
6 Lecture 10-7

6.0.1 Angular Momentum about the CM

The conservation of angular momentum and the more general result,
��!
L =

�!
� ext;

were derived on the assumption that all quantities were measured in an inertial
frame. This required that both

�!
L and

�!
� ext were measured about an origin O

�xed in some inertial frame. As it turns out the same results hold if
�!
L and�!

� ext are measured about the center of mass even if the CM is being accelerated
and not �xed in an inertial frame. The proof of this is left as an exercise for the
student (problem 3.37) and is stated as

d

dt

�!
L (about CM) =

�!
� ext (about CM) : (1)

An example that demonstrates the ease that this result allows us to solve
various problems is that of a dumbbell lying on a frictionless plane. The dumb-
bell consists of two equal masses on the ends of a rigid massless rod of length
2b that lies along the x axis centered at the origin as shown in Figure 4. At
time t = 0, the left mass is given a sharp tap with a force F lasting for a short
time �t:We wish to �nd the initial motion immediately after the tap as well as
the subsequent force free motion. The change in momentum of the dumbbell is
determined by the impulse F�t: Since the dumbbell is initially at rest the �nal
momentum is

P = F�t =MvCM = 2mvCM ; (2)

where M is the mass of the system so that M = 2m.

Figure 3-4. The left mass of a dumbbell is given an implusive blow in the y
direction.

Similarly the change in the angular momentum about its CM is given by�!
� ext�t: Thus

L = Fb�t = I! = 2mb2!: (3)

This amounts to a clockwise rotation with frequency ! = F�t=2mb: Thus the
mass on the left side of the dumbbell is moving with a velocity !b relative to
the center of mass while the mass on the right side of the dumbbell is moving
with a velocity of �!b relative to the center of mass. This is expressed as

vleft = F�t=2m+ !b = F�t=2m+ F�t=2m = 2vCM (4)

vright = F�t=2m� !b = F�t=2m� F�t=2m = 0: (5)
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We see that initially the left mass carries all of the momentum of the system
and is moving at twice the velocity of the center of mass, while the right mass
is stationary. Physically this is what we should have expected.
The subsequent motion is very straightforward. Once the impulse has ceased

the CM continues to move straight up the y axis with a velocity vCM while the
dumbbell continues to rotate with angular velocity ! about the center of mass.

6.1 Chapter 4 Energy

Here we will examine the conservation of energy. This will require the use of
some tools from vector calculus, namely the gradient and the curl. We shall
describe these concepts as needed.

6.1.1 Kinetic Energy and Work

The kinetic energy, T , of a particle with mass m is de�ned to be

T =
1

2
mv2 =

1

2
m�!v � �!v : (6)

We are interested in how the kinetic changes are the particle moves through
space. To examine this we will start by taking the time derivative of the kinetic
energy,

dT

dt
=
1

2
m

� ��!v � �!v +�!v �
��!v
�
= m

��!v � �!v :

From Newton�s second law this can be rewritten as

dT

dt
=
�!
F � �!v : (7)

If we simply multiply through by dt and recognize that �!v dt = d�!r then we
�nd that the change in the kinetic energy as it moves through space from �!r to
�!r + d�!r is

dT =
�!
F � d�!r : (8)

The expression on the right,
�!
F � d�!r ; is de�ned to be the work done by the

force
�!
F in the displacement d�!r . Equation (8) is a statement of the Work-KE

theorem. Namely that the change in the particle�s kinetic energy between two
neighboring points on its path is equal to the work done by the net force between
the two points. It is of interest to note that this quantity may be negative as
well as positive. If the force is in the opposite direction of the path then the
kinetic energy is reduced.
If the two points are not di¤erentially separated then equation (8) becomes

�T = T2 � T1 =
R 2
1

�!
F � d�!r =W (�!r 1 ! �!r 2). (9)

This is the Work-KE theorem for arbitrary displacement. The integral in this
theorem is a line integral and is a generalization over the one dimensional integral
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R
f (x) dx: As the name implies a line integral (for more than one dimension)

in general is path dependent, i.e. it depends on the path that the particle takes
getting from point 1 to point 2.
As an example consider the a line integral of the force

�!
F = ybx + 2xby from

points O = (0; 0) to P = (1; 1): along three di¤erent paths as shown in Figure
4-1 below.

Figure 4-1. Multiple paths a, b, and c from the origin to the point P : (1; 1).

