
21 Lecture 11-16

21.1 Chapter 8 Two Body Central Force Problem (con)

Conservation of Energy To learn more details about the orbit we must
examine the �rst integral of the radial equation of motion. Since we have re-
duced the problem to one generalized coordinate, that being the relative radial
coordinate, the Lagrangian for this system is simply

L = 1

2
�
�
r
2
� Ueff : (1)

Since the Lagrangian is independent of t; L 6= L (t) ; the Hamiltonian,

H = pr
�
r � L (2)

is a constant of the motion. Since the conjugate momentum to the radial coor-
dinate is

pr =
@L
@
�
r
= �

�
r; (3)

the Hamiltonian is
H =

1

2
�
�
r
2
+ Ueff :

Additionally the transformation from Cartesian coordinates to our generalized
coordinate, the relative radial coordinate, was time independent as well. This
means that the Hamiltonian is equal to the energy E. Hence we are lead to

�

2

�
r
2
+ Ueff (r) =

�

2

�
r
2
+

L2

2�r2
+ U (r) = E; (4)

where the energy E is a constant of the motion.
The total energy, E, can be thought of as the one-dimensional kinetic en-

ergy of the radial motion, plus the e¤ective one-dimensional potential energy
Ueff (r) : This e¤ective potential energy is the actual potential energy U and

the kinetic energy �r2
�
�
2

=2 of the angular motion. This means that all of our
experience with one dimensional problems, both in terms of energy and forces,
can be immediately applied to the two-body central force problem.

Energy Considerations for a Comet or Planet We will examine again
an energy diagram for a comet (or planet) with a given energy E. This includes
�nding the equation that determines the maximum and minimum distances of
the comet from the Sun, if E > 0 and again if E < 0.

In the energy equation (4) the radial kinetic energy �
�
r
2
=2 is positive de�nite,

therefore the comet�s motion is con�ned to those regions where E > Ueff : To
see what this implies consider �gure 8.4
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Figure 8.4. Ueff (r) for a comet. For a given E the comet can only travel
where E > Ueff (r) : For E > 0 there is a turning point at rmin: For E < 0

there are two turning points. One at rmin and another at rmax:

where we have plotted Ueff (r) along with two di¤erent energy levels (shown
with dashed lines). First we will consider the case when the comet�s energy
is greater than zero. A comet with this energy can move anywhere that its
energy exceeds Ueff : From �gure 8.4 this means it is allowed to be anywhere
for r > rmin: From our earlier discussions of one-dimensional energy diagrams
we know that this is a turning point determined by the condition

Ueff (rmin) = E: (5)

If the comet is initially moving radially inward toward the Sun, then it will
continue to do so until it reaches rmin, where

�
r = 0: It then begins to move

radially outward. Since there are no other turning points, points where
�
r = 0;

it will continue moving radially outward toward in�nity. We say that this orbit
is unbounded.
If instead, E < 0; then the energy level at this height has two turning points

labeled rmin and rmax: A comet (or planet) with E < 0 is trapped between these
two values of r. If it is moving away from the Sun it continues to do so until
it reaches the turning point rmax at which point

�
r = 0: It then begins to move

toward the Sun until it reaches the turning point at rmin only to repeat this
process. For obvious reasons, this type of orbit is called a bounded orbit.
Finally if E is equal to the minimum value of Ueff , which depends on the

value of its angular momentum, the radial coordinate is �xed. This means that
the comet moves in a circular orbit of radius ro: This radius is found from �nding
the minimum in Ueff : Taking the derivative of Ueff and setting it to zero we
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�nd

dUeff
dr

=
d

dr

�
L2

2�r2
� G�M

r

�
r=ro

= � L
2

�r3o
+
G�M

r2o
=

ro =
L2

�2GM
=

`2

GM
; (6)

where we have de�ned the angular momentum per unit reduced mass as, ` =
L=�: The radius of this circular orbit only depends on the angular momentum
(per unit mass). As we shall soon see increasing the energy of the orbit while
holding the angular momentum �xed changes a bounded orbit from circular to
elliptical.
In thinking about the radial motion of the two-body problem, you must not

forget about the angular motion. Although the motion of the comet only de-
pends on its radial coordinate, the path of the comet is not one dimensional. We
need to remember that the comet possesses angular momentum, which means
it has an angular component to its kinetic energy. Since its angular momentum
is conserved its angular component is always changing at a rate given by

Figure 8.5 Typical unbounded orbit for a positive energy comet. As r
decreases from in�nity to rmin and the goes back out to in�nity, � is

continually increasing.

