
24 Lecture 11-23

24.1 Chapter 11 Coupled Oscillators and Normal Modes
(con)

The General Solution We have now found two normal mode solutions,
which we can rewrite as

x1 (t) = A1

�
1
1

�
cos (!1t� �1) and x2 (t) = A2

�
1
�1

�
cos (!2t� �2) ; (1)

where !1 and !2 are the normal frequencies. Both of these solutions satisfy the
equation of motionM

��
x = �Kx for any values of the four real constants A1, A2,

�1; and �2: Since the equation of motion is linear and homogeneous, the sum of
these two solutions is also a solution:

x (t) = A1

�
1
1

�
cos (!1t� �1) +A2

�
1
�1

�
cos (!2t� �2) : (2)

Because the equation of motion is really two second order di¤erential equations
for the two variables x1 (t) and x2 (t) ; its general solution has four constants of
integration. Therefore the solution (2) with its four arbitrary constants, is in
fact the general solution. Any solution can be written in this form with the four
arbitrary constants determined by the initial conditions.
The general solution (2) is hard to visualize and describe. The motion of

each mass is a mixture of the two frequencies, !1 and !2: Since !2 =
p
3!1 the

motion never repeats itself, except in the special case when either A1 or A2 is
zero and the solution is just one of the normal modes.

Normal Coordinates We have seen that in any possible motion of our two-
cart system, both of the coordinates x1 (t) and x2 (t) vary with time. In the
normal modes, their time dependence is simple sinusoidal, but it is still true
that both vary. This is because they are coupled and one mass cannot move
without the other moving. It is possible to introduce alternative, so-called nor-
mal coordinates which, although less physically transparent, have the property
that they can move independent of each other. This statement is true for any
system of coupled oscillators and is especially easy to see in the present case of
two equal masses joined by three identical springs.
Instead of the coordinates x1 (t) and x2 (t) ; we will characterize the positions

of the masses by the two normal coordinates

�1 =
1

2
(x1 + x2) ; and �2 =

1

2
(x1 � x2) : (3a)

The physical signi�cance of the original variables x1 (t) and x2 (t) is more trans-
parent, but �1 (t) and �2 (t) serve just as well to de�ne the motion of the system.
Moreover we can now characterize the �rst normal mode as

�1 (t) = A1 cos (!1t� �1)
�2 (t) = 0

�
[�rst normal mode] ; (4)
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whereas the second normal mode is given by

�1 (t) = 0
�2 (t) = A2 cos (!2t� �2)

�
[second normal mode] : (5)

In the �rst normal mode only the new variable �1 oscillates while �2 remains
stationary. In the second mode it is the other way around, �2 oscillates while �1
remains stationary. In this sense these new coordinates, the normal coordinates,
are independent of each other and one can oscillate without the other. The
general solution is a supposition of both modes in which case both �1 and �2
oscillate. However, �1 oscillates at !1 only while �2 oscillates at !2 only. In some
more complicated problems, these new coordinates, the normal coordinates,
represent a considerable simpli�cation.

24.1.1 Two Weakly Coupled Oscillators

So far we have discussed the oscillations of two equal masses joined by three
equal springs. For this system, the two normal modes were easy to understand
and visualize, but for the nonnormal or general oscillations that was not the
case. A system where some of the nonnormal oscillations are readily visualized
is two identical masses that are connected by identical springs of spring constant
k to the walls and to each other by a much weaker spring with spring constant
k2 << k as shown in �gure 11.4.

Figure 11.4. Two weakly coupled oscillating masses wth the middle spring
much weaker than the outer two springs.

We can easily solve for the normal modes of this system. The mass matrix
M is the same as before. Referring to equation (??) we see that the spring
matrix takes on a somewhat di¤erent form

K =

�
k + k2 �k2
�k2 k + k2

�
; (6)

so that the combination K� !2M is

K� !2M =

�
k + k2 � !2m �k2

�k2 k + k2 � !2m

�
: (7)

To �nd the normal frequencies we again set the determinant of the matrix
K� !2M to zero and �nd�

k + k2 � !2m
�2 � k22 = �k � !2m� �k + 2k2 � !2m� = 0: (8)
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Hence the two normal frequencies are