The integral along path a is given by

Wa =

Z
a

�!
F � d�!r =

Z 1

0

ydx+

Z 1

0

2xdy =

Z 1

0

2dy = 2; (10)

as y = 0 along the x axis and x = 1 along path a as y ranges from 0! 1. The
integral along path b is

Wb =

Z
b

�!
F � d�!r =

Z �!
F � (bxdx+ bydy) = Z 1

0

xdx+

Z 1

0

2xdx

Wb =
3

2
; (11)

where we have noted that y = x along path b. The path along c is a quarter
circle with an origin at Q = (1; 0) and a unit radius. As a function of � the
x coordinate is given by x = 1 + cos � and the y coordinate is y = sin �: This
allows us to express the force

�!
F as

�!
F = ybx+ 2xby = sin �bx+ 2 (1 + cos �) by: (12)

Since �!r = xbx+ yby, the incremental line element d�!r is given by
d�!r = �bx sin �d� + by cos �d�: (13)
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We can now write the line integral along path c as

Wc =

Z
c

Fxdx+ Fydy =

Z �=2

�

�
� sin2 � + 2 (1 + cos �) cos �

�
d�

Wc =
�

4
+ 2

�
1� �

4

�
= 2� �

4
= 1:21: (14)

From these results it should be clear that in general, for greater than one di-
mension, the work getting from one point to another is path dependent.
It is important to remember that the force used in the Work-KE theorem is

the net force on the particle. For example, the net force on a projectile is the
sum of two forces, the gravitational weight plus the drag due to air resistance.

6.1.2 Potential Energy and Conservative Forces

The next step is to introduce the concept of potential energy, PE, corresponding
to the forces on an object. Not every force lends itself to the de�nition of
a corresponding potential energy. The forces that do have a corresponding
potential energy are called conservative forces.
The �rst condition for a force,

�!
F , to be conservative is that

�!
F depends only

on the position �!r of the object on which it acts. It must not depend on the
velocity, time, or any variables other than �!r . Fortunately there are many forces
that have this property. The gravitational force of the Sun on a planet (or any
gravitational interaction) can be written as

�!
F grav (

�!r ) = �GmM
r2

br = �GmM
r3

�!r ; (15)

and obviously only depends on the variable �!r : Similarly the electrostatic force
has this property. Forces that do not satisfy this condition include the force of
air resistance (which depends on the velocity), friction in general which depends
on the direction of motion, the magnetic force which depends on the velocity,
and the force of a time varying electric �eld as it depends on time.
The second condition that a force must satisfy to be called conservative is

that the work done by the force on an object between points 1 and 2,

W12 =

Z 2

1

�!
F � d�!r ; (16)

is independent of the path connecting these two points. Now consider two dif-
ferent paths C1 and C2 between the two points. Since for a conservative force
the work done on a object between these two points is independent of the path
we can state

W12 =

Z
C1[1;2]

�!
F � d�!r =

Z
C2[1;2]

�!
F � d�!r : (17)

Now for a conservative force the work done only depends on the endpoints, thus
the work done along C2 in the opposite direction is �W12 or

W12 = �
Z
C2[2;1]

�!
F � d�!r : (18)
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We can now combine these two integrals and writeZ
C1[1;2]

�!
F � d�!r +

Z
C2[2;1]

�!
F � d�!r = 0: (19)

However, these two integrals de�ne a closed curve, thus a conservative force
satis�es the condition I

C1+C2

�!
F � d�!r =

I �!
F � d�!r = 0: (20)

Since C1 and C1 were chosen arbitrarily, we can conclude that for a conservative

force
I �!
F � d�!r = 0 for any closed loop.

To expand on this concept, we will now prove (although not a rigorous proof
from a mathematical point of view) Stokes theorem, which is a well known
theorem in vector calculus. Stokes theorem states thatI �!

F � d�!r =
Z
Area

�
r��!F

�
� bndA; (21)

where bn is the unit normal to the area element dA and the subscript Area
denotes the area enclosed by the loop. Consider the closed loop in Figure 4-2.
This loop encompasses a rectangular area in the x� y plane extending in the x
direction from x1 to x2 and in the y direction from y1 to y2. The unit normal
to this area is bz.

Figure 4-2 Closed rectangular loop with x varying between x1 and x2 while y
is held constant, y1 or y2, and y ranging between y1 and y2 while x is held

constant, x1 or x2.
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With these constraints the integral of the curl of an arbitrary vector normal to
this area isZ

Area

�
r��!F

�
� bndA =

Z y2

y1

Z x2

x1

�
r��!F

�
z
dxdy;Z

Area

�
r��!F

�
� bndA =

Z y2

y1

Z x2

x1

�
@Fy
@x

� @Fx
@y

�
dxdy: (22)

The �rst integral for both of the terms on the right hand side of this equation
can be performed immediately and we �ndZ
Area

�
r��!F

�
�bndA = Z y2

y1

(Fy (x2; y)� Fy (x1; y)) dy+
Z x2

x1

(Fx (x; y1)� Fx (x; y2)) dx:

(23)
Simply regrouping terms and reordering the limits on the integrals when appro-
priate yieldsZ

Area

�
r��!F

�
� bndA =

Z x2

x1

Fx (x; y1) dx+

Z y2

y1

Fy (x2; y) dy

+

Z x1

x2

Fx (x; y2) dx+

Z y1

y2

Fy (x1; y) dy: (24)

This result is simply the line integral around the closed loop and for our rectan-
gular loop we have Z

Area

�
r��!F

�
z
dA =

I �!
F � d�!r : (25)

