
22 Lecture 11-18

22.1 Chapter 8 Two-Body Central Force Problem (con)

The Orbital Period, Kepler�s Third Law We can now �nd the period
of the elliptical orbits of comets and planets. Conceptually all we have to do
is integrate the inverse of the angular rate through one complete orbit. Since
�
� = L=�r2 = `=r2; this integral is

T =

Z 2�

0

dt

d�
d� =

1

`

Z
r2d�: (1)

From our solution to the orbit equation for r (�) ; this integral is given by

T =
r2o
`

Z 2�

0

1

(1 + � cos�)
2 d�: (2)

This integral may look daunting but it is easily evaluated using pole residue
techniques (Mathematica and/or integral tables also provide the answer) with
the result Z 2�

0

1

(1 + � cos�)
2 d� =

2�

(1� �2)3=2
: (3)

Hence the square of the period is

T 2 =
4�2ro
`2

r3o

(1� �2)3
=
4�2ro
`2

a3: (4)

Substituting for ro; ro = `2=GM; we �nd

T 2 =
(2�)

2

GM
a3: (5)

This expression states that the square of the period of rotation is proportional to
the cube of the semimajor axis and inversely proportional to the total mass of the
interacting bodies. Additionally it is independent of the reduced mass. However,
Kepler�s third law made the point that the square of the period of rotation is
proportional to the cube of the semimajor axis while being independent of the
mass of the orbiting body. Of course the mass of the Sun is so much greater
than any of the planets, e.g. even the mass of Jupiter is only :001 that of
the Sun, that for all practical purposes including the mass of the planet in the
calculation of M = M� +mplanet (M� is the standard symbol for the mass of
the Sun) makes very little di¤erence. So Kepler�s observation was very accurate
within our solar system. We include the correct expression for the period of two
orbiting bodies here as it can make a signi�cant di¤erence to astronomers when
they are observing the period of binary stars. Before we leave this subject it
should be noted that this law applies equally well to all orbiting satellites. For
example all the man made satellites of the Earth obey the same law with M
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being the total of the Earth�s and the orbiting body�s mass, which is completely
dominated by the mass of the Earth. However, determining the period of the
Moon�s orbit about the Earth, the mass of the Moon should be included as it
is slightly greater than :01 that of the Earth.

Earth�s Period Around the Sun and the Period of a Low Earth Or-
bit One convenient way to measure the mass of the Sun (or any astronomical
object) is with Kepler�s third law. Since the mass of the Sun is approximately
106=3 times the mass of the Earth we can ignore the Earth�s mass in equation
(5). All of the other parameters in equation (5) are known, Earth�s period is
T = 3:156� 107 sec; the gravitational constant G = 6:67� 10�11Nm2=kg2; and
since Earth�s orbit is nearly circular the semimajor axis is close to the mean dis-
tance which is a = 150� 109m: We merely substitute these values into Kepler�s
third law and �nd

M� =
(2�)

2

GT 2
a3 = 2� 1030kg; (6)

which is the accepted value for the Sun�s mass. When determining the individual
masses of binary stars, equation (5) only results in the sum of the masses for both
stars and additional means are required to separate the masses, but interesting
though that may be it is a story for another class (astronomy).
Since the mass of the Earth is many orders of magnitude larger than man

made satellites we can use equation (5) with the mass of the Earth to determine
the period. We will also approximate the semimajor axis for the low lying
satellites as the Earth�s radius. Then the period should be T = 2�

p
R3E=GME :

Recalling that the gravitational acceleration at the surface of the Earth is g =
9:8m= sec2 allows us to write this expression as

T = 2�

s
RE
g
= 2�

s
6:38� 106m
9:8m= sec2

= 5070 sec ' 85min;

which is in agreement with the period for satellites in low Earth orbits.

Relation Between Energy and Eccentricity Finally we can relate the
eccentricity to the orbit to the energy E per unit reduced mass, "; by simply
inverting the equation for the eccentricity with the result

" =
1

2

G2M2

`2
�
�2 � 1

�
=
1

2

GM

ro

�
�2 � 1

�
: (7)

This expression is a useful relation between the physical properties (" and `) and
the geometrical properties (�) of an orbiting body. For example the minimum
energy for a body with a given angular momentum occurs when the eccentricity
vanishes, i.e. a circular orbit. From the virial theorem we know that for a
circular oribit

T = �1
2
U ! " = �1

2

GM

ro
;
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which is consistent with equation (7) This should have been obvious from the
form of the e¤ective potential but the above expression states it explicitly.

