
7 Lecture 10-9

7.1 Chapter 4 Energy (con)

7.1.1 Force as the Gradient of Potential Energy

Consider a particle acted on by a conservative force
�!
F (�!r ) with a corresponding

potential energy U (�!r ) : The work done by �!F (�!r ) in a small displacement from
�!r ! �!r + d�!r is by de�nition

W (�!r ! �!r + d�!r ) = �!F (�!r ) � d�!r = Fxdx+ Fydy + Fzdz: (1)

On the other hand the work W (�!r ! �!r + d�!r ) results in a change in the po-
tential energy given by

W (�!r ! �!r + d�!r ) = � [U (�!r + d�!r )� U (�!r )]
W (�!r ! �!r + d�!r ) = � [U (x+ dx; y + dy; z + dz)� U (x; y; z)] : (2)

Expanding U (x+ dx; y + dy; z + dz) to �rst order in a Taylor�s series results in

W (�!r ! �!r + d�!r ) = �@U
@x
dx� @U

@y
dy � @U

@z
dz: (3)

Equating equations (1) and (2) and recognizing that the in�nitesimal displace-
ments are independent of each other we �nd

Fx = �
@U

@x
; Fy = �

@U

@y
; Fz = �

@U

@z
: (4)

A slightly more compact way to write this is

�!
F (�!r ) = �bx@U

@x
� by @U

@y
� bz @U

@z
: (5)

From vector calculus the de�nition of the gradient rU or �grad U�is

rU = bx@U
@x

+ by @U
@y

+ bz @U
@z
: (6)

With this notation we have the simple relation

�!
F = �rU (7)

This important relation gives us the force
�!
F in terms of derivatives of U , just

as U was an integral of
�!
F : Thus we have shown that any conservative force is

derivable from a potential energy. It should be noted (as an exercise for the
student) that the curl of the gradient of a scaler always vanishes, or

r�rU = 0: (8)
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This is consistent with our proof that the curl of a conservative force must
vanish.
At this point a simple example is in order. Consider a uniform electric �eld,

Eo; pointing in the x direction. If we place a charge q into the �eld then this
charge experiences a force

�!
F = q

�!
E = qEobx: The work done by �!F between two

points 1 and 2 along any path is

W12 =

Z 2

1

�!
F � d�!r = qEo

Z 2

1

bx � d�!r = qEo Z 2

1

dx = qEo (x2 � x1) : (9)

This work depends only on the endpoints and thus independent of the path.
This means that this force must be conservative. To �nd the potential energy,
U (x) ; requires that we de�ne a reference point at which U (xo) = 0: A natural
choice is the origin and we �nd

U (�!r ) = U (x) = �qEox: (10)

There may be other reasons that it is bene�cial to be able to �nd the potential
energy function of a conservative force, other than �nding the mechanical energy
of a system,.as it is often easier to work with a scaler �eld rather than a vector
�eld. To see an example of this we will again consider the gravitational force.
We wish to �nd the potential energy, Ugrav (

�!r ) ; such that
�!
F grav (

�!r ) = �GmM
r2

br = �rUgrav (�!r ) : (11)

We shall soon derive the form for the gradient operator in spherical coordinates.
For now we simply state that the radial component is br@U=@r: Thus the potential
energy for the gravitational force is

Ugrav (
�!r ) = �GmM

r
; (12)

where we have de�ned the reference point, �!r o; to be in�nitely removed the
source of the �eld so that Ugrav (

�!ro) = 0:
We will now examine the gravitational �eld,

�!
F grav , due to a spherical shell

of uniform mass density. Consider Figure 4-4, where a point mass m is located
at P which is a distance R from the center of a uniform shell of mass M and
radius a. The gravitational potential energy at point P is found by summing

Figure 4-4 Thin spherical shell of uniform mass density with radius a.
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the contribution to the potential of all the mass elements in the shell. This
integral is expressed as