To generalize this result we take the limit that this area is incrementally small.
Then we consider additional adjacent loops that share one common border. All
of the paths are taken to be counter clockwise, thus the path integrals along
these common borders cancel identically. Since we can simulate any continuous
surface, including curved surfaces, with a sum over incrementally small areas, it
is clear that Stokes theorem is satis�ed. Since the path integral over an arbitrary
closed loop vanishes for a conservative force, we can conclude that

r��!F = 0; (26)

for conservative forces. This allows us to state that the necessary and su¢ cient
condition for the second criteria for a force to be conservative is that the curl
of a such a force must vanish. As an example, consider the expression for the
curl of a vector in spherical coordinates that is contained inside the back cover
of Taylor�s book,

r��!F = br 1

r sin �

�
@

@�
(sin �F�)�

@

@�
F�

�
+ b� � 1

r sin �

@

@�
Fr �

1

r

@

@r
(rF�)

�
+b�1

r

�
@

@r
(rF�)�

@

@�
Fr

�
: (27)
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Since the gravitational force only has a radial component and depends only the
radial coordinate, we see that the curl of the gravitational interaction,

�!
F grav ;

vanishes. Thus the gravitational force satis�es both conditions which means
that the gravitational force is conservative.
Now for a conservative force the work done depends only on the endpoints

and not on any particular path. This means we can de�ne a potential energy
U (�!r ) ; corresponding to a given conservative force, that only depends on po-
sition. We �rst choose a reference point �!r 0 at which U is de�ned to be zero,
basically this is now just a constant of integration. The de�nition for the po-
tential energy is now

U (�!r ) = �W (�!r 0 ! �!r ) = �
Z �!r

�!r o

�!
F (�!r ) � d�!r : (28)

With this de�nition U (�!r ) is the negative of the work done by �!F (�!r ) as the
particle moves from �!r o to the point of interest �!r :
To understand the reason for the minus sign let us consider the work done

by our conservative force
�!
F (�!r ) going �rst from �!r 0 ! �!r 1 and then from�!r 1 ! �!r 2: This work is given by

W (�!r 0 ! �!r 2) =W (�!r 0 ! �!r 1) +W (�!r 1 ! �!r 2) ; (29)

and hence

W (�!r 1 ! �!r 2) =W (�!r 0 ! �!r 2)�W (�!r 0 ! �!r 1) : (30)

From our de�nition of potential energy

W (�!r 1 ! �!r 2) = � [U (�!r 2)� U (�!r 1)] = ��U: (31)

However from the Work-KE theorem we know that �T = W (�!r 1 ! �!r 2) ; so
that

�T = ��U (32)

We now see that the minus sign that was used in the de�nition of the potential
allows us to write

�T +�U = 0: (33)

That is the mechanical energy

E = T + U (34)

is conserved as a particle moves from �!r 1 to �!r 2: Since the points �!r 1 and�!r 2 were chosen arbitrarily, we have the important conclusion: If the force on
a particle is conservative, then the particle�s mechanical energy is conserved,
hence the use of the adjective �conservative�when de�ning such a force.
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Nonconservative Forces We will assume that some of the forces acting on
our particle are nonconservative. If we divide the forces into those that are
conservative and those that are nonconservative, then by the Work-KE theorem
we can write

�T =W =Wcons +Wnc = ��U +Wnc : (35)

Again de�ning the mechanical energy as E = T + U; we �nd

�E = �(T + U) =Wnc (36)

The mechanical energy is no longer conserved, but we do have the next best
thing. The mechanical energy changes by exactly the amount that the noncon-
servative forces do work on the particle. This is analogous to a more general law
of the conservation of energy, the �rst law of thermodynamics, �U = Q �W ,
where �U is the change in the internal energy, Q is the net heat transferred to
the system, and W is the net work done by the system. Here �U plays the role
of the mechanical energy. There is no heat transfer, but the work performed by
the nonconservative force is represented by �W . So the mechanical energy may
not be conserved but the total energy certainly is!
In many cases the nonconservative force is that of friction, which usually

does negative work (i.e. The direction of the force is in the opposite direction
of the motion,

�!
F � d�!r < 0:). The object looses mechanical energy to the

friction usually in the form of heat. We can illustrate these concepts by again
considering the example of a block sliding down a plane shown in Figure 4-3.

Figure 4-3. Block on an incline plane of angle �: The length of the plane is d
with a height of h = d sin �:

The block starts from rest a distance d from the bottom as measured along
the slide and then proceeds to slide to the bottom of the inclined plane. The
gravitational force is conservative and its potential energy is given by U =
mgy; where y is the height as measured from the bottom of the incline. The
normal force does no work (it is normal to the motion of the block) and will
not contribute to the energy balance. Over the entire length of the slide the
frictional force does work

Wfric =

Z �!
f � d�!r = �fd = ��mgd cos �: (37)
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This means that the total energy changes via

�E = �T +�U =Wfric; (38)

or
1

2
mv2 �mgd sin � = ��mgd cos �: (39)

Thus the velocity at the bottom of the slide is

v =
p
2gd (sin � � � cos �): (40)

At � = �=2 we obtain the usual free fall solution. However what happens when
tan � < �?
I now pose the following conundrum. Clearly, the frictional force for a block

sliding down a plane is not conservative. However it is time independent and its
curl vanishes as it is constant. So how is it that the frictional force for a block
sliding down a plane is not conservative?
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