
15 Lecture 11-2

15.1 Chapter 6 Calculation of Variations (con)

15.1.1 More Than Two Variables

So far we have only considered problems with two variables, the independent
variable (usually x) and the dependent variable (usually y). For many appli-
cations in mechanics we will �nd several dependent variables and fortunately
still only one independent variable which is usually the time, t. For a simple
example of two dependent variables we go back to the original problem of �nd-
ing the shortest path between two points in a plane. We assumed that the path
could be written in the form y (x) : However we could also write the path in
parametric form (analogous to the solution for the Brachistochrone) as

x = x (�) and y = y (�) ; (1)

where � is any convenient variable in terms of which the curve can be parame-
terized (for example the length along the curve).
With this parameterization the length along the curve is

L =

Z 2

1

p
dx2 + dy2 =

Z 2

1

q
x0 (�)

2
+ y0 (�)

2
d�; (2)

where x0 (�) = dx=d� and y0 (�) = dy=d�: The job now is to �nd the two
functions for which this integral is minimum.
The problem is more complicated than before because there are two unknown

functions. Now the integral that we wish to �nd the minimum is of the form

S =

Z 2

1

f (x (�) ; y (�) ; x0 (�) ; y0 (�)) d�; (3)

between two points (x (�1) ; y (�1)) and (x (�2) ; y (�2)) : The problem is actually
very similar to the one variable case. Basically we will need to satisfy two Euler-
Lagrange equations. To show this we let the correct path be given by

x = x (�) and y = y (�) ; (4)

and let the nearby incorrect path be of the form

X = x (�) + � (�) and Y = y (�) + " (�) : (5)

Again we insist that the change in the integral due to a nearby path vanish or

�S =

Z 2

1

f (X (�) ; Y (�) ; X 0 (�) ; Y 0 (�)) d��
Z 2

1

f (x (�) ; y (�) ; x0 (�) ; y0 (�)) d� = 0:

(6)
Once again using a Taylor�s expansion for the quantity inside the �rst integral
on the left results in

�S =

Z 2

1

�
@f

@x
� +

@f

@y
"+

@f

@x0
�0 +

@f

@y0
"0
�
d� = 0: (7)
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Integrating the last two terms by parts and recognizing that by de�nition the
curve passes through the endpoints so that � (�1) = � (�2) = " (�1) = " (�2) = 0;
results in

�S =

Z 2

1

��
@f

@x
� d

d�

@f

@x0

�
� +

�
@f

@y
� d

d�

@f

@y0

�
"

�
d� = 0: (8)

In a parallel argument that we used before, namely � (�) and " (�) are arbitrary
functions (albeit of small magnitude), we obtain

@f

@x
� d

d�

@f

@x0
= 0 and

@f

@y
� d

d�

@f

@y0
= 0: (9)

These two equations determine a path for which the integral in equation (3)
is stationary. Conversely, if the integral is stationary for some path, that path
must satisfy this pair of Euler-Lagrange equations.
With this new development let�s again consider the shortest distance between

two points. From equation (2) we have f =
p
x02 + y02; and the integrand is

independent of either x or y. From the Euler-Lagrange equations we then know
that

@f

@x0
=

x0p
x02 + y02

= C1 and
@f

@y0
=

y0p
x02 + y02

= C2: (10)

Dividing these two expressions by each other and recognizing that y0=x0 = dy=dx
allows us to conclude

dy

dx
=
C2
C1

= m; (11)

which is the slope of the path. One more integration and we have the equa-
tion of a line y = mx + b: The further generalization to an arbitrary number
of dependent coordinates is a straightforward extension of this approach and
shouldn�t need any further details.

15.1.2 Generalization to Lagrangian Mechanics

The independent variable in Lagrangian mechanics is the time t. The dependent
variables are the coordinates that specify the position or con�guration of the
system and are usually denoted by q1; q2; � � �; qn: The number n of coordinates
depends on the nature of the system. For a single particle moving unconstrained
in three dimensions, n is 3, and the coordinates q1; q2; q3 could just be the
three Cartesian coordinates. For a double pendulum as shown in �gure 6.9,
there would be two coordinates q1 and q2 which are the two angles �1 and �2:
Because the coordinates q1; q2; � � �; qn take on so many di¤erent forms they are
often referred to as generalized coordinates. It is often useful to think of the n
generalized
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Figure 6.9 A double pendulum with generalized coordinates �1 and �2:

coordinates as de�ning a point in an n-dimensional con�guration space. Each
of the points labels a unique position or con�guration of the system.
The goal in most problems in Lagrangian mechanics is to �nd how the coordi-