!21 = k=m and !22 = (k + 2k2) =m: (9)

The �rst frequency is exactly the same as in the previous example. The
reason for this (as you can easily check) is that the normal mode solution is
in exactly the form as the equal spring case. Both of the masses again move
together exactly in phase and the middle spring is undisturbed, see �gure 11.2.
Hence we get the same frequency for this mode independent of the strength of
the middle spring.
As it turns out (due to symmetry reasons) the motion for the second mode

is also the same as that for the corresponding mode of the equal spring example.
In this mode the two masses are exactly out of phase with one moving inward
while the other moves outward at any point in time, see �gure 111.3. In this
mode the strength of the middle spring is of course relevant, hence the second
normal mode frequency is depends on k2: For this example !2 is very close to
!1: To take advantage of this closeness, it is convenient to de�ne !o to be the
average of the normal mode frequencies

!o =
!1 + !2
2

: (10)

Since !1 and !2 are very close to each other, !o is close to either. To show this
e¤ect we will de�ne a small frequency � via

!1 = !o � � and !2 = !o + �: (11)

That is the small number � is one half the di¤erence between the two normal
frequencies.
The two normal modes for this weakly coupled system can now be written

as

z1 (t) = C1

�
1
1

�
ei(!o��)t and z2 (t) = C2

�
1
�1

�
ei(!o+�)t: (12)

Both of these satisfy the equation of motion for any values of the complex
numbers C1 and C2: Since the equation of motion is linear and homogeneous
the sum of these two solutions is also a solution,

z (t) = z1 (t) + z2 (t) = C1

�
1
1

�
ei(!o��)t + C2

�
1
�1

�
ei(!o+�)t: (13)

Since the C�s are complex with a magnitude and a phase, there are 4 undeter-
mined real constants that are �xed by the initial conditions, i.e. the positions
and velocities of the two masses at t = 0. Hence this is the general solution for
the problem with the real part describing the actual motion of the system.
To see some general features it is helpful to factor out the ei!ot term,

z (t) = z1 (t) + z2 (t) =

�
C1

�
1
1

�
e�i�t + C2

�
1
�1

�
ei�t
�
ei!ot: (14)
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We have now expressed our solution as a product of two terms. The term in
braces, f� � �g ; is a 2� 1 column matrix which depends on time. However, since
� is very small, it varies very slowly compared to the second factor, ei!ot: Over
any reasonably short time interval (�t << 2�=�) ; the �rst factor is essentially
constant and the solution behaves like z (t) = aei!ot, with a being a constant
2 � 1 column matrix. That is over any short interval, the two masses will
oscillate sinusoidally with angular frequency !o: But if we wait long enough
the �constant�a will vary and the details of the motion of the two masses will
change.
We will now examine the behavior of equation (14) for some simple values of

C1 and C2. As we have already noted if either C1 or C2 vanish then the solution
reverts to one of the normal modes. A more interesting case occurs when C1 and
C2 are of equal magnitude. To simplify our analysis we will assume that they
have the same phase as well. This means that by de�ning t = 0 appropriately
we can eliminate this phase and set both of them to be real as well or

C1 = C2 = A=2: (15)

where A is a real constant. In this case equation (14) becomes

z (t) =
A

2

��
1
1

�
e�i�t +

�
1
�1

�
ei�t
�
ei!ot = A

�
cos �t
�i sin �t

�
ei!ot: (16)

To �nd the actual behavior of the system we must take the real part of this
matrix equation and �nd

x1 (t) = A cos �t cos!ot and x2 (t) = A sin �t sin!ot: (17)

The solution (17) has a simple interpretation. First notice that at time zero,
x1 = A whereas

�
x1 = x2 =

�
x2 = 0: So our solution describes the motion when

mass m1 is pulled to the right a distance A and released at t = 0 with mass m2

stationary at its original equilibrium position. Now because � is small there is
an appreciable interval, namely 0 � t � 2�=�; during which the sine and cosine
functions involving �t in equation (17) remain unchanged. During this initial
period the positions are given by

x1 (t) � A cos!ot and x2 (t) � 0 (t � 0) : (18)

