
14 Lecture 10-28

14.1 Chapter 6 Calculus of Variations (con)

Example 3 - The Brachistochrone Consider a bead that is allowed to fall
in a uniform gravitational �eld attached to a frictionless wire from point 1,
(x1; y1) ; to point 2, (x2; y2) ; where clearly y2 < y1: The problem is then to �nd
the path of the wire that minimizes the travel time of the bead between these
two points. This famous problem is called the Brachistochrone problem, from
the Greek words brachistos meaning �shortest�and chronos meaning �time�.

Figure 6.4 Brachistochrone problem involves �nding the path which results in
the shortest time for a falling object to travel from point 1 to point 2.

The time to travel from point 1 to 2 is

T =

Z 2

1

ds

v
; (1)

where v is the speed at any height y which is determined by the conservation
of energy to be v =

p
2gy: Here by convention our initial conditions are v = 0

at y = 0 and we are measuring y positive in the downward direction. As in
example 1, ds =

p
dx2 + dy2; and the integral for the total time is

T =

Z 2

1

p
dx2 + dy2p
2gy

: (2)

For this problem it is more convenient to perform the integral over y and we
�nd

T =
1p
2g

Z 2

1

p
1 + x02
p
y

dy: (3)

Since this integrand only depends on x0 and not on x; the Euler-Lagrange equa-
tions become

d

dy

@f

@x0
� @f
@x

=
d

dy

@f

@x0
= 0: (4)
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This means that @f=@x0 = const and

@f

@x0
=

x0

y1=2 (1 + x02)
1=2

=
1p
2a
; (5)

or
x02

y (1 + x02)
=
1

2a
; (6)

where we have de�ned for reasons of convenience this constant to be 1=2a.
Solving this expression for x0 leads to

x0 =

r
y

2a� y ! x =

Z y

0

r
y

2a� y dy; (7)

where we have de�ned the starting point as the origin. The substitution y =
2a sin2 �=2 leads to

x = 2a

Z �

0

sin2 �=2d� = a

Z �

0

(1� cos �) d� = a (� � sin �) : (8)

The �nal parametric solution to this problem is

x = a (� � sin �) ; and y = a (1� cos �) ; (9)

where the constant a has been chosen to that the curve pass through the point
(x2; y2) :
The curve represented by the parametric solution in equation (9) is shown

in �gure 6.4. The continuation of the path with the dashed line in �gure 6.5

Figure 6.5 The path that gives the shortest time between points 1 and 2 is
part of a cycloid. The cycloid is the curve traced out by a wheel of radius a
that rolls along the underside of the x axis. Point 3 is the lowest point on the

curve and resides one diameter of the wheel, 2a, below the x axis.

shows that the solution of the brachistochrone problem happens to be a cycloid,
that is, the path traced out by a point on the rim of a wheel of radius a as it
rolls along the underside of the x axis.
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Another remarkable feature of this curve, which the reader will have the
opportunity to prove in problem 6.25, is that if we release the bead from rest at
point 2 and let it fall until it reaches point 3, the time is the same independent
of the location of point 2. This means that the oscillations of the bead falling
back and forth along the cycloid shaped curve are exactly isochronous (period
is independent of the amplitude). This is in contrast with the oscillations of a
simple pendulum, which are only approximately isochronous, to the extent that
the amplitude is small.

14.1.1 A First Integral of the Euler-Lagrange Equation

We have previously shown that for a conservative force in one dimension, the ex-
pression for the conservation of energy is the �rst integral of Newton�s equation
of motion. As it turns out there is an analogous �rst integral for the Euler-
Lagrange equation. Consider an integral of interest where we wish to �nd a
stationary path that is of the form,

S =

Z 2

1

f (y; y0) dx; (10)

where f (y; y0) has no explicit dependence on the independent variable of inte-
gration x. For this functional form of f we apply the chain rule and �nd

df

dx
=
@f

@x
+
@f

@y
y0 +

@f

@y0
y00 =

@f

@y
y0 +

@f

@y0
y00; (11)

as we have assumed that @f=@x vanishes. From the Euler-Lagrange equation
we know that

@f

@y
=
d

dx

@f

@y0
: (12)

