations

We will now consider four examples of Lagrange�s equations. The �rst two are
relatively simple and can be easily solved using Newton�s second law. They are
included to provide some experience with using the Lagrangian approach. NTL,
even these simple cases show some advantages over the Newtonian formalism
in that they obviate any need to consider the forces of constraint. The last
two are su¢ ciently complex that the solution using the Newtonian approach
requires considerable ingenuity. By contrast the Lagrangian approach lets us
write down the equations of motion almost without thinking.
The Lagrangian formalism always (at least almost always) provides us with

a straightforward means of writing down the equations of motion. However,
they cannot guarantee that the resulting equations are easy to solve. But even
if an analytic solution is not possible, writing down the equations of motion is
an essential �rst step to understanding the solutions. In a worst case scenario,
we can always solve the equations of motion numerically and usually solve for
the positions of equilibrium very quickly.

Atwood�s Machine In an Atwood machine, see �gure 7.3, the two masses,

Figure 7.3 Atwood machine with constraints. Because the length of the string
is �xed, the position of the whole system can be speci�ed by the single

variable x.

m1 and m2 are suspended by an inextensible string of length l which passes over
a pulley with frictionless bearings, a radius R; and a momentum of inertia I:
The kinetic energy for this system is
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where
�
� is the rate of angular rotation of the pulley. Because the length of the

string is �xed the heights of the two masses, x and y, cannot vary independently.
Rather x+ y + �R = l: From this we see that

�
x = � �

y: Additionally from a no
slip condition between the string and the pulley the angular frequency of the

pulley satis�es R
�
� =

�
x: We can now write the kinetic energy for the Atwood

machine as
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: (2)

The potential energy (to within a constant) is

U = �m1gx�m2gy = � (m1 �m2) gx: (3)

Combining these expressions we �nd the Lagrangian to be

L = T � U = 1

2

�
m1 +m2 + I=R

2
� �
x
2
+ (m1 �m2) gx: (4)

The Lagrange equation of motion is

@L
@x

=
d

dt

@L
@
�
x
! (m1 �m2) g =

�
m1 +m2 + I=R

2
� ��
x: (5)

Solving for the acceleration we �nd

��
x = (m1 �m2) g=

�
m1 +m2 + I=R

2
�
: (6)

By choosing m1 and m2 fairly close together, one can make this acceleration
much less than g. Hence, the Atwood machine gave an early and reasonably
accurate method for measuring g.
What is relevant here is that the corresponding Newtonian solution requires

three free body equations which involves the two constaint forces, the tensions
T1 and T2. The result is three equations with three unknowns, the tensions
T1; T2; and the acceleration

��
x: We can eliminate both T1 and T2 which reduces

the three equations to the expression shown in equation (6). The Lagrangian
solution of the Atwood machine is too simple to truly appreciate the advantage
of this approach. NTL the Lagrangian approach did eliminate the need to reduce
three Newtonian equations to the one that see in equation (6).

Particle Con�ned to Move on a Cylinder Consider a particle of mass
m constrained to move on a frictionless cylinder of radius R; see �gure 7.4.
Besides the force of constraint (the normal force from the wall of the cylinder),
the particle experiences a force due to a spring anchored at the origin (� = z = 0)
given by

�!
F = �k�!r : Since the particle�s radial coordinate is �xed at � = R; we

can specify the position of the particle with just it height, z, and its angular
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Figure 7.4 A mass m is con�ned to the surface of a cylinder, � = R; and
subject to Hook�s law,

�!
F = �k�!r .

coordinate �. Hence the kinetic energy of the particle is

T =
1

2
mv2 =

1
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�
�
2�
: (7)

The potential energy of the spring is

U =
1

2
kr2 =

1

2
k
�
�2 + z2

�
=
1

2
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�
R2 + z2

�
; (8)

and the Lagrangian is

L = 1

2
m

�
�
z
2
+R2

�
�
2�
� 1
2
k
�
R2 + z2

�
: (9)

Since the system has two degrees of freedom, there are two equations of
motion. The equation for the z coordinate is

@L
@z

=
d

dt

@L
@
�
z
! �kz = m��

z: (10)

The � equation is even simpler as the Lagrangian does not depend on �; and
the � equation is

d

dt

@L

@
�
�
= mR2

��
� = 0: (11)

