
23 Lecture 11-20

23.1 Chapter 8 Two-Body Central Force Problem (con)

23.1.1 Changes of Orbit

Before we leave our discussion of orbits we shall discuss how to change from
one orbit to another. Consider for example an Earth satellite wishing to change
from one orbit about the Earth to another, perhaps from a circular orbit to
an elliptical orbit that will carry it to a higher altitude. The analysis of Earth
orbits is the same as for those around the Sun. Only now the total mass M is
the sum of the Earth�s mass plus that of the satellite which is so close to that
of the Earth that will assume it to be the Earth�s mass. For Earth orbits the
closest points and furthest points are called the perigee and apogee instead of
perihelion and aphelion for the Sun. We shall con�ne ourselves to bounded,
elliptical orbits, for which the most general form is

r (�) =
ro

1 + � cos (�� �) =
`2=GM

1 + � cos (�� �) : (1)

Note that for a single orbit we can always de�ne our x axis so that � = 0: If we
are interested in two orbits then there will at least be a phase di¤erence that
we cannot avoid.
Suppose that our spacecraft is initially in an orbit described by equation

(1) with orbital parameters `1; "1; and phase �1 (if we know " and ` then via
equation (??) we know �). A common way to change orbits is to �re your rockets
for a short time. To a good approximation we can treat this as an impulse that
occurs at a unique angle �o and causes an instantaneous change in velocity by
a known amount. From the new velocity we can calculate the new energy "2
and angular momentum `2. Then from equation (??) we can calculate the new
eccentricity �2: Finally, the new orbit must join onto the old one at the angle
�o; i.e. r1 (�o) = r2 (�o) : We can �nd the new phase from the expression

`21
1 + �1 cos (�o � �1)

=
`22

1 + �2 cos (�o � �2)
: (2)

This calculation, though straightforward in principle, is tedious and not espe-
cially illuminating. To simplify the calculations and to better reveal important
features, I shall treat just one important special case.

A Tangential Thrust at Perigee Let�s consider a satellite that transfers
from one orbit to another by �ring its rockets in the tangential direction, forward
or backward, when it is at the perigee of its initial orbit. By choice of our x
axis, we can arrange it so that this occurs in the direction � = 0; so that �o = 0
and �1 = 0: Moreover, since the rockets are �red in the tangential direction, the
velocity just after �ring is still in the same direction, which is perpendicular to
the radius from the Earth to the satellite. Therefore, the position at which the
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rockets are �red is also the perigee for the �nal orbit and �2 = 0 as well. Under
these conditions the continuity of the orbits, equation (2), reduces to

R1(per) =
`21=GM

1 + �1
= R2(per) =

`22=GM

1 + �2
: (3)

We will denote by � the ratio of the satellite�s speeds just before and after the
�ring of the rockets, v2 = �v1: We shall call � the thrust factor : if � > 1 then
the thrust was forward and if � < 1 then the thrust was backward. Before we
proceed, it is useful to note that if the transfer were to take place at the apogee
then the continuity of obits would insist that

R1(apo) =
`21=GM

1� �1
= R2(apo) =

`22=GM

1� �2
; (4)

as the apogee occurs at � = � in the orbit.
At perigee (or apogee) the angular momentum is just ` = rv: The value

of r does not change during the impulse, and I shall assume that the �ring of
the rockets changes the satellites mass by a negligible amount. Under these
assumptions, then angular momentum changes by the same factor as the speed,
`2 = �`1:Thus the new eccentricity is

�2 = �
2�1 + �

2 � 1: (5)

This expression for the new eccentricity contains almost all the interesting
information about the new orbit. For example if � > 1 then the new orbit
has �2 > �1: The new orbit has the same perigee as the old one, but a greater
eccentricity and so lies outside the old orbit as shown in �gure 8.12(a).

Figure 8.12. Changing orbits. The rockets are �red at at the perigee P . (a) A
forward thrust moves the satellite to the larger dashed elliptical orbit. (b) A
backward thrust moves the satellite to the smaller dashed elliptical orbit.