A simple substitution of this result into equation (11) results in

df

dx
=

�
d

dx

@f

@y0

�
y0 +

@f

@y0
dy0

dx
=
d

dx

�
@f

@y0
y0
�
; (13)

or
d

dx

�
f � y0 @f

@y0

�
= 0: (14)

This leads to the �rst integral of the Euler-Lagrange equation

f � y0 @f
@y0

= const: (15)

This �rst integral can often simplify calculations and when the integrand is
independent of the independent variable it is a useful starting point.
To obtain this �rst integral we required that the function describing the path

had no explicit dependence on the variable of integration. This is exactly analo-
gous to the situation in mechanics where to perform the �rst �time integration�
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of Newton�s equations we insisted that the net force on the object was conser-
vative. That required among other things that the force and subsequently the
potential did not depend on time. When we apply the Euler-Lagrange equation
to the laws of motion for particles in mechanics we will �nd an analogous require-
ment. That is, if the quantity which will satisfy the Euler-Lagrange equations
(which we will call the Lagrangian) is independent of time, then what we will
de�ne to be the "Hamiltonian" is conserved. For many problems the Hamil-
tonian is equal to the total mechanical energy. This concept will be discussed
in the next chapter. It is this conservation of "energy" that is again the �rst
integral of the Euler-Lagrange equations.

The Brachistochrone Problem Again The integral that we minimized in
the Brachistochrone problem was

T =

Z 2

1

ds

v
=

1p
2g

Z 2

1

p
dx2 + dy2
p
y

: (16)

Initially we considered the function f =
p
1 + x02=

p
y where x0 = dx=dy: The

advantage for the Brachistochrone problem with that choice is it results in
@f=@x = 0 which lead to the simpli�cation @f=@x0 = 1=

p
2a: This time however

we will consider the integral

T =
1p
2g

Z 2

1

p
dx2 + dy2
p
y

=
1p
2g

Z 2

1

p
1 + y02
p
y

dx: (17)

Now the function f =
p
1 + y02=

p
y is independent of x and we can invoke the

�rst integral of the Euler-Lagrange equation to �nd

f � @f

@y0
y0 =

p
1 + y02
p
y

� y02

p
y
p
1 + y02

=
1p
2a
; (18)

where again we have chosen the constant (in this case 1=
p
2a) for matter of

convenience. Multiplying by
p
y
p
1 + y02; reorganizing terms, and squaring

leads to
2a = y

�
1 + y02

�
! y02 =

2a� y
y

: (19)

Taking the square root of this equation and inverting results in

x0 =

r
y

2a� y ! x =

Z y

0

r
y

2a� y dy; (20)

which is the same integral as equation (7). So as expected we �nd the same
cycloid solution as we did in the original approach. Depending on the integrand,
one or the other of the approaches will often be preferred.
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14.1.2 Maximum and Minimum versus Stationary

You may have noticed that in none of the examples that we considered have we
bothered to actually check to see if the curves that we found actually resulted
in a minimum for the integral of interest. Clearly a straight line between two
points in a plane is the path that results in a minimum length, not a maximum
or just stationary. However the Euler-Lagrange equation only guarantees to give
a path that is stationary. The problem of deciding whether or not the curve is
a minimum, maximum, or just stationary is generally very di¢ cult. In many
cases it is easy to see which is the case. For instance the solution of a straight
line is clearly a minimum. It may not be so clear that a cycloid path results in
the minimum time for a falling object, though it is.
To illustrate the problem of �nding the shortest distance between two points,

or geodesic as it is often called, consider �nding a geodesic on the surface of a
sphere. Using the calculus of variations, you can prove that a great circle does
indeed make the distance between two points stationary. But it requires a bit
of thought before deciding that this is the minimum distance since there are
di¤erent great circle paths between any two points on a sphere. Consider for
example two cities that lie on the equator (a great circle path on the Earth)
that are approximately 2000 miles apart in South America. The choices on the
great circle path are (i) the 2000 mile route or (ii) going the other way around
the Earth which is approximately 22000 miles in length. It is obvious in this
example that the shorter distance is the 2000 mile route. You might guess then
that the 22000 mile route is a maximum, but alas, it is not, as it is easy to
construct paths that are longer than this distance. So the long way around the
equator is neither a maximum nor a minimum just merely a stationary route.
From a calculus point of view, we may think of this as a local minima but not
a global minima.
Another geodesic path that comes up frequently in physics is that of a geo-