Ugrav (
�!r ) = �Gm

Z
dM

r
= �Gm�

Z
ds

r
; (13)

where � is the uniform mass density of the shell given by � = M=
�
4�a2

�
and

ds is a di¤erential surface element located a distance r from the point P . The
angle � is measured from the OP line with y = a sin � and x = a cos �: Due to
rotational symmetry about OP , any mass element at the same angle � is the
same distance r from P . Recognizing that r2 = (R� x)2 + y2 enables us to
write the integral as a function of R, a, and � as

Ugrav (
�!r ) = �GmM

4�a2

Z �

0

2�a2 sin �d�q
(R� a cos �)2 � a2 sin2 �

= �GmM
2

Z �

0

sin �d�p
R2 � 2aR cos � + a2

: (14)

With the substitution x = cos � this integral becomes

Ugrav (
�!r ) = �GmM

2

Z 1

�1

dxp
R2 + a2 � 2aRx

=
GmM

2aR

hp
R2 + a2 � 2aRx

i1
�1
;

Ugrav (
�!r ) =

GmM

2aR
(jR� aj � (R+ a)) : (15)

If R > a so that jR� aj = R� a; the gravitational potential energy due to the
spherical shell is

Ugrav (
�!r ) = �GmM

R
: (16)

While if R < a so that jR� aj = a�R; the potential due to the sphere is

Ugrav (
�!r ) = �GmM

a
: (17)

These results are very enlightening. They tell us that outside the shell the grav-
itational potential a distance R from the center of the sphere is the same as
though all the mass were concentrated at the center of the shell. But notice the
potential inside the shell. Here the potential energy is a constant and indepen-
dent of location inside the shell. Taking the gradient we would �nd that there
is no gravitational force inside the shell, and a force outside the shell that is the
same as if all the mass were at the center. We could have obtained this same
result integrating the vector force �eld due to the mass elements in the shell.
However, it would have been necessary to recognize that due to symmetry only
the radial components would contribute and proceed accordingly. Calculating
the potential energy none of this was necessary.
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7.1.2 Time Dependent Potential Energy

There are times when the applied force is time dependent,
�!
F (�!r ; t) ; yet it

satis�es the condition r��!F = 0: In this case we can still de�ne a potential en-
ergy U (�!r ; t) with the property �!F = �rU: Now however, the total mechanical
energy, E = T + U , is not conserved.
Consider the example of a Van de Graa¤ generator with a charge Q (t) that

is slowly leaking away. Because the charge is leaking away, the electric �eld and
any force it will exert on a test charge q is time dependent. Nevertheless, the
spatial dependence of the force still satis�es r � �!F = 0: The time dependent
potential energy satis�es the usual relation

U (�!r ; t) = �
Z �!r

�!r 0

�!
F (�!r ; t) � d�!r (18)

The change in the kinetic energy along the particle�s path is still given by

dT =
dT

dt
dt = m�!v � d

�!v
dt
dt = m

d�!v
dt

� d
�!r
dt
dt =

�!
F � d�!r : (19)

Meanwhile, U (�!r ; t) = U (x; y; z; t) so that an incremental change in the poten-
tial function is

dU =
@U

@x
dx+

@U

@y
dy +

@U

@z
dz +

@U

@t
dt = rU � d�!r + @U

@t
dt: (20)

This means that

dU = ��!F � d�!r + @U
@t
dt; (21)

and

d (T + U) =
@U

@t
dt: (22)

Clearly it is only when U is independent of t that the mechanical energy E =
T + U is conserved. Again the analogy of this result with the �rst law of
thermodynamics, �U = Q �W; is relevant. Equivalent to a net heat Q being
transferred to the system, we now have a time dependent potential. If we were
to include the energy transfer to the source of the �eld responsible for U , the
total energy would be conserved. In the example of the Van de Graa¤ generator
with a charge Q (t) that is slowly leaking away, we �nd the loss of mechanical
energy of a point charge is compensated by the thermal energy that comes from
the leakage current.
As a simple example consider the case where the gravitational �eld at the

surface of the Earth is varying in time: The potential energy is still U = mgz

where z is the height but g = g (t) : The force due to gravity is still
�!
F = �rU =