nates vary in time, that is to �nd the solutions for the n functions q1 (t) ; q2 (t) ; ��; qn (t) :
One can think of these n functions as de�ning a path in the n-dimensional con�g-
uration space. This path is of course determined by Newton�s second law, but we
shall soon �nd that it can be characterized as the path for which a certain inte-
gral is stationary. This means it must satisfy the corresponding Euler-Lagrange
equations (which we will soon just call the Lagrange equations). As it turns
out it is much easier to write down these Lagrange equations than Newton�s
second law. In particular, Lagrange�s equations, unlike Newton�s second law,
take exactly the same form in all coordinate systems. Additionally, Lagrange�s
equations only rely on writing down the kinetic and potential energies, which
are scalar functions, in a set of generalized coordinates. As such they are much
easier to determine than the vector quantities required for Newton�s second law.
The integral S whose stationary value determines the evolution of the me-

chanical system is called the action integral. Its integrand is called the La-
grangian L and it depends on the n coordinates q1 (t) ; q2 (t) ; � � �; qn (t) ; their n
time derivatives

�
q1 (t) ;

�
q2 (t) ; � � �;

�
qn (t) ; and the time t;

L = L
�
q1;

�
q1; � � �; qn;

�
qn; t

�
: (12)

Notice that since the independent coordinate is t, that the derivatives of the co-
ordinates qi are time derivatives and as usual with our notation time derivatives
are denoted with dots.
The requirement that the action integral

S =

Z t2

t1

L
�
q1;

�
q1; � � �; qn;

�
qn; t

�
dt (13)
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is stationary implies n Lagrange equations

@L
@q1

=
d

dt

@L
@
�
q1
;
@L
@q2

=
d

dt

@L
@
�
q2
; � � �; and @L

@qn
=
d

dt

@L
@
�
qn
: (14)

If these n equations are satis�ed then the action integral is stationary; and if the
action integral is stationary then these n equations are satis�ed. Additionally,
if the Lagrangian is independent of time then we immediately have the �rst
integral of the Lagrange equations.

15.2 Chapter 7 Lagrange�s Equations

Armed with the tools of variational calculus we can now approach the problems
in mechanics from a Lagrangian point of view. Lagrange�s equations have im-
portant advantages over Newton�s laws of motion. First, they take the same
form in any coordinate system. Second, we only need to �nd scalar functions
(kinetic and potential energy) which is typically much easier than determining
the vector quantities required in Newton�s second law. Last and most important,
they eliminate the forces of constraint. This greatly simpli�es most problems,
since the constraint forces are almost always unknown. As it turns out this
simpli�cation comes at almost no cost, since we usually do not want to know
these forces anyway.

15.2.1 Lagrange�s Equations for Unconstrained Motion

Consider a particle moving unconstrained in three dimensions which is subjected
to a conservative force

�!
F (�!r ) : The kinetic energy of the particle is

T =
1

2
m

��!r
2

=
1

2
m

�
�
x
2
+

�
y
2
+

�
z
2
�
; (15)

and its potential energy is
U = U (�!r ) : (16)

The Lagrangian is de�ned as
L = T � U: (17)

It is important that this quantity is not the same as the total mechanical energy,
E = T + U: It is also important to realize that the Lagrangian depends on

the particle�s position (x; y; z) as well as its velocity
� �
x;

�
y;

�
z
�
; that is L =

L
�
x; y; z;

�
x;

�
y;

�
z
�
:

To obtain a better feel for this function, consider the two derivatives,

@L
@x

= �@U
@x

= Fx; (18)

and
@L
@
�
x
=
@T

@
�
x
= m

�
x = px: (19)
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If we now di¤erentiate the second equation with respect to time we see from
Newton�s second law that

d

dt

@L
@
�
x
= m

��
x = Fx =

@L
@x
: (20)

In exactly the same way we �nd that

d

dt

@L
@
�
y
=
@L
@y

and
d

dt

@L
@
�
z
=
@L
@z
: (21)

So we see that Newton�s second law is exactly equivalent to what we will now
de�ne to be Lagrange�s equations, at least in Cartesian coordinates, obtained in
equations (20) and (21).
From our work in variational calculus we see that these three Lagrange

equations have exactly the same form as the Euler-Lagrange equations. This
means that the integral

S =
R
Ldt (22)

is stationary. The observation that this integral, called the action integral, is
stationary for the particle�s path is called Hamilton�s principle after it inven-
tor, the Irish mathematician Hamilton. So far we have only shown this to be
true for a single particle in Cartesian coordinates, but we will �nd it to be valid
for a huge class of mechanical systems and for almost any choice of coordinates.
Hamilton�s principle has found generalization in many �elds of physics out-

side of classical mechanics, quantum �eld theory for example, and has uni�ed
many diverse �elds of physics. However, for our purposes its main signi�cance
is that Lagrange�s equations hold in more-or-less any coordinate system. To
prove this we will consider some other coordinates. For example they could be
spherical polar coordinates (r; �; �) ; cylindrical coordinates (�; �; z) ; or any set
of �generalized coordinates�q1; q2; q3, with the property that each position of
the position vector �!r speci�es a unique value of (q1; q2; q3) and vice versa;

qi = qi (
�!r ) for i = 1; 2; 3; (23)

and
�!r = �!r (q1; q2; q3) : (24)

