
16 Lecture 11-2

16.1 Chapter 7 Lagrange�s Equations (con)

Two Unconstrained Particles So far we have shown that Lagrange�s equa-
tion leads to the correct path for a single unconstrained particle through the
appropriate con�guration space. That is Lagrange�s equations are identical to
Newton�s second law. The generalized coordinates may be the Cartesian co-
ordinates or some other equivalent set of coordinates, e.g. spherical polar or
cylindrical polar. But the path is unchanged by this change in coordinates. So
for this simple case of a single unconstrained particle we have veri�ed Hamil-
tonian�s principle as the action integral is stationary along these paths.
Here we will discuss the situation for two particles, mainly to examine the

form of Lagrange�s equations for N > 1: For two particles the Lagrangian is
de�ned as before as L = T � U: This means that the Lagrangian is now given
by

L = 1

2
m

��!r
2

1 +
1

2
m

��!r
2

2 � U (�!r 1;�!r 2) ; (1)

where as usual the forces on the particles are
�!
F 1 = �r1U and

�!
F 2 = �r2U:

Hence Newton�s second law can be expressed as

F1x =
�
p1x; F1y =

�
p1y; � � � F2z =

�
p2z: (2)

Each of these six equations is equivalent to a corresponding Lagrange equation
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: (3)

These six equations imply that the action integral S =
R
Ldt is stationary.

We can transform the integrand to any other suitable set of six coordinates,
q1; q2; � � �; q6 and the action integral will still be stationary. This implies that
Lagrange�s equations must be true with respect to the new coordinates:
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@q1

=
d

dt
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@
�
q1
; � � �; @L

@q6
=
d

dt

@L
@
�
q6
: (4)

An example of a set of six such generalized coordinates that we shall use
repeatedly when we study the two body central force problem is this: The three
coordinates of the CM position

�!
R = (m1

�!r 1 +m2
�!r 2) = (m1 +m2) ; and the

three coordinates of the relative position of the two particles, �!r = �!r 1��!r 2:We
will �nd that this choice leads to a dramatic simpli�cation. For now however, the
main point is that Lagrange�s equations are automatically true in their standard
form, equation (4) with respect to the new generalized coordinates.
The extension of these ideas to the case of N unconstrained particles leads

to the 3N Lagrange equations

@L
@qi

=
d

dt

@L
@
�
qi
; [i = 1; 2; � � �; 3N ] : (5)
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These equations are valid for any choice of the 3N coordinates q1; q2; � � �; q3N
needed to describe the N particles. So now we see that Hamilton�s principle
and the resulting Lagrange equations leads to the correct equations of motion
for N unconstrained particles as well for a single unconstrained particle.

16.1.1 Constrained System; an Example

One of the great advantages of the Lagrangian approach is the e¤ortless way in
which it handles constraints. There are numerous examples of this (almost too
many too count), but to get the �avor of how easily this is handled we will again
consider a simple example, the plane pendulum. A bob of mass m is attached to
a massless rod of length ` which rotates without friction in the x�y plane about
a point which we will take to be the origin. The bob moves in both the x and
y directions, but it is constrained by the rod so that

p
x2 + y2 = `. However

only one of the coordinates is independent for as x changes y is predetermined
by the constraint equation, or vice versa. Thus the system has only one degree
of freedom. One way to express this is to eliminate one of the coordinates, for
example we could write y =

p
`2 � x2 so that we could express everything in

terms of x. A much simpler way to proceed is to eliminate both x and y in terms
of the angle �; the angle between the pendulum and its equilibrium position.
Both the kinetic and potential energy can be expressed in terms of �: The

kinetic energy is T = 1
2m`

2
�
�
2

: The potential energy is given by U = mgh where
h is the height above equilibrium. A little trigonometry shows that this height
is h = ` (1� cos�) : We can now write the Lagrangian as

L = 1

2
m`2

�
�
2

�mg` (1� cos�) : (6)

Now it is a fact that once a system is expressed in terms of a single generalized
coordinate (for a system with only one degree of freedom), the evolution of this
constrained system also satis�es Lagrange�s equation. With � as our generalized
coordinate Lagrange�s equation is

@L
@�

=
d

dt

@L

@
�
�
: (7)