22.1.1 Unbounded Kepler Orbits

In the previous sections we found the general Kepler orbit,

r (�) =
`2=GM

1 + � cos�
; (8)

and examined it in some detail for the bounded orbits, i.e. those for which � < 1
or equivalently " < 0: Now we shall consider the unbounded orbits for which
� � 1 and " � 0: Note that we no longer associate ro with `2=GM as a circular
orbit no longer makes sense when discussing unbound orbits.
The boundary between the bounded and unbounded orbits occurs when

� = 1 or equivalently " = 0: With � = 1 the denominator in the solution for
Kepler orbits vanishes at � = ��: Thus, r (�) ! 1 as � ! ��: Clearly if
� = 1 then the orbit is unbounded. Recognizing that r cos� = x combined with
some elementary algebra shows that in Cartesian coordinates the solution for
the orbit is

y2 = �2 `
2

GM
x+

`4

G2M2
: (9)

This is the expression for a parabola. This orbit is shown with the long dashes
in �gure 8.9.
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Figure 8.9. Four di¤erent Kepler orbits: a circle, an ellipse, a parabola, and a
hyperbola.

If � > 1 (or " > 0) then the denominator in equation (8) vanishes at

� cos (�max) = �1: (10)

Hence, r (�)!1 as �! ��max and the orbit is con�ned to the range of angles
��max < � < �max: This gives the orbit with a general appearance shown with
the dashed lines in �gure 3. As an exercise for the student the expression for
equation (8) in Cartesian coordinates is of the form

(x� �)2

�2
� y2

�2
= 1: (11)

This is the equation of a hyperbola and we have proved that the positive energy
Kepler orbits are hyperbolas.

Summary of Kepler Orbits At this point it is useful to summarize what we
have learned about our results for Kepler orbits. First all of the possible orbits
are characterized by one equation,

r (�) =
`2=GM

1 + � cos�
; (12)

where the angular momentum `2 and the eccentricity � are determined by the
initial conditions. The energy of a comet depends on these constants through
the equation

" =
1

2

G2M2

`2
�
�2 � 1

�
: (13)

It is the eccentricity that determines the shape of the orbit as follows:

eccentricity energy orbit
� = 0 " < 0 circle
� < 1 " < 0 ellipse
� = 1 " = 0 parabola
� > 1 " > 0 hyperbola

As you can see from the expression for r (�) ; the quantity `2=GM is a scale
factor that determines the size of the orbit. It has the dimensions of length and
is the distance from the CM of both particles (in our solar system the CM is
close to the center of the Sun) to the comet when � = �=2:

22.1.2 Relativistic Corrections To The Orbit Equation

Bending of Light Shortly after Einstein developed and published his fa-
mous �eld equations which allowed for one to solve for the curvature of spacetime
in the presence of massive bodies, an astrophysicist named Karl Schwarzschild
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found the solution that described the curvature induced by static spherically
symmetrical massive bodies. This solution is now referred to as the �Schwarz-
schild geometry", and it very accurately describes the vacuum geometry outside
a nonrotating (or slowly rotating) star. It is the solutions to the orbit equations
derived from the Schwarzschild geometry or metric that give rise to the bend-
ing of light as it passes the Sun as well as the precession of the perihelion of
an elliptical orbit. These results comprised the �rst con�rmation of Einstein�s
theory of general relativity. It is these orbit equations that we wish to study
in this section. We will start with the orbit equation for the path of a photon,
i.e. the bending of light as it passes close to the Sun. This orbit equation for a
photon is very similar to the path of a particle in the absence of any interaction,
equation (??) and is given by�

du

d�

�2
+ u2 =

1

�2o
+
2GM

c2
u3; (14)

where c is the speed of light and M is the mass of the spherical body. Again �o
is the point of closest approach often called the impact parameter for a particle
traveling on a straight-line, or in the language of general relativity, a particle
traveling in �at spacetime. The quantity GM=c2 has the units of length and
for the mass of the Sun it is equal to 1:477km. Since the actual radius of the
Sun is approximately 696; 000km which is also the distance of closest approach,
the largest possible value of the quantity GMu=c2 for a photon as it grazes
the Sun is approximately 2 � 10�6: Clearly this allows us to treat this term
perturbatively. Before we proceed it is helpful notationally to nondimensionalize
the orbit equation in the form�

d�ou

d�

�2
+ (�ou)

2
= 1 + 2

GM

�oc
2
(�ou)

3
: (15)

The solution that we found for a free particle, i.e. a particle that travels in a
straight path, in equation (??) was

�o = r cos (�� �) :
For simplicity we will take the arbitrary phase � to equal �=2 so that far from
the Sun the photon is traveling along a path that corresponds to y = �o a
constant, as in �gure 8.10.
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Figure 8.10. Path of a photon in �at spacetime.