This means that we can write (x; y; z) and
� �
x;

�
y;

�
z
�
in terms of (q1; q2; q3) and� �

q1;
�
q2;

�
q3

�
: It also means that we can write the dependence of the Lagrangian

as
L = L

�
q1; q2; q3;

�
q1;

�
q2;

�
q3

�
; (25)

and the action integral as

S =

Z t2

t1

L
�
q1; q2; q3;

�
q1;

�
q2;

�
q3

�
dt: (26)
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Now the action integral is unchanged via the change in variables. Therefore,
that statement that S is stationary for variations around the correct path means
that in these coordinates the Lagrange equations take the form

@L
@qi

=
d

dt

@L
@
�
qi

for i = 1; 2; 3: (27)

We will �nd that expressing the kinetic and potential energy and subsequently
the Lagrangian in generalized coordinates to be extremely useful.
There is one point that we need to be aware of in our derivation of La-

grange�s equations. A crucial step was recognizing that the Lagrange equations
were equivalent to Newton�s second law. But Newton�s law is only true in an
inertial frame. So even though Lagrange�s equations are true for any choice
of generalized coordinates, and these coordinates may be the coordinates of a
noninertial frame, we must nevertheless be careful that when we write down the
Lagrangian, L = T � U , we do so in an inertial frame.
For the simple example of a particle moving in a conservative force �eld in

Cartesian coordinates we saw that

@L
@x

= �@U
@x

= Fx and
@L

@
�
x
=
@T

@
�
x
= m

�
x; (28)

with corresponding expressions for the other coordinates. When we use gener-
alized coordinates fqig ; we shall �nd that @L=@qi; although not necessarily a
force component, plays a role in Lagrange�s equations very similar to a force.
Similarly, @L=@ �qi; although not necessarily a momentum component acts like a
momentum. For this reason we shall call these derivatives the generalized force
and generalized momentum respectively; that is

@L
@qi

= (ith component of a generalized force), (29)

and
@L
@
�
qi
= (ith component of a generalized momentum). (30)

With these de�nitions, each of the Lagrange equations,

@L
@qi

=
d

dt

@L
@
�
qi
;

takes the form

(generalized force) =
d

dt
(generalized momentum). (31)

To clarify these issues a bit, let�s consider the example of a particle moving
in two dimensions using polar coordinates. The �rst thing we have to do is to
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write down the Lagrangian, L = T �U; in terms of the chosen coordinates. This
means that vr =

�
r and v� = r

�
�; and the kinetic energy is

T =
1

2
m

�
�
r
2
+ r2

�
�
2�
: (32)

Hence the Lagrangian is

L = T � U = 1

2
m

�
�
r
2
+ r2

�
�
2�
� U (r; �) : (33)

Now that we have a Lagrangian we only have to write down the two Lagrange
equations.
The Lagrange equation for the radial coordinate is

@L
@r

=
d

dt

@L
@
�
r

or

mr
�
�
2

� @U
@r

=
d

dt
m
�
r = m

��
r: (34)

Since �@U=@r = Fr this equation can be rewritten as

Fr = m

�
��
r � r

�
�
2�
: (35)

You should recognize this as Fr = mar; the r component of
�!
F = m�!a that we

derived in chapter 1. The �r
�
�
2

term is the infamous centripetal acceleration.
What we see here is that when we use polar coordinates the Lagrange equation
for the r coordinate is just the r component of Newton�s second law. The nice
thing was that we were able to avoid the tedious calculation of �nding the radial
accelerations.
The Lagrange equation for the � coordinate is

@L
@�

=
d

dt

@L

@
�
�

or

�@U
@�

=
d

dt

�
mr2

�
�

�
: (36)

To interpret this equation we need to relate the left hand side to the � component
of the force in polar components. Since the force is found from

�!
F = �rU; which

in polar coordinates is given by

rU = @U

@r
br + 1

r

@U

@�
b�; (37)
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so that the � component of the force is

F� = �
1

r

@U

@�
: (38)

Thus the left hand side of equation (36) is rF� which is simply the torque � on

the particle about the origin. Meanwhile the quantity mr2
�
� is the momentum

of inertia relative to the origin for a single particle times its angular velocity,
i.e. its angular momentum L about the origin. Hence the � equation tells us
that