If we make � large enough then the new eccentricity can be greater than one,
which means that the new orbit is a hyperbola and the satellite escapes the
Earth.
If we choose the thrust factor � < 1; then the new eccentricity is less than the

old and the new orbit is inside the old as shown in �gure 8.12(b). As we make
� steadily smaller we can move the satellite into a circular orbit, i.e. �2 = 0: If
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continue to make � still smaller then �2 < 0: This means that the old perigee is
now the apogee as �o ! � + �o:
From this discussion if a satellite�s crew wishes to change from one circular

orbit to another, then it will require two successive boosts. The �rst boost will
increase the eccentricity from zero to a positive value. The second boost must
come at the apogee. There the boost will increase the negative eccentricity back
to zero.
As an example of how this would work consider an initial circular orbit with

radius r = R1 and eccentricity �1 = 0 as shown in �gure 8.13.

Figure 8.13. Two successive boosts, at P and P 0, transfers a satellite from
orbit 1 to the transfer orbit 2 followed by a transfer to orbit 3.

The �nal orbit is to have a radius of R3: After an initial boost at point P in
the �gure, the satellite is in a transfer orbit with `2 = �`1: From equation (3)
we know that

R1 = `
2
1=GM = R2 =

`22=GM

1 + �2
=
�2`21=GM

1 + �2
=

�2

1 + �2
R1; (6)

or �2 = �
2� 1: By the time the satellite reaches the point P 0 the satellite it has

achieved a radius of R3: Since the point P 0 is the apogee of the transfer orbit
equation and the third orbit is a circular orbit, equation (3) now takes the form

`22=GM

1� �2
=
�2`21=GM

2� �2
=

�2

2� �2
R1 = R3: (7)

This is easily solved for � to give

�2 =
2R3

R1 +R3
: (8)

For example if R3 = 2R1; then the boost must be � =
p
4=3 ' 1:15; and the

satellite must increase its speed by 15% so that its apogee is twice its perigee.
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The second transfer is into another circular orbit (�3 = 0) and requires an
additional boost of �0 or

`22=GM

1� �2
= R3 = `

2
3=GM = �02`22=GM;

1

2� �2
= �02: (9)

Solving for �0 we easily �nd

�02 =
1

2� �2
=
R1 +R3
2R1

: (10)

Using the same example, R3 = 2R1; then the second boost must be �
0 =

p
3=2 =

1:22; and the satellite must increase its speed by 22% to enter a circular orbit
from its apogee.
It would be tempting to think that the overall change in speed is just the

product ��0; but that would neglect that the speed of the satellite changes as it
moves around in its transfer orbit. Since it is conserving angular momentum in
its orbit the ratio of speeds in that orbit must satisfy v2 (apo)R3 = v2 (per)R1:
This implies that the overall gain in speed is

v3 = �
0 v2 (apo)
v2 (per)

�v1 =

r
R1 +R3
2R1

R1
R3

r
2R3

R1 +R3
=

r
R1
R3
v1: (11)

Again using our example of R3 = 2R1 we �nd that the velocity has been reduced
by a factor of

p
2: This should have been anticipated as it is easy to show that

the for circular orbits v / 1=
p
R:

23.2 Chapter 11 Coupled Oscillators and Normal Modes

The interest here is a system of masses that can oscillate and are connected to
each other in some way, a system of coupled oscillators. A single oscillator has a
single natural frequency at which, in the absence of driving forces, it will oscillate
forever. In this chapter we shall �nd that two or more coupled oscillators have
several natural , �normal�, frequencies at which it can oscillate. The general
motion is a combination of these frequencies. Here we shall have to learn how
to diagonalize matrices in order to determine these normal frequencies as well
as the normal modes that accompany these oscillations. Throughout we will
assume that all of the forces with which we are concerned obey Hooke�s law and
hence all of the equations of motion are linear. While this makes up a special
case (linear) it is a very important special case and occurs throughout physics.

23.2.1 Two Masses and Three Springs

Consider two masses connected via a spring that are also attached individually
with springs along a line to adjacent �xed walls as shown in �gure 11.1.
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Figure 11.1 Masses m1 and m2 are attached to walls by springs k1 and k3 and
to each other by spring k2. The positions of the masses are measured from

their respective equilibrium positions.