The z equation tells us that the particle undergoes simple harmonic motion in

the z direction, z = A cos (!t� �) : The � equation tells that the quantitymR2
�
�

is constant, i.e. the angular momentum about the z axis is conserved. Since
there is no torque on the particle, this is a result that we should have expected.
The entire motion of the particle is that of moving around the cylinder at a
constant angular velocity while oscillating in the z direction about z = 0 at
angular frequency ! =

p
k=m:
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Block sliding on a Wedge Consider the block and wedge shown below,

Figure 7.5 A block of mass m slides down an incline of mass M that resides on
a frictionless horizontal table.

in �gure 7.5. The block of mass m is free to slide on the wedge, and the wedge
of mass M is free to slide on the horizontal table, both with negligible friction.
The block is released from the top of the wedge while both are initially at rest.
The wedge has an angle � and the length of its slope is l; and we are interested
in determining how long it takes the block to reach the bottom.
The system has two degrees of freedom, one for the block and one for the

wedge. A reasonable choice for the generalized coordinates is shown in �gure
7.5, and they are the distance of the block from the top of the wedge, q1; and
the distance of the wedge from some �xed point on the table, q2.

The kinetic energy of the wedge is simply TM = 1
2M

�
q
2

2; however the kinetic

energy of the block is a bit more complicated. The block has a velocity
�
q1 down

the wedge, but that velocity is relative to the wedge not the table. Remembering
that we need to write the Lagrangian in a nonaccelerating frame requires that
we express the kinetic energy of the block in the inertial frame of the table. The
x and y components for the velocity of the block are

vx =
�
q1 cos�+

�
q2 and vy =

�
q1 sin�. (12)

Thus the kinetic energy of the block is

Tm =
1

2
m
�
v2x + v

2
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q
2

2 + 2
�
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�
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�
: (13)

The potential energy of the wedge is constant while that of the block is �mgy,
where y = q1 sin�: Therefore the potential energy of the system is simply

U = �mgq1 sin�; (14)

and the Lagrangian is

L = 1

2
M

�
q
2

2 +
1

2
m

�
�
q
2

1 +
�
q
2

2 + 2
�
q1

�
q2 cos�

�
+mgq1 sin�: (15)

Once we have found the Lagrangian, all that is left is two write down the
two Lagrange equations, one for q1 and the other for q2, and then of course solve
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them. The q2 equation is
@L
@q2

=
d

dt

@L
@
�
q2
: (16)

Since the Lagrangian is independent of q2, we know that the generalized mo-
mentum @L=@ �

q2 is constant,

M
�
q2 +m

� �
q2 +

�
q1 cos�

�
= const: (17)

This is the sum of the total momentum in the x direction and something you
could have written down without any help from the Lagrangian.
The q1 equation

@L
@q1

=
d

dt

@L
@
�
q1

(18)

is more complicated, since neither derivative vanishes. Performing the partial
derivatives we �nd

mg sin� =
d

dt
m
� �
q1 +

�
q2 cos�

�
= m

���
q1 +

��
q2 cos�

�
: (19)

We now have two equations and wish to solve for
��
q1: Di¤erentiating equation

(17) and solving for
��
q2 we �nd

(M +m)
��
q2 = �m

��
q1 cos�!

��
q2 = �

m

M +m

��
q1 cos�: (20)

Substituting this result into equation (19) yields

mg sin� = m

�
1� m

M +m
cos2 �

�
��
q1;

��
q1 =

(M +m) g sin�

M +m sin2 �
: (21)

Since the acceleration of q1 is constant, we can integrate it immediately and �nd

q1 =
1

2

(M +m) g sin�

M +m sin2 �
t2; (22)

so that the time, � , to reach the end of the wedge (q1 = l) is

� =
q
2l
�
M +m sin2 �

�
= ((M +m) g sin�): (23)

As a check we can determine if this expression agrees with several di¤erent
limits. In the limit of � = �=2 (sin� = 1) ; we have

��
q1 = g; which is as it

should be. The next limit of interest is when M ! 1: In that limit we have
��
q1 = g sin�; which is again correct. The limit whenM ! 0 is left as an exercise
for the student, problem 7.19.
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Bead on a Spinning Wire Hoop A bead of mass m is attached to a fric-
tionless wire hoop of radius R. The hoop lies in a vertical plane, which is forced
to rotate about the hoop�s vertical diameter with a constant angular velocity,
�
� = !; as shown in �gure 7.6. The bead position on the hoop is speci�ed by the
angle � measured up from the vertical while the entire system is in a uniform