� =
dL

dt
; (39)

or the torque equals the rate of change of the angular momentum.
These results illustrates a wonderful feature of Lagrange�s equations, that

when we choose an appropriate set of generalized coordinates the corresponding
Lagrange equations automatically appear in a corresponding natural form. For
the � equation the generalized force was the torque and the generalized momen-
tum was the angular momentum which turn out to be the natural quantities for
an angular coordinate.
This example also illustrates another feature of Lagrange�s equations. The �

component of the generalized force, @L=@�; turned out to be the torque on the
particle. If the torque happens to be zero, then the corresponding generalized
momentum is conserved. This is a general result. The ith component of the
generalized force is @L=@qi: If this quantity happens to be zero, then from the
Lagrange equation

@L
@qi

=
d

dt

@L
@
�
qi
;

we know that the ith component of the generalized momentum, @L=@ �qi is con-
stant, i.e. it is conserved. In practice, it is often easy to notice that a Lagrangian
is independent of a coordinate qi; and if you do, then you immediately know a
corresponding conservation law.

Two Unconstrained Particles Here we will discuss the situation for two
particles, mainly to show the form of Lagrange�s equations for N > 1: For two
interacting particles that are not in the presence of an external force �eld the
Lagrangian is

L = 1

2
m

��!r
2

1 +
1

2
m

��!r
2

2 � U (�!r 1;�!r 2) : (40)

As usual the forces on the particles are
�!
F 1 = �r1U and

�!
F 2 = �r2U: Hence

Newton�s second law can be expressed as

F1x =
�
p1x; F1y =

�
p1y; � � � F2z =

�
p2z: (41)

Each of these six equations is equivalent to a corresponding Lagrange equation

@L
@x1

=
d

dt

@L
@
�
x1
;
@L
@y1

=
d

dt

@L
@
�
y1
; � � � @L

@z2
=
d

dt

@L
@
�
z2
: (42)
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These six equations imply that the action integral S =
R
Ldt is stationary.

We can transform the integrand to any other suitable set of six coordinates,
q1; q2; � � �; q6 and the action integral will still be stationary. This implies that
Lagrange�s equations must be true with respect to the new coordinates:

@L
@q1

=
d

dt

@L
@
�
q1
; � � �; @L

@q6
=
d

dt

@L
@
�
q6
: (43)

An example of a set of six such generalized coordinates that we shall use
repeatedly when we study the two body central force problem is this: The three
coordinates of the CM position

�!
R = (m1

�!r 1 +m2
�!r 2) = (m1 +m2) ; and the

three coordinates of the relative position of the two particles, �!r = �!r 1��!r 2:We
will �nd that this choice leads to a dramatic simpli�cation. For now however, the
main point is that Lagrange�s equations are automatically true in their standard
form, equation (43) with respect to the new generalized coordinates.
The extension of these ideas to the case of N unconstrained particles leads

to the 3N Lagrange equations

@L
@qi

=
d

dt

@L
@
�
qi
; [i = 1; 2; � � �; 3N ] : (44)

These equations are valid for any choice of the 3N coordinates q1; q2; � � �; q3N
needed to describe the N particles.

15.2.2 Constrained System; an Example

Since one of the great advantages of the Lagrangian approach is the e¤ortless
way in which it handles constraints. There are numerous examples of this (al-
most too many too count), but to get the �avor of how easily this is handled
we will again consider a simple example, the plane pendulum. A bob of mass
m is attached to a massless rod of length ` which rotates without friction in
the x � y plane about a point which we will take to be the origin. The bob
moves in both the x and y directions, but it is constrained by the rod so thatp
x2 + y2 = `. However only one of the coordinates is independent for as x

changes y is predetermined by the constraint equation, or vice versa. Thus the
system has only one degree of freedom. One way to express this is to eliminate
one of the coordinates, for example we could write y =

p
`2 � x2 so that we

could express everything in terms of x. A much simpler way to proceed is to
eliminate both x and y in terms of the angle �; the angle between the pendulum
and its equilibrium position.
Both the kinetic and potential energy can be expressed in terms of �: The

kinetic energy is T = 1
2m`

2
�
�
2

: The potential energy is given by U = mgh where
h is the height above equilibrium. A little trigonometry shows that this height
is h = ` (1� cos�) : We can now write the Lagrangian as

L = 1

2
m`2

�
�
2

�mg` (1� cos�) : (45)
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Now it is a fact that once a system is expressed in terms of a single generalized
coordinate (for a system with only one degree of freedom), the evolution of the
system again satis�es Lagrange�s equation. With � as our generalized coordinate
Lagrange�s equation is

@L
@�

=
d

dt

@L

@
�
�
: (46)

These derivatives are easily evaluated to give

�mg` sin� = m`2
��
�: (47)

The quantity �mg` sin� is just the torque � exerted by gravity on the pendu-
lum, while m`2 is the pendulum�s momentum of inertia. This equation is then
a speci�c example of equation (39) in cylindrical coordinates.
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