Since the perturbative term is small we are justi�ed in considering a trial solution
with a linear correction term that deviates from the straight line of the form,

�ou = sin�+
GM

c2�o
�ov; (16)

where v is yet to be determined. Substituting this into the orbit equation for a
photon, equation (15), while keeping only �rst order terms yields�

cos�+
GM

c2�o

d�ov

d�

�2
+

�
sin�+

GM

c2�o
�ov

�2
= 1 + 2

GM

�oc
2
sin3 �;

cos�
d�ov

d�
+ �ov sin� = sin3 �: (17)

The quantity on the left hand side of this expression is a perfect di¤erential,
cos�d�ov=d�+ �ov sin� = cos

2 �d (�ov= cos�) =d�: This allows to simplify this
expression,

d (�ov= cos�)

d�
=
sin3 �

cos2 �
=
sin�

�
1� cos2 �

�
cos2 �

: (18)

This expression is easily integrated with the solution

�ov =
�
1 + cos2 �

�
+A cos�; (19)

where A is a constant of integration. If we insist on v = 0 at � = 0; so
that the photon starts out on the horizontal path y = �o; then A = �2 and
�ov = (1� cos�)

2
: The complete solution describing the path of the photon is

then given by

�ou = sin�+
GM

c2�o
(1� cos�)2 : (20)

Now one of the the solutions at u = 0 (r = +1) is given by � = 0; to �nd the
other solution we let � = � + �; where � is the deviation from a straight-line,
as shown in �gure 8.11,

Figure 8.11. Path of a photon as it passes close to the Sun.
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and must be of the same order as GM=c2�o. To �rst order in � we �nd

sin (� + �) + 4
GM

c2�o
= 0! sin� = 4

GM

c2�o
: (21)

For starlight passing by the Sun, the distance of closest approach is the Sun�s
radius, thus the maximum deviation of a photon as it grazes the Sun is

� = 4� 1:477=
�
6:96� 105

�
= 8:49� 10�6rad = 1:75 arcsec : (22)

This is in excellent agreement with the astronomical observations of Sir Arthur
Eddington�s expedition in which he photographed the relative positions of stars
during the solar eclipse of May 29, 1919. The apparent shifting of these po-
sitions con�rmed Einstein�s predictions and were published in newspapers and
magazines outside of the scienti�c arena. It was shortly afterwards that Einstein
became a public �gure.

Perihelion Advance Although the total energy is de�ned somewhat dif-
ferently and is measured with respect to the rest mass energy, in GR the equiv-
alent expression for the conservation of energy is very similar to the Kepler
orbit equation. Analogous to the orbit equation for the photon it includes an
additional u3 term, �

du

d�

�2
+ u2 � 2u

ro
u� 2GM

c2
u3 =

2"

`2
: (23)

When we were considering the orbit of a photon GMu=c2 was approximately
2 � 10�6 when the largest value of u corresponded to 1=R where R was the
radius of the Sun. Here the orbit that we wish to describe is that of Mercury for
which u � 1=RMer where RMer is the orbital radius of Mercury and GMu=c2

is approximately 3 � 10�8: Hence the e¤ects should be even smaller, but the
advance of the perihelion is cumulative and eventually it is observable. This
orbit equation does not have an analytical solution, however we can make the
assumption that the orbit is nearly circular and de�ne

y = u� 1=ro: (24)

This leads to a cubic equation in y in which we can neglect terms of order y3:
Then assuming a solution of the form

y = a+ b cos k�; (25)

we can solve for k and the resulting rate of precession. For the cases where k
is not unity the orbit is not closed and the ellipse precesses about the Sun. For
the case of Mercury we �nd that the perihelion advances at the rate

�� = 5� 10�7radians/orbit (26)
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The period for Mercury�s orbit is T = :24yr so

�� = 4300=century. (27)

This may seem to be a very small rate, but due to its accumulative nature
astronomers were well aware of it. Prior to Einstein�s theory of general relativity,
many explanations had been o¤ered including intersolar dust, an unobserved
planet inside the orbit of Mercury, etc. All of these hypothesis proved to be
unsatisfactory. This was the �rst observational test of Einstein�s model, and
after he predicted the correct rate to within the errors at the time he was said
to be so excited that, "He could not work for several days."
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