Figure 7.6 A bead is free to move around a frictionless wire hoop, which is
spinning at a �xed rate !:

gravitational �eld. The kinetic energy of the bead is T = 1
2mR

2

�
�
�
2

+ sin2 �!2
�
:

The gravitational potential energy is (as measured from the bottom of the hoop)
is identical to that for the pendulum and is U = mgR (1� cos �) : Hence the
Lagrangian is given by

L = 1

2
mR2

�
�
�
2

+ sin2 �!2
�
�mgR (1� cos �) : (24)

There is only one generalized coordinate and therefore only one Lagrange equa-
tion,

@L
@�

=
d

dt

@L

@
�
�
! mR2 sin � cos �!2 �mgR sin � = mR2

��
�: (25)

Dividing through by mR2; we �nd that the angular acceleration of � is

��
� =

�
!2 cos � � g=R

�
sin �: (26)

Now this expression cannot be solved analytically in terms of elementary
functions. NTL it can tell us a lot about the system�s behavior. For starters we

can determine the equilibrium position, � = �o; of the bead by setting
��
� to zero

(and
�
� if it appeared) in equation (26). This results in�

!2 cos �o � g=R
�
sin �o = 0 (27)
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This equation is satis�ed when either of the two factors is zero. The factor
sin �o = 0 when �o = 0 or �: Thus the bead can remain at the bottom or top of
the hoop. The �rst factor vanishes when

cos �o = g=!
2R: (28)

Since the cosine function is less than or equal to one this expression can only be
satis�ed if !2 � g=R: When this condition is satis�ed then there are two more
positions of equilibrium (although they are equivalent positions for a rotating
wire) whose positions are given by

�o = � cos�1
�
g=!2R

�
: (29)

We can then conclude that when the hoop is rotating slowly (!2 < g=R) there
are only two equilibrium positions, at the top and bottom of the hoop. However,
when the hoop is rotating fast enough (!2 > g=R) there are two more, sym-
metrically placed on either side of the bottom of the ring as given by equation
(29).
So we see that at the top or the bottom of the hoop, the bead is on the

axis of rotation and � = 0; where � is the distance from the axis of rotation.
Therefore the centripetal force m!2� is zero. Also, at those locations the force
of gravity is normal to the hoop, so there is no force tending to move the bead
along the wire and the bead remains at rest. For the position o¤ the axis the
force of gravity has a component that is pulling the bead inward along the wire
(as long as j�j � �=2) Meanwhile the centrifugal force is pushing the bead
outward along the wire. At the points given by equation (29) these forces are
balanced and the bead remains at rest.
All of this being said, the equilibrium points are not especially interesting

unless it is a position of stable equilibrium. Using the equation of motion for
�; equation (26), we can easily address this issue. First we will start with the
equilibrium at � = 0: For � near zero the equation reduces to

��
� =

�
!2 � g=R

�
�: (30)

If the hoop is rotating slowly, !2 < g=R, then the equation of motion near � = 0

is of the form
��
� = �k� (k is a positive constant). This expression is analogous

to the spring equation where any displacement away from equilibrium induces
a restoring force that pushes the object back towards equilibrium. Clearly, for
this range of frequency, this is a position of stable equilibrium. However if we
speed up the hoop so that !2 > g=R; then the equation of motion is of the

form
��
� = +k� (again k is a positive constant). Any �nite value of � induces an

acceleration toward larger �; hence this position is now unstable. Thus as we
increase ! this equilibrium position goes from being stable to unstable.
For obvious reasons the position at the top of the hoop is unstable for any

rate of rotation. If the bead �uctuates just a bit away from � = �; then the grav-
itational force and the centrifugal both push the bead away from this position.
This is easily seen in equation (26) by letting � = � + �� where �� << 1:
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The other two equilibrium positions only exist when !2 > g=R: To determine
whether or not the position at �o = +cos�1

�
g=!2R

�
is stable, we will consider

small deviations away from this equilibrium position. To do this we let � =
�o+�� = cos

�1 �g=!2R�+��: This is most easily done by expanding the function
f (�) =

�
!2 cos � � g=R

�
sin � in a Taylor�s series about �o: Since f (�o) = 0 we

�nd

df (�o)

d�
=

�
�!2 sin �o

�
sin �o = �!2

�
1� cos2 �o

�
df (�o)

d�
= �

�
!2 � g2=!2R2

�
: (31)

Hence to �rst order in �� the equation of motion becomes

�
��
� = �

�
!2 � g2=!2R2

�
��: (32)