These derivatives are easily evaluated to give

�mg` sin� = m`2
��
�: (8)

The quantity �mg` sin� is just the torque � exerted by gravity on the pen-
dulum, while m`2 is the pendulum�s momentum of inertia. This equation is
then a speci�c example of an equation on motion in cylindrical coordinates and
demonstrates that the correct equation of motion is obtained in presence of a
constraint.
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16.1.2 Constrained Systems in General

Generalized Coordinates Consider a system of N particles with positions
�!r �: The set of parameters q1; q2; � � �; qn are a set of generalized coordinates for
the system if each position �!r � can be expressed as a function of q1; q2; � � �; qn;
and possibly the time, t,

�!r � = �!r � (q1; q2; � � �; qn; t) [� = 1; � � �; N ] (9)

Conversely each qi can be expressed in terms of the
�!r � and possibly t,

qi = qi (
�!r 1; � � �;�!r N ; t) [i = 1; � � �; n] : (10)

In addition we require that the number of the generalized coordinates (n) is
the smallest number that allows for the system to parameterized. In our three
dimensional world, n is certainly no more than 3N and for a constrained system
it may be much less. For example in a rigid body, the number of particles is on
the order of Avogadro�s number, whereas the number of generalized coordinates
is 6, three coordinates to give the location of the CM and three more to give
the orientation of the body.
To illustrate the relation between the location of particles and the generalized

coordinates, we will again consider the simple pendulum. There is one particle,
the bob, and two Cartesian coordinates. As we saw there is just one generalized
coordinate, which we chose to be the angle �: So the analog of equation (9) is

�!r = (x; y) = �!r (�) = (` sin�; ` cos�) . (11)

Here the two Cartesian coordinates are expressed in terms of just one generalized
coordinate �.
The double pendulum shown in �gure 7.1 has two bobs, both con�ned to a

plane, so it has four Cartesian coordinates, all of which can be expressed in

Figure 7.1 The double pendulum is uniquely speci�ed by two generalized
coordinates �1 and �2 which can be varied independently.
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terms of the two generalized coordinates �1 and �2: So if we de�ne the origin
to be located at the suspension point of the top pendulum we have

�!r 1 = �!r 1 (�1) = (`1 sin�1; `1 cos�1) ; (12)

and
�!r 2 = �!r 2 (�1; �2) = (`1 sin�1 + `2 sin�2; `1 cos�1 + `2 cos�2) : (13)

Here the components of �!r 2 depend on both �1 and �2:
In these two examples the transformation between the Cartesian and gen-

eralized coordinates did not depend on time. However it is easy to construct
examples in which it does. Consider the railroad car in �gure 7.2. which has
a pendulum �xed to the ceiling and is being forced to accelerate at a constant
acceleration a. It is natural to specify the position of the pendulum by the angle
of the bob as usual. However we must recognized that this gives the position
of the pendulum relative to the accelerating (non inertial) frame of the car. If
we wish to specify the position of the bob relative to an inertial frame, e.g. the
ground, then we note that the position

Figure 7.2 A pendulum suspended from the roof of a railroad car that is
accelerating with an acceleration a.

of the bob must have the additional term x = 1
2at

2 added to its position inside
the car. Its position is now given by

�!r = (x; y) = �!r (�) =
�
` sin�+

1

2
at2; ` cos�

�
: (14)

Now the relation between �!r and the generalized coordinate � includes a depen-
dence on t; which was a possibility that we allowed for in equation (9).
We shall sometimes describe a set of coordinates q1; q2; ���; qn as natural if the

relation between the Cartesian coordinates �!r � and the generalized coordinates
does not involve the time t. We shall �nd certain convenient properties of
natural coordinates that do not apply to coordinates for which the relation in
equation (9) does involve the time. Fortunately, as the name implies, there are
many problems for which the most convenient choice of coordinates is natural.
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Degrees of Freedom The number of degrees of freedom of a system is the
number of coordinates that can be independently varied in a small displacement.
For example, the simple pendulum has just one degree of freedom, while the
double pendulum has two. A particle that is free to move anywhere in three
dimensions has three degrees of freedom, while a gas of N particles has 3N .
When the number of degrees of freedom of an N -particle in three dimensions