�mgbz: However now the change in the total energy is
dE

dt
=

d

dt

�
1

2
m�!v � �!v +mgz

�
= m

��!v � �!v +mg �z +mz �g;

dE

dt
= �mgbz � �!v +mg �z +mz �g = mz �g 6= 0:
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7.1.3 Energy for Linear One-Dimensional Systems

We will consider an object constrained to move along a perfectly straight track,
which we take to be the x axis. The only component of a force that can do work
on an object is the x component and we will ignore the other two components.
Additionally we will assume that the force is independent of the velocity and
time. Thus the work done between x1 and x2 by F is simply the one-dimensional
integral

W (x1 ! x2) =

Z x2

x1

Fdx: (23)

Clearly this integral is path independent as it only depends on the antiderivative
of F evaluated at x1 and x2: Physically we might experience the situation where
the particle travels from x1 ! A; then reverse itself and travel from A ! B;
where upon it reverses itself one more time and travel from B ! x2. We could
express this as the sum of integrals

W (x1 ! x2) =

Z A

x1

Fdx+

Z B

A

Fdx+

Z x2

B

Fdx: (24)

From our knowledge of elementary one dimensional calculus, the sum of these
integrals is independent of both A and B. It only depends on the endpoints. In
any one-dimensional system the work integral is always path independent and
the force is conservative as long as it is independent of velocity and time.

Graphs of the Potential Energy In one dimension the force is expressed
as F = �dU=dx: If we plot the potential energy versus x as in Figure 4-5, it
is clear, qualitatively, how an object will behave. By our de�nition the force is
proportional to the negative of the slope of the potential. Thus the force always
accelerates an object in the �downhill�direction. This is similar to the motion
of a roller coaster which also always accelerates downhill. This analogy is not
an accident. For a roller coaster the gravitational potential is proportional to
the height above the ground. As long as U (x) is plotted along a linear axis
then its shape will be identical to that of its height, h, versus x, h (x) : Thus for
any one-dimensional system we can always think about the plot of U (x) as a
picture of a roller coaster. Then common sense will tell us what kind of motion
is possible.
At points such as x3 and x4, where dU=dx = 0, the net force is zero. Thus

the object is in equilibrium there. However, there is a signi�cant di¤erence
between x3 and x4. At x3 where d2U=dx2 > 0, and U (x) is a minimum, a small
displacement from equilibrium results in force that returns the object back to
x3. This is a position of stable equilibrium. At x4 where d2U=dx2 < 0, and
U (x) is a maximum, a small displacement from equilibrium results in force that
pushes the object away from x4. This is a position of unstable equilibrium.
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Figure 4-5. U (x) for any 1�D system can be thought of as a roller coaster
track. The force Fx = �dU=dx tends to push the object down the "downhill"
as at x1 and x2: The points at x3 and x4, where U(x) is a minimum or
maximum, dU=dx = 0; and the force is zero. x3 is a position of stable

equilibrium while x4 is a position of unstable equilibrium.

Now consider Figure 4-6. Since the kinetic energy is positive de�nite, if an
object is moving then its energy must be greater than the potential energy. This
means an object with energy E (as shown in Figure 4-6) in the region a < x < b
will be con�ned to this region. To see this, assume that the object is traveling
to the left. When it reaches x = a its kinetic energy must vanish. Additionally
the force on the object is in the positive x direction, and the object will be
accelerated from v = 0 in the positive x direction. Thus, this is a turning point

Figure 4-6. If an object with energy E starts out near x = b, it is trapped in
the "potential well" between the two hills and oscillates between the turning
points at x = a and x = c where U (x) = E and the kinteic energy is zero.

for the object. Similarly for any object traveling to the right, its kinetic energy
vanishes when it reaches x = c: At this point the force on the object is in the
negative x direction. So x = c is also a turning point.
Returning to the example of the roller coaster, if our roller coaster starts at

x = a it will accelerate down the �hill�until it reaches x = b: At this point it will
decelerate up the �hill�until it reaches x = c. Ignoring any loss of mechanical
energy to friction, the roller coaster will then return back to x = a: Our roller
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coaster will oscillate inde�nitely between x = a and x = c: If however, the total
mechanical energy, E, is greater than then maximum of U for x > b, then the
roller coaster can start at x = a and coast over the second �hill�never to return.
As a further example consider the potential shown in Figure 4.7.