We see that for small oscillations about the equilibrium position, what was
once a very nonlinear di¤erential equation is now linear. This makes it easy

to analyze. Since !2 > g=R this expression reduces to the form
��
� = �k�

(k is a positive constant). For the reasons stated above this is a position of
stable equilibrium. Since the equilibrium position at �o = � cos�1

�
g=!2R

�
is

an equivalent position, as you might expect, you arrive at the same conclusion
for �uctuations about this equilibrium position as well.
With this result, we arrive at the following interesting story: When the

hoop is rotating slowly, there is only one position of stable equilibrium, � = 0:
If we speed up the rotation, then as ! passes the critical value ! =

p
g=R; this

original equilibrium becomes unstable, but two new stable equilibrium points
appear. They emerge from � = 0 and move out to the right and left as we
continue to increase !: This phenomenon � the disappearance of one stable
equilibrium and the simultaneous appearance of two others diverging from the
same point � is called a bifurcation and will be one of the principle topics in
chapter 12 on chaos theory.
This example illustrates another strength of the Lagrangian method in that

the generalized coordinates can be coordinates in a noninertial frame, as long
as the Lagrangian itself is written in an inertial frame. In this example � is the
polar angle of the bead written in a noninertial rotating frame of the hoop. But
the Lagrangian, L = T � U; was evaluated in inertial frame in which the hoops
rotates.
It may be of interest to note that a device of this example was used by

James Watt as a governor for his steam engines. The device rotated with the
engine, and as the engine sped up the bead rose on the hoop. When the angular
velocity ! reached some maximum allowable value, the bead reached a height
that caused the supply of steam to be shut o¤.

Oscillations of the Bead near Equilibrium With our analysis, we are
well placed to determine the frequency of oscillations about equilibrium for our
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example of a bead on the spinning hoop. First let�s consider the frequency of
oscillations about the equilibrium position at � = 0: From equation (30) we
found that it was a position of stable equilibrium only when !2 < g=R: In this
frequency range we can write equation (30) as

��
� = �

�
g=R� !2

�
� = �
2� = 0; (33)

where 
 =
p
g=R� !2: Since this equation is that of a simple harmonic oscil-

lator, we know that the bead oscillates with a frequency 
 about � = 0 as long
as !2 < g=R:
To �nd the frequency of oscillations about the equilibrium about �o =

cos�1
�
g=!2R

�
; we merely have to examine equation (??). As long as !2 > g=R;

which is required for equilibrium to exist at �o; equation (??) can also be written
in the form of a simple harmonic oscillator as

�
��
� +
02�� = 0; (34)

where 
02 = !2 � g2=!2R2: Therefore �� oscillates about zero, which means
that the bead oscillates about the equilibrium position �o with frequency 
0:
So our story is now a bit more complete. When the hoop is stationary the

bead is in equilibrium at � = 0 and for small amplitude oscillations, it oscil-
lates at a frequency of 
 =

p
g=R: As the hoop begins to spin, the frequency

of oscillations begins to slow via the expression 
 =
p
g=R� !2: This slowing

continues until the rate of spinning reaches the threshold !h =
p
g=R; at which

point the bead no longer oscillates at all. Unless the bead was stationary at
the moment this threshold was reached (at a maximum in its oscillations), it
then continues to move slowly away from the bottom of the hoop at a uniform
rate. As the rate of spinning continues to increase the bead comes to equilib-
rium at �o = � cos�1

�
g=!2R

�
; and as mentioned there are two positions of

equilibrium. For frequencies just greater than the threshold !h these angles
are close to zero, i.e. near the bottom of the hoop. The frequency of these
oscillations are also quite small. Now as the spinning rate continues to increase
both equilibrium positions move away from the bottom of the hoop and and
the frequency of oscillations about equilibrium increases. For large spinning
rates, !2 >> g=R; the equilibrium positions approach ��=2 and the frequency
of oscillations approaches the spinning frequency !:
When the equation of motion has no analytic solution in terms elementary

functions, in almost all cases it is still possible to examine the properties of the
solutions about positions of equilibrium using the technique that we demon-
strated in this example. First you �nd the positions of equilibrium by setting
the accelerations to zero. Then you consider small �uctuations about these po-
sitions of equilibrium. This can be done via a Taylor�s series expansion, or some
equivalent procedure as we did here, to �rst order about equilibrium. If you
only include �rst order corrections away from equilibrium, then you will have
succeeded in linearizing the equation, almost always in the form of a simple
harmonic oscillator.
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