In the absence of spring 2, the middle spring, the masses would oscillate inde-
pendently of each other. So it is spring 2 that couples the two oscillating masses.
In fact it is this spring that makes it impossible for one of the masses to move
without the other moving as well.
The Lagrangian for this system of springs and masses is

L = 1

2
m1

�
x
2

1 +
1

2
m2

�
x
2

2 �
1

2

�
k1x

2
1 + k2 (x2 � x1)

2
+ k3x

2
2

�
; (12)

where x1 and x2 are the displacements of the respective masses from equilibrium.
With this Lagrangian the equations of motion are

m1
��
x1 = �k1x1 � k2 (x1 � x2) = � (k1 + k2)x1 + k2x2 (13a)

m2
��
x2 = �k3x2 � k2 (x2 � x1) = k2x1 � (k2 + k3)x2: (13b)

Before we try to solve these two coupled equations, notice that they can be
written in matrix form as

M
��
x = �Kx: (14)

To obtain this rather elegant compact notation we have de�ned the column
matrix or column vector as

x =

�
x1
x2

�
(15)

which labels the con�guration of our system. It is a 2� 1 column matrix with
two independent components because this system has two degrees of freedom.
If we had a system with n degrees of freedom then it would be an n� 1 column
matrix. We have also de�ned two square matrices,

M =

�
m1 0
0 m2

�
and K =

�
k1 + k2 �k2
�k2 k2 + k3

�
: (16)

The �mass matrix�M is (at least in this simple case) a diagonal matrix with the
masses m1 and m2 for diagonal elements. The �spring-constant matrix�K has
nonzero o¤-diagonal elements which re�ects the coupling in this system between
x1 and x2: Notice that the matrix equation (14) is a very natural generalization
of a single mass on a spring. With just one degree of freedom all three of the
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matrices x; M; and K would be 1 � 1 matrices, i.e. ordinary numbers. The
matrix equation then reduces to the usual m

��
x = �kx: Notice also that bothM

and K are symmetric matrices which will be true of all corresponding matrices
throughout this chapter.
In an attempt to solve the matrix equation of motion we might make the

guess that both masses oscillate with the same frequency !; that is

x1 = �1 cos (!t� �1) and x2 = �2 cos (!t� �2) : (17)

If there is a solution of this form then there certainly also be a solution of the
form

y1 = �1 sin (!t� �1) and y2 = �2 sin (!t� �2) : (18)

As we did in chapter 5 we can combine these two solutions (the system is linear
after all) and try solutions of the form

z1 = �1e
i(!t��1) and z2 = �2e

i(!t��2): (19)

Then de�ning the complex constants a1 = �1e�i�1 and a2 = �2e�i�2 we �nally
have as trial solutions

z1 = a1e
i!t and z2 = a2e

i!t: (20)

We are not claiming that these complex numbers represent the actual motion of
the two masses, but (as we shall see) for the right choices of a1; a2; and ! the
two complex numbers in equation (20) are solutions to the equation of motion.
It is then their real parts that describe the actual motion of the system. The
great advantage of the complex numbers is that they both have the same time
dependence given by the factor ei!t. If they have any phase di¤erences those
will be contained in the constants a1 and a2: The complex solutions can be
combined into a 2� 1 matrix of the form

z (t) =

�
z1 (t)
z2 (t)

�
=

�
a1
a2

�
ei!t = aei!t: (21)

When we substitute these trial solutions into the matrix EOM,M
��
x = �Kx;

we obtain
�!2Maei!t = �Kaei!t: (22)

Cancelling the common exponential factor and rearranging we �nd�
K� !2M

�
a = 0: (23)

This is in the form of an eigenvalue equation with eigenvalue !2 where we have
the matrix M instead of the unit matrix I. It can be solved in almost exactly
the same way as the case whereM is replaced by I. If the matrix K�!2M has
a nonzero determinant, then the only solution of (23) is the trivial one, a = 0;
which corresponds to no motion at all. If on the other hand,

det
�
K� !2M

�
= 0; (24)
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then there is certainly a nontrivial solution of (23) and hence a solution of our
equations of motion with the assumed sinusoidal motion. In the presence case,
the matricesK andM are 2�2matrices so equation (24) is a quadratic equation
for !2: This implies that in general there are two frequencies at which the masses
can oscillate in pure sinusoidal motion.
The two frequencies at which our system can oscillate, the normal frequen-

cies, are determined by the quadratic equation (24) for !2: While the general
case is perfectly straightforward, it is not especially illuminating and somewhat
messy. So we will consider two special cases where we can understand more eas-
ily what is going on. First we shall start with the case where all three springs
are identical and likewise the two masses.