�
� = L=�r2 = `=r2 which never changes sign. For example as a comet with
positive energy approaches the Sun, the angle � changes, at a rate that increases
as r decreases. As the comet moves away from the Sun, � continues to change
in the same direction but at a rate that decreases as r increases. The actual
orbit of a positive energy comet looks something like that shown in �gure 8.5.
For the case of the gravitational inverse square law we shall see that the orbit
is actually a hyperbola.
For the bounded orbits (E < 0), we have seen that r oscillates between the

two values rmin and rmax; all the while � is continuing to increase (or decrease).
For the case of the gravitational potential we shall see that the period of radial
oscillations is exactly equal to the time for � to make one complete revolu-
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tion. Thus the orbits are closed and the motion repeats itself exactly once per
revolution. We shall see that the orbit is an ellipse.
We have been considering the case of the inverse square law. But many of the

two body problems have similar qualitative features. In chapter 4 we discussed
the potential energy diagram for a diatomic molecule which had many of the
same features as the e¤ective gravitational potential. Thus all of our qualitative
conclusions apply to the diatomic molecule and many other two-body problems.
However many of the quantitative features do not apply. For instance for most
other force laws the period of radial motion is di¤erent from the time to make
one complete revolution and in most cases the orbit is not even closed. That is
it never returns to its original position. A comparison of a closed elliptical orbit
and one that is not closed is shown in �gure 8.6. In �gure 8.6 (b) we show an
orbit for which r goes from rmin to rmax and back to rmin in the time that the

Figure 8.6. (a) The bounded orbit for a gravitational potential. (b) Typical
orbit for a non inverse square law central force in which the orbit is not closed.

angle � advances by about 330�. This orbit does not close on itself after one
revolution.

21.1.1 The Orbit Equation

The radial equation of motion for r determines r as a function of t,

�
��
r =

L2

�r3
� dU
dr
; (7)

but often we wish to know r as a function of �: There are several ways to do
this and one of the more straightforward ways starts with the expression for the
conservation of energy,

E =
�

2

�
r
2
+ U (r) +

L2

2�r2
: (8)

There are two tricks that we have to use. The �rst is the substitution

r =
1

u
or u =

1

r
:
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The second is to recognize that the time derivative d=dt can be written in terms
of d=d� by making use of the chain rule,

d

dt
=
d�

dt

d

d�
=

L

�r2
d

d�
: (9)

Combining both of these �tricks�results in

dr

dt
=
dr

du

du

dt
= � 1

u2
d�

dt

du

d�
= � 1

u2
Lu2

�

du

d�
= �L

�

du

d�
: (10)

Substituting this result into expression for the conservation of energy, equation
(8), results in

L2

2�

"�
du

d�

�2
+ u2

#
= E � U (u) : (11)

We now an equation for du=dd� for any given potential U: We will call this
the orbit equation. To solve this equation, it is a straightforward procedure to
separate and integrate the resulting expression. Whether or not it is possible
perform the integration depends on U; but in principle at least we have the
solution and for a worst case the resulting integral can be performed numerically.
As our �rst example we will consider equation (11) for a free particle. This

will also be the path of a photon (at least in classical mechanics) and we want
to con�rm that the resulting orbit is a straight line. Before we proceed we will
de�ne the energy per unit reduced mass in a way analogous to our de�nition of
angular momentum per unit reduced mass as

" =
E

�
, (12)

for as we have seen the equation of motion is independent of the reduced mass �:
This means that the orbit equation must also be independent of �: Substituting
this into the expression for du=d� when U = 0 yields�

du

d�

�2
+ u2 =

2"

`2
; (13)

where both " and ` are conserved quantities. The quantity on the right hand
side of this equation is a constant and corresponds to the value of u when
du=d� = 0: For a free particle this is the distance of closest approach and our
expression, equation (13), then becomes�

du

d�

�2
+ u2 = u2o = 1=�

2
o: (14)

This equation is nonlinear, but a very simple nonlinear equation that is easily
separated and integrated. However the solution is obvious from inspection and
is given by u = uo cos (�� �) : Recognizing that u = 1=r we are lead to the
result
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�o = r cos (�� �) : (15)

Expanding the cosine function we see that it becomes

�o = x cos � + y sin �; (16)

where as usual x = r cos� and y = r sin�: This is the equation of the straight
line with a slope of � cot � = tan (� + �=2) and is shown in �gure 8.7.

Figure 8.7 Path of a free particle in radial coordinates.

When � = � the particle is at the point of closest approach, and as � !
� � �=2 we �nd that r ! 1. A particularly simple solution occurs for the
initial condition that requires � = �=2; for in that case the solution is y = �o; a
straight line that is parallel to the x axis. We will return to this solution when
we solve the orbit equation of a photon in a gravitationally curved space. We
will �nd that General Relativity induces an additional term which results in a
photon being bent as it passes a large gravitational source.