Figure 4.7. The potential energy for a typical diatomic molecule such as HCl
plotted as a function of r the distance between the two atoms. If E > 0 the
two atoms cannot approach closer than the turning point r=a but they can
move apart to in�nity and hence the atoms are unbound. If E < 0 the atoms
are trapped between the turning points b and d and form a bound molecule.

The equilibrium separation is r = c.

Figure 4.7 shows the potential energy of a typical diatomic molecule, such as
HCl, as a function of the separation distance between the two atoms. For this
example this potential energy function governs the radial motion of the hydrogen
atom as it vibrates in and out from the much heavier chlorine atom. The E = 0
level has been chosen so that the kinetic energy of the hydrogen atom vanishes
as the separation distance r !1: As r ! 0 the potential energy becomes very
large due to the electrostatic repulsion of the two nuclei. For E > 0 a hydrogen
atom can approach from in�nity until it reaches a minimum radial distance
from the chlorine nucleus and then return to r =1, albeit for the general case,
in a di¤erent direction. So this is a one dimensional system in the sense that
it only depends on one parameter, r, the distance of separation, however it is
not a linear one-dimensional system. But non-the-less a very useful example.
For E < 0, the hydrogen is trapped and there are two turning points, r = b
and r = d. The equilibrium separation is shown as r = c: To form a molecule,
a hydrogen and chlorine atom must come together to a separation somewhere
near r = c, and then through a process such as the emission of light remove
enough energy to form a bound molecule.

Complete Solution of Motion Another feature of one-dimensional conser-
vative systems is we can, at least in principle, obtain a complete solution of
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the motion. That is we can �nd the position as a function of time, x (t) : Since
E = T + U is conserved we can solve for v;

v=
dx

dt
= �

r
2

m

p
E � U (x): (25)

Simply multiplying this �rst order di¤erential equation by dt and separating
variables results in (assuming that

�
x is positive)

t� ti =
r
m

2

Z x

xi

dxp
E � U (x)

: (26)

Here the lower limit ti is the initial time at which the object is located at xi:
Both t and x are arbitrary times and locations respectively. Performing this
integral enables us to �nd t (x) (at the very least we can perform this integral
numerically for various �nal locations to numerically determine t (x)). Finally
we invert t (x) to �nd x (t) :
To illustrate this process we will consider the simple problem of an object

falling from rest starting at t = 0 and x = 0: If we measure x as positive
measuring downward then the potential energy is

U (x) = �mgx: (27)

The total mechanical energy for this object at t = 0 is E = 0: Since this energy
is conserved, we have from equation (26), the elapsed time, t, to fall a distance
x is

t =

r
m

2

Z x

0

dx
p
mgx

=
1p
2g

Z x

0

dxp
x
=

r
2x

g
: (28)

Inverting this expression we �nd the familiar result

x =
1

2
gt2: (29)

As a further illustration consider a particle of mass m on the end of a spring
with force constant k; i.e. F = �kx. The potential energy of the spring is
U (x) = kx2=2: If at time t = 0 the mass, which was in static equilibrium at
the origin, is given an impulse so that it moves out to an amplitude A. The
expression for the conservation of mechanical energy is

E =
1

2
m
�
x
2
+
1

2
kx2: (30)

When the particle reaches x = A, it comes to a stop after which it proceeds
back toward its origin. With this constraint, the total mechanical energy of the
system is E = kA2=2: From equation (9) we can write

t =

r
m

k

Z x

0

dxp
A2 � x2

=
1

!

Z x

0

dxp
A2 � x2

; (31)
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where we have de�ned !2 = k=m: To perform this integration we make the
substitution x = A sin � and we �nd

!t =

Z sin�1 x=A

0

A cos �d�

A cos �
= sin�1 x=A: (32)

Simply taking the sine of both sides yields the result

x = A sin!t: (33)

For some problems it is necessary to do the integration numerically. But the
point here is that the expression for the conservation of energy in one dimension
is the �rst integration of the equation of motion and hence only one remaining
integral remains to be done to determine the complete solution to the problem.
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