23.2.2 Identical Springs and Equal Masses

We will now examine the case where both masses are equal, m1 = m2 = m; and
similarly the three spring constants, k1 = k2 = k3 = k: The matrices M and K
simplify to

M =

�
m 0
0 m

�
and K =

�
2k �k
�k 2k

�
: (25)

The matrix K� !2M becomes

K� !2M =

�
2k �m!2 �k
�k 2k �m!2

�
; (26)

and its determinant is

det
�
K� !2M

�
=
�
2k �m!2

�2 � k2 = �k �m!2� �3k �m!2� : (27)

Since this determinant must vanish, the two normal frequencies are

! =

r
k

m
= !1 and ! =

r
3k

m
= !2: (28)

These two normal frequencies are the ones at which the two masses can oscillate
in purely sinusoidal motion. Notice that the �rst frequency, !1, is precisely the
frequency of a single mass m on a spring with constant k. We shall see the
reason for this apparent coincidence in a moment.
Equation (28) gives us the two possible frequencies of the system, but still

have not described the corresponding motions. The actual motion is given by
the column matrix x (t) = Re z (t) where z (t) = aei!t and is composed of the
two constant numbers,

a =

�
a1
a2

�
; (29)

which must satisfy the eigenvalue equation�
K� !2M

�
a = 0: (30)
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Now that we know the possible normal frequencies, we must solve this equation
for the vector a for each normal frequency in turn. The sinusoidal motion with
any of one of the normal frequencies is called a normal mode. We shall start
with the �rst normal mode.

The First Normal Mode If we choose ! = !1 the �rst normal frequency
given by !21 = k=m; then the matrix K� !2M becomes

K� !21M =

�
k �k
�k k

�
; (31)

which you should notice has a vanishing determinant. Hence for this case the
eigenvalue equation becomes�

1 �1
�1 1

� �
a1
a2

�
= 0: (32)

There is only one independent equation here,

a1 � a2 = 0; (33)

hence a1 = a2 = Ae�i�: The complex column matrix for z is therefore

z (t) =

�
a1
a2

�
ei!1t =

�
A
A

�
ei(!1t��): (34)

The corresponding actual motion is the real column matrix x (t) = Re z (t) or

x (t) =

�
A
A

�
cos (!1t� �) : (35)

Thus our �rst normal mode is described by

x1 (t) = A cos (!1t� �) and x2 (t) = A cos (!1t� �) : (36)

Examining this normal mode we see that the two masses oscillate in phase
and with the same amplitude as shown in �gure 11.2.

Figure 11.2. In the �rst normal mode the equal masses oscillate in phase with
equal amplitudes so that x1 (t) = x2 (t) : In this mode the middle spring

remains at equilibrium at all times.
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A striking feature of this mode is that because x1 (t) = x2 (t) ; the middle spring
is neither stretched nor compressed during the oscillations. This means that for
the �rst normal mode, the middle spring is actually irrelevant, and each mass
oscillates just as if it were attached to a single spring (albeit in phase with
the other mass). This explains why the �rst normal mode frequency satis�es
!21 = k=m:

The Second Normal Mode The second normal frequency at which our
system can oscillate sinusoidally is !22 = 3k=m: When this is substituted into
(26) we have

K� !22M =

�
�k �k
�k �k

�
: (37)

Thus for this normal mode, the eigenvalue equation
�
K� !22M

�
a becomes�

1 1
1 1

� �
a1
a2

�
= 0 (38)

which implies that a1+a2 = 0; or a1 = �a2 = Ae�i�: The complex column z (t)
is then

z (t) =

�
a1
a2

�
ei!t =

�
A
�A

�
ei(!2t��) (39)

and the corresponding real column x (t) = Re z (t) is

x (t) =

�
A
�A

�
cos (!2t� �) : (40)

That is for the second normal mode

x1 (t) = A cos (!2t� �) and x2 (t) = �A cos (!2t� �) : (41)

We see that in the second normal mode the two masses oscillate with the same
amplitude A but exactly out of phase as shown in �gure 11.3.

Figure 11.3. In the second normal mode the equal masses oscillate exactly out
of phase with equal amplitudes so that x1 (t) = �x2 (t) :

Notice that in the second normal mode, when mass 1 is displaced to the
right, mass 2 is displaced an equal distance to the left, and vice versa. This
means that when the outer two springs are stretched, as in �gure 5, the inner
spring is compressed by twice that amount. This means that each mass moves
as if it were attached to a single spring with force constant 3k. This explains
why the second normal frequency is !22 = 3k=m:

9