21.1.2 Kepler Orbits

We will now return to the Kepler problem, that of �nding the possible orbits of
a comet or any other particle subject to an attractive inverse square law. The
two important examples of this problem are the motion of comets or planets
around the Sun or Earth satellites around the Earth. For this case we saw that
we can express the gravitational potential as

U (r) = �G�M
r

: (17)

Returning to the equation for du=d�; i.e. the orbit problem equation (11), we
�nd for the gravitational potential that

L2

2�

"�
du

d�

�2
+ u2

#
= E +G�Mu: (18)
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Again, as with the free particle problem, it is useful to de�ne energy and angular
momentum per unit reduced mass as " = E=� and ` = L=�: Then dividing the
above expression by � results in�

du

d�

�2
+ u2 � 2GM

`2
u =

�
du

d�

�2
+ u2 � 2u

ro
=
2"

`2
; (19)

where ro is the radius of a circular orbit given an angular momentum `: By
completing the square this equation can be put in the form�

du

d�

�2
+

�
u� 1

ro

�2
=
2"

`2
+
1

r2o
: (20)

De�ning y = u� 1=ro this expression is reduced to the same form as that for a
free particle �

dy

d�

�2
+ y2 =

2"

`2
+
1

r2o
: (21)

From the free particle result we can now simply state the solution as

1

r
=

s
2"

`2
+
1

r2o
cos (�� �) + 1

ro
; (22)

where the phase � is a constant which we can take to be zero by a suitable choice
for the direction � = 0: De�ning the parameter � as

� =

r
1 +

2"r2o
`2

=

r
1 +

2"`2

G2M2
; (23)

allows us to write the radial solution more compactly as

1

r (�)
=
1

ro
(1 + � cos�) ;

or
r (�) =

ro
1 + � cos�

(24)

This is our solution for r (�) in terms of the parameter �: This parameter depends
on the total energy (per unit �) " which may be positive (for an unbound
particle) or negative (for a bound particle). Thus for bound orbits � < 1 while
for unbound orbits � > 1: We shall now explore the properties of this solution,
�rst for bounded orbits and then for unbounded orbits.

Bounded Orbits A glance at the radial solution shows that the behavior
is very di¤erent depending on whether � < 1 or � > 1: If � < 1 we see that
the denominator never vanishes and the radius is bounded for all �: This is
consistent with the energy being negative for a bound particle in the expression
for �; equation (23). It is this case that we wish to discuss �rst.
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With � < 1 the radial coordinate oscillates between

rmin =
ro
1 + �

and rmax =
ro
1� � ; (25)

with r = rmin de�ned to be the perihelion which occurs at � = 0 and r = rmax
de�ned to be the aphelion which occurs at � = �: Since r (�) is periodic in �
with a period of 2�; the orbit closes on itself after one revolution.
It is a straightforward algebraic exercise to show that our solution for r (�)

can be written in Cartesian coordinates as

(x+ d)
2

a2
+
y2

b2
= 1; (26)

where
a =

ro
1� �2 ; b =

rop
1� �2

; and d = a�: (27)

Equation (26) is the standard equation of an ellipse with a semimajor and
semiminor axes a and b. This ellipse is centered at x = �d which re�ects that
our origin the CM (which is essentially the center of the Sun) is not at the center
of the ellipse as shown in �gure 8.8.

Figure 8.8. The bounded orbits described by equation (23) are ellipses. The
points where a comet is closest and farthest from the Sun are called the

perihelion and aphelion.

We can now identify the parameter � in terms of the major and minor axes,

b

a
=
p
1� �2: (28)

This is one de�nition for the eccentricity of an ellipse. We also could have found
� from the maximum values of u and or r as

� =
umax � umin
umax + umin

=
rmax � rmin
rmax + rmin

; (29)

which is also one de�nition for the eccentricity of an ellipse.
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Having identi�ed � as the eccentricity, we identify the position of the Sun
in relation to the ellipse. Its distance is d = a� which is the distance from the
center to either focus of the ellipse. Thus center of the Sun (which is very close
to the CM) is one of the ellipse�s two foci. This means that we have proved
Kepler�s �rst law, namely that the planets (or bound comets) follow elliptical
orbits with the Sun at one focus.
Since all of the planets have close to circular orbits (Pluto is no longer

considered to be a planet), it is of interest to examine the highly eccentric orbit
of Halley�s comet. It has an eccentricity of � = :967; and at closest approach or
perihelion the comet is :59AU from the Sun. (The AU or astronomical unit is
the mean distance of the Earth from the Sun and is approximately 150�106km:)
This means that the distance to the aphelion, which can be found from equation
(29), is

rmax =
1 + �

1� �rmin ' 60rmin = 35AU,

which is outside the orbit of Neptune.
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