is less than 3N , then the system is constrained. Of course this number is 2N
in two dimensions. The bob in a simple pendulum is constrained. The two
masses of the double pendulum is also constrained. Other examples include
the N atoms of a rigid body (3N coordinates!degrees of freedom), a bead
constrained to move on a �xed wire, and a particle constrained to move on a
�xed surface in three dimensions.
In all of the examples we have given so far, the number of degrees of free-

dom was equal to the number of generalized coordinates needed to describe the
system�s con�guration. A system with this natural-seeming property is said to
be holonomic. That is a holonomic system has n degrees of freedom and can
be described by n generalized coordinates, q1; q2; � � �; qn: Holonomic systems are
easier to treat than nonholonomic systems and in this course we shall restrict
ourselves to holonomic systems.
At a �rst glance you might think that all systems would be holonomic, or

at least that nonholonomic systems would be rare and extremely complicated.
If fact, there are some quite simple examples of nonholonomic systems. Con-
sider a hard rubber ball that is free to roll without slipping on a horizontal
plane. Starting at any position it can move in only two independent directions.
Therefore it has two degrees of freedom. You might well imagine that its con-
�guration could be uniquely speci�ed by two coordinates, x and y, of its center.
But clearly the orientation of the ball as it travels to another position on the
plane depends on the path taken to reach that position. Evidently two coor-
dinates is not enough to specify a unique con�guration. In fact we need three
more coordinates to specify the con�guration completely, two to determine an
axis of rotation and another to determine the angular rotation about that axis.
The ball has two degrees of freedom but �ve generalized coordinates. Clearly
the ball is a nonholonomic system.
From the example of the ball, it is clear that holonomic systems exist, how-

ever they are more complicated to analyze than holonomic systems and we shall
not discuss them any further. For any holonomic system with generalized coor-
dinates q1; q2; � � �; qn and potential energy U (q1; q2; � � �; qn; t) ; the evolution in
time is determined by the n Lagrange equations

@L
@qi

=
d

dt

@L
@
�
qi
; [i = 1; 2; � � �; n] ; (15)

where the Lagrangian L, is de�ned as usual as L = T � U .
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16.1.3 Review of Hamilton�s Principle and Lagrange�s Equations to
this Point

Given a particle with a kinetic energy T and a potential energy U , Hamilton�s
principle states that the so-called action integral

S =
R
L
�
x; y; z;

�
x;

�
y;

�
z; t
�
dt ; (16)

where L is the Lagrangian de�ned by L = T�U; is stationary along the particle�s
path. It was straightforward to show that the Euler-Lagrange equations, or
simply the Lagrange equations when applied to the action integral,

@L
@xi

=
d

dt

@L
@
�
xi
; (17)

reproduced Newton�s law of motion for a particle in Cartesian coordinates. Since
the integral is unchanged under a coordinate transformation, we can consider
a set of generalized coordinates q1; q2; q3 that may be more appropriate for the
system under consideration and the action integral will still be stationary along
the particle�s path. This means that the solution to the Lagrange equations in
these coordinates

@L
@qi

=
d

dt

@L
@
�
qi
; (18)

will still describe the path of the particle. We also noted that the Lagrange
equations in polar cylindrical coordinates reproduced Newton�s second law for
those coordinates as they had to if they were to correctly describe the path of
the particle. However they were arrived at in a natural way by simply expressing
the kinetic and potential energy in polar coordinates.
We found that the Lagrange equations when expressed in generalized coor-

dinates take the form

(generalized force) =
d

dt
(generalized momentum), (19)

where
@L
@qi

= (ith component of a generalized force), (20)

and
@L
@
�
qi
= (ith component of a generalized momentum). (21)

When expressed this way if the Lagrangian is independent of any of the general-
ized coordinates, then that component of the generalized momentum is constant.
To �nd a conservation law we merely have to note whether or not the Lagrangian
depends on that coordinate.
The extension to N unconstrained particles was also straightforward and we

saw that Lagrange�s equations again reproduced Newton�s laws of motion for a
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multiparticle system. Again the Cartesian coordinates used in the action inte-
gral could be transformed into a generalized set of coordinates without changing
the integral and consequently the paths of the particles. In these generalized
coordinates the form of Lagrange�s equations remains unchanged as for a sta-
tionary integral they must still satisfy the necessary Euler-Lagrange equations.
We also demonstrated for the simple case of the pendulum that Lagrange�s

equations reproduced the correct equations of motion for this constrained sys-
tem. However, verifying that the Lagrange�s equations are the correct equations
for a single system with a constraint is far from a proof that the Lagrange equa-
tions apply for constrained systems in general. Thus the only problem that
remains is to prove that Lagrange�s equations are the correct equations systems
with constraints.