So initially massm1 oscillates at frequency !o while massm2 remains stationary.
This state of a¤airs cannot last inde�nitely. As soon as m1 starts to move

it interacts (albeit weakly) with m2 through the middle spring. Eventually m2

starts to oscillate, also at frequency !o with an amplitude of A sin �t:Meanwhile
the amplitude of the oscillations of m1 are starting to decrease via the relation
A cos �t: This process continues until t = �=2� at which point sin �t = 1 and
cos �t = 0: Now we have the reverse situation that we had originally,

x1 (t) � and x2 (t) � A sin!ot (t � �=2�) : (19)
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Now mass m2 is oscillating at maximum amplitude and mass m1 is station-
ary. However soon via the weak couplingm2 starts to drivem1 until after a time
t = �=� the situation reverts to the initial motion. This process, in which the
two masses pass energy back and forth from each other, continues inde�nitely
(ignoring dissipative forces). It is illustrated in �gure 11.5.

Figure 11.5. The positions of x1 (t) and x2 (t) for two weakly coupled
oscillators if mass 1 is released from rest at x1 = A > 0 and mass 2 is at x2 = 0.

If you have any familiarity with beats you probably notice the similarity of
�gure 11.5 to a plot of beats. Beats are the result of superposition of two waves
with nearly equal frequencies. Because of the small di¤erence in frequencies, the
two waves move regularly in and out of phase. This means that the resulting
interference is alternating constructive and destructive. To understand what
is beating in the case of our two masses, we need to consider the two normal
coordinates of equation (3a), �1 = (x1 + x2) =2 and �2 = (x1 � x2) =2: Making
use of trigonometric identities the normal coordinates can be expressed as

�1 (t) =
A

2
(cos �t cos!ot+ sin �t sin!ot) =

A

2
cos (!o � �) t =

A

2
cos!1t(20a)

�2 (t) =
A

2
(cos �t cos!ot� sin �t sin!ot) =

A

2
cos (!o + �) t =

A

2
cos!2t(20b)

So the normal coordinates oscillate with equal amplitudes at their respective
normal frequencies. Since x1 (t) = �1 (t) + �2 (t) ; we see that the waxing and
waning of x1 (t) is the result of adding two signals of equal amplitude with
nearly equal frequencies. A similar analysis applies to x2 (t) except because
x2 (t) = �1 (t) � �2 (t) the moments of constructive interference for x1 (t) are
moments of destructive interference for x2 (t) as is seen in �gure 11.5.

24.1.2 The Double Pendulum

Consider a double pendulum with a mass m1 suspended by a massless rod of
length L1, from a �xed pivot, and a second mass m2 suspended from the �rst
pendulum by a massless rod of length L2. To write the Lagrangian, we will use
the generalized coordinates �1 and �2 as shown in �gure 11.6.
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Figure 11.6. A double pendulum with generalized coordinates �1 and �2:

The potential energy as measured from the �xed pivot is for the �rst mass is

U1 = �m1gL1 cos�1: (21)

Since the elevation (as measured from the �xed pivot) for the second mass is
the sum of �L1 cos�1 and �L2 cos�2 its potential energy is given by

U2 = �m2g (L1 cos�1 + L2 cos�2) : (22)

Summing these gives us the total potential energy

U (�1; �2) = � (m1 +m2) gL1 cos�1 �m2gL2 cos�2: (23)

The kinetic energy of the �rst mass is again the usual expression

T1 =
1

2
m1L

2
1

�
�
2

1: (24)

The simplest way to �nd the kinetic energy of the second mass is to �rst �nd
both its x and y coordinates in order to �nd the x and y components of its
velocity. These are

x2 = L1 sin�1 + L2 sin�2; (25a)

y2 = �L1 cos�1 � L2 cos�2: (25b)

Thus the velocities are

�
x2 = L1 cos�1

�
�1 + L2 cos�2

�
�2; (26a)

�
y2 = L1 sin�1

�
�1 + L2 sin�2

�
�2: (26b)

Simply squaring and adding these two terms while taking advantage of the
trigonometric relation for the addition of angles yields the kinetic energy for the
second mass and is

T2 =
1

2
m2

�
L21

�
�
2

1 + 2L1L2 cos (�1 � �2)
�
�1

�
�2 + L

2
2

�
�
2

2

�
: (27)
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Summing T1 and T2 gives us the total kinetic energy