16.1.4 Proof of Lagrange�s Equations with Constraints

With these concepts, we are now ready to prove Lagrange�s equations for any
holonomic system. To start we will consider the case of just one particle (the
extension to an arbitrary number of particles is fairly straightforward). We will
propose that the particle is constrained to move on a surface. This means that it
has two degrees of freedom and can be described by two generalized coordinates
q1 and q2.
First we will consider the forces of constraint on the particle. In general

the forces of constraint are not necessarily conservative, but that is not relevant
since one of the main objectives of the Lagrangian approach is to �nd equations
that don�t involve the constraint forces (which we usually don�t want to know
anyway). Notice however that if the constraining forces are nonconservative,
then the Lagrange equations in the simple unconstrained form certainly do not
apply. We shall denote the net constraining force by

�!
F cstr; which for our

example is just the of the surface to which the particle is con�ned.
Second, there are the �nonconstraint forces�on the particle, such as gravity.

These are the forces with which we are usually concerned in practice, and we
shall denote the sum of these forces by

�!
F . We will assume that these forces all

satisfy at least the second condition for a force to be conservative so that they
are derivable from a potential energy, U (�!r ; t), and

�!
F = �rU (�!r ; t) : (22)

(It turns out that if all of the nonconstraint forces are conservative, then U is
time independent, but we don�t need to assume this.) The total force on the
particle is then

�!
F tot =

�!
F cstr +

�!
F :

Finally we will assume that the Lagrangian is de�ned as usual to be L =
T � U: Here U excludes the constraint forces. This re�ects that Lagrange�s
equations for a constrained system eliminates the need to know the constraint
forces as we shall soon see.
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The Action Integral is Stationary at the Right Path Consider two
points �!r 1 and �!r 2 through which the particle passes at times t1 and t2. Now�!r (t) will be the correct path, the actual path that the particle follows between
the two points, and

�!
R (t) = �!r (t) + �!� (t) is any nearby wrong path. Since

both �!r (t) and �!R (t) are both constrained to lie in the surface to which the
particle is con�ned, the small vector �!� (t) which connects the correct path
and some nearby incorrect path must also be constrained to lie in the surface.
Additionally, since both �!r (t) and �!R (t) must pass through the same endpoints,
�!� (t1) = �!� (t2) = 0:
We again denote the action integral along the correct path as S,

S =

Z t2

t1

L
�
�!r ;

��!r ; t
�
dt: (23)

In a manner analogous to the scheme we used to derive the Euler-Lagrange
equations we denote as �S as the small change in the action integral from the
correct path to a nearby incorrect path as

�S =

Z t2

t1

L
 
�!
R;

��!
R; t

!
dt�

Z t2

t1

L
�
�!r ;

��!r ; t
�
dt (24)

We also denote the change in the Lagrangian from the correct path to the
incorrect path as

�L = L
 
�!
R;

��!
R; t

!
� L

�
�!r ;

��!r ; t
�
: (25)

If we substitute
�!
R (t) = �!r (t) +�!� (t) and

L
�
�!r ;

��!r ; t
�
=
1

2
m

��!r
2

� U (�!r ; t) ;

then via a Taylor�s series expansion equation (25) becomes

�L =
1

2
m

"� ��!r (t) +
��!� (t)

�2
�

��!r
2

(t)

#
� [U (�!r +�!� (t) ; t)� U (�!r ; t)] ;

�L = m
��!r �

��!� ��!� � rU +O
�
�2
�
; (26)

where O
�
�2
�
denotes terms of second order in � and

�
�: Then the change in the

action integral, equation (24), becomes

�S =

Z t2

t1

�
m

��!r �
��!� ��!� � rU

�
dt: (27)