T =
1

2
(m1 +m2)L

2
1

�
�
2

1 +m2L1L2 cos (�1 � �2)
�
�1

�
�2 +

1

2
m2L

2
2

�
�
2

2: (28)

We can now write down the Lagrangian L = T � U and then the two La-
grange equations for �1 and �2: However the two resulting equations are too
complicated to be particularly illuminating and cannot be solved analytically.
This is similar to the simple pendulum, whose equation of motion is also unsolv-
able analytically. This forces to solve it numerically or consider the situation
of small amplitude oscillations around equilibrium. We are going to see that
for almost all coupled oscillating systems, the exact equations are not solvable
analytically, but if we con�ne ourselves to small oscillations about equilibrium
they reduce themselves to equations that are solvable. Since this is an important
special case we shall proceed with this in mind.
Returning to the case of the double pendulum, we will assume that both

angles and their corresponding velocities are small. With these approximations
the kinetic energy reduces to

T =
1

2
(m1 +m2)L

2
1

�
�
2

1 +m2L1L2
�
�1

�
�2 +

1

2
m2L

2
2

�
�
2

2; (29)

and the potential energy (to within some uninteresting constants) becomes

U =
1

2
(m1 +m2) gL1�

2
1 +

1

2
m2gL2�

2
2: (30)

Before we use these simpli�ed expressions for T and U to give us equations
of motion, we should stop for a minute and examine the signi�cance of our small
amplitude oscillations. The exact expression for the kinetic energy (28) was a

transcendental function of the coordinates �1 and �2 and the velocities
�
�1 and

�
�2. The small angle approximation reduced this to a quadratic homogeneous
function of the velocities only. The exact expression for the potential energy was
a transcendental function of �1 and �2 and the small angle approximation re-
duced it to a quadratic homogeneous function of the coordinates only. We shall
see (and in fact have seen in small amplitude oscillations about equilibrium ap-
proximations) that the same simpli�cations occur for a wide range of oscillating
systems. The assumption that all oscillations are small, which reduces T to
a homogeneous quadratic function of the velocities and U to a homogeneous
quadratic function of the coordinates, results in the Lagrange equations being
homogeneous linear functions. The equations of motion can easily be solved.
We can now use the approximate expressions for T (29) and U (30) to

construct a Lagrangian, L = T �U; and write down the two Lagrange equations
of motion for �1 and �2: These are

@L
@�1

=
d

dt

@L

@
�
�1

or

� (m1 +m2) gL1�1 = (m1 +m2)L
2
1

��
�1 +m2L1L2

��
�2 (31)
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and

@L
@�2

=
d

dt

@L

@
�
�2

or

�m2gL2�2 = m2L1L2
��
�1 +m2L

2
2

��
�2: (32)

In an analogous manner to our approach with the two masses and three springs,
we can write these two coupled equations as a single matrix equation

M
��
� = �K�; (33)

where we have de�ned � as a 2� 1 column matrix

� =

�
�1
�2

�
and M and K as 2� 2 matrices

M =

�
(m1 +m2)L

2
1 m2L1L2

m2L1L2 m2L
2
2

�
and K =

�
(m1 +m2) gL1 0

0 m2gL2

�
(34)

When compared to our �rst matrix equation we see that the mass matrix M
is not actually made up of masses, but it still plays the role of inertia in the
equation of motion (33). Exactly as before any solution for � (t) can be written
as the real part of a complex solution z (t) whose time dependence is ei!t; that
is,

� (t) = Re z (t) where z (t) = aei!t =

�
a1
a2

�
ei!t:

Again exactly as before a function of this form satis�es the equation of mo-
tion (33) if and only if the column matrix a satis�es the eigenvalue equation�
K� !2M

�
a = 0: This equation only has a solution if and only if the deter-

minant det
�
K� !2M

�
vanishes. For 2 � 2 matrices this leads to a quadratic

equation in !2 which determines the two normal frequencies for the double pen-
dulum. Knowing these two normal frequencies we can go back and �nd the
corresponding column matrix a and �nd the normal modes. Finally, the gen-
eral motion of the system is just an arbitrary superposition of these two normal
modes the constants of which are determined by the initial conditions.
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