As usual the �rst term is integrated by parts and we �nd

�S = �
Z t2

t1

�
m

���!r +rU
�
� �!� dt: (28)
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Now the right path, �!r (t) ; satis�es Newton�s second law. Thereforem
���!r is equal

to the total force on the particle,
�!
F tot =

�!
F cstr +

�!
F : Meanwhile rU = ��!F :

This means that in equation (28) we are left with

�S = �
Z t2

t1

�!
F cstr � �!� dt: (29)

But the constraint force is normal to the surface in which the particle moves,
while �!� lies in the surface. Therefore �!F cstr � �!� = 0; and we have proved that
�S = 0: That is the action integral is stationary for the right path. It should be
noted that the observation that

�!
F cstr � �!� = 0; is the crucial step in the proof.

When you consider the generalization of the proof to an arbitrary constrained
system, problem 7.13 for the student, you will �nd a corresponding step and
that the corresponding term is zero. This is because the forces of constraint do
no work in a displacement that is consistent with the constraints. In fact, this
is one possible de�nition of a force of constraint.

The Final Proof We have proved that Hamilton�s principle, the action
integral is stationary for the path that the particle actually takes. However, we
have proved it, not for arbitrary variations of the path, but rather variations
that are consistent with the constraints - i.e. paths which lie on the surface to
which the particle was constrained. This means that we cannot prove Lagrange�s
equations with respect to the three Cartesian coordinates. On the other hand we
can prove them with respect to the appropriate generalized coordinates. Since
we assumed that the particle was con�ned by holonomic constraints to move on
a surface This means that the particle has two degrees of freedom and can be
described by two generalized coordinates q1 and q2. Any variation of q1 and q2 is
consistent with the constraints. Accordingly we can rewrite the action integral
as

S =

Z t2

t1

L
�
q1; q2;

�
q1;

�
q2; t

�
dt; (30)

and this integral is stationary for any variations of q1 and q2 about the correct
path. Therefore, the Euler-Lagrange equations apply, and we have the two
Lagrange equations

@L
@q1

=
d

dt

@L
@
�
q1

and
@L
@q2

=
d

dt

@L
@
�
q2

(31)

The proof presented here applies only to a single particle in three dimensions
constrained to move on a two dimensional surface. However the main ideas of
the general case are all present. The generalization is straightforward and I hope
that enough has been said to convince you of the truth of the general result.
That is, for any holonomic system with n degrees of freedom and n generalized
coordinates, and with the nonconstraint forces derivable from a potential energy
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U (q1; q2; � � �; qn; t) ; the path followed by the system is determined by the n
Lagrange equations

@L
@qi

=
d

dt

@L
@
�
qi

[i = 1; � � �; n] ; (32)

where L is the Lagrangian L = T � U and U = U (q1; q2; � � �; qn; t) is the
total potential energy corresponding to all the forces excluding the forces of
constraint.
It was essential to the proof that the nonconstraint forces be conservative

or at least be derivable from a potential via
�!
F = �rU; i.e. path independent

but not necessarily independent of time. If this is not true, then Lagrange�s
equations may not hold at lease in the form of equation (32). An obvious
example of this is sliding friction. Sliding friction cannot be regarded as a force
of constraint (it is not normal to the surface) and it cannot be derived from a
potential energy. Thus when sliding friction is present they do not hold in the
form of equation (32). Lagrange�s equations can be modi�ed to include forces
like friction, but the result is clumsy and we will con�ne ourselves to situations
where equation (32) does hold.
Before we move on and consider several examples of Lagrange�s equations,

it is worthwhile to again list the important advantages of Lagrange�s equations
versus Newton�s equations of motion. First, they take the same form in any
generalized coordinate system, i.e. the form of the Euler-Lagrange equations in
which the integrand of the stationary integral of interest (the action integral)
is the Lagrangian, L = T � U: Second, we need only to �nd the kinetic and
potential energy in generalized coordinates. Since these are scalar quantities,
this is typically much easier than determining the vector quantities required
in Newton�s second law. Third and most important, they eliminate the forces
of constraint. This greatly simpli�es most problems and as it turns out this
simpli�cation comes at almost no cost since we usually do not want to know
these forces anyway.
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