desic path in relativity (either special or general) In that scenario, the integral
of interest is called the proper time. The proper time is the time as measured
by the observer traveling along his path in space-time. From the so-called twin
paradox in special relatively, you are probably aware that the space traveler
who leaves his Earth bound twin behind returns only to �nd that his twin has
measured a greater passage in time and is now older than he is. As it turns
out, the twin that traveled the geodesic path is the twin that remained behind.
So we see from this example that a geodesic path in special relativity is the
path that maximizes the proper time. Since general relativity is an extension
of special relativity to curved space, it should not come as a surprise that a
geodesic path in general relativity also maximizes the proper time.
As this discussion points out, it should be clear that the Euler-Lagrange

equation �nds a stationary path. A path that produces no change in the inte-
gral of interest due to small deviations along the path. However, determining
what sort of stationary path; minimum, maximum, or just stationary, that the
solution to the Euler-Lagrange equation produces can be tricky. Consider the
soap �lm problem shown in �gure 6.6, where we are interested in �nding the
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minimum surface area for a surface of revolution. A soap �lm will naturally
�nd this minimum surface area as it minimizes the energy associated with the
surface tension in the �lm.

Figure 6.6 Minimum surface area for a surface of rotation, the soap �lm
problem.

The total area for a surface of revolution about the x axis is given by

A =

Z 2

1

2�y
p
dx2 + dy2 =

Z 2

1

2�y
p
x02 + 1dy: (21)

Since the integrand is independent of x the Euler-Lagrange equation is

d

dy

�
@

@x0
y
p
x02 + 1

�
= 0! x0yp

x02 + 1
= yo; (22)

where yo is a constant. Solving for x0 results in

x0 = yo=
p
y2 � y2o !

x� xo
yo

=

Z
dyp
y2 � y2o

: (23)

With the substitution y = yo coshu we �nd

x� xo
yo

=

Z
yo sinhudu

yo sinhu
= u:

Taking the hyperbolic cosine of both sides yields the solution for the radius of
the soap �lm, which is called a catenary,

y = yo cosh
x� xo
yo

:
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These two constants can be used so that the curve passes through (x1; y1) and
(x2; y2) : Note that the minimum value of y = ymin occurs when x = xo for
which ymin = yo:
This problem is useful to consider in a bit more detail as it demonstrates

the issue of determining whether the result is a minimum, maximum, or simply
a stationary solution. For simplicity we will consider the example of two equal
rings of radius R that are separated by a distance R. This con�guration is of
interest for the surface area of a cylinder between the two rings has a surface
area of Acyl = 2�R2 which is identical to the combined surface area of the two
rings. If the surface area of the soap �lm ever exceeds this combined area of
the two rings then the soap bubble tends to collapse into two separate bubbles
covering the individual rings as it is energetically favorable for the soap bub-
ble to maintain a minimum surface area. When this happens it is called the
Goldschmidt discontinuous solution.
For symmetry purposes we will de�ne the midpoint of the rings to be x = 0

so that the rings are located at �R=2: This symmetry sets xo = 0 so that we
have

y = yo cosh
x

yo
: (24)

The boundary conditions require that y = R when x = �R=2 so that yo; which
is the minimum radius that occurs at x = 0; is determined by the transcendental
equation

R = yo cosh
R

2yo
: (25)

De�ning u = yo=R the transcendental equation reduces to

1 = u cosh
1

2u
: (26)

This transcendental equation has two solutions. One occurs at u1 = :8484 !
yo = :8484R: This is a relatively shallow curve as the minimum radius of the
soap �lm is just slightly less than the radius of the rings. The other solution is
at u2 = :2351 ! yo = :2351R: This is called the deep curve as the minimum
radius of the soap �lm is signi�cantly less than the radius of the rings. The
general solutions for yo=R versus the location of the rings at �x0=R is shown in
�gure 6.7 with our solution for x0=R = 1=2 is shown as the vertical solid line.
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Figure 6.7. Solutions for yo=R versus the location of the rings at �x0=R:

Now let�s consider our solutions in a bit more detail. The radius for the shallow
and deep curves satisfy (respectively)

y1 = :8484R cosh 1:179x=R; (27)

y2 = :2350R cosh 4:255x=R: (28)

So now the question is which curve has the smaller area, and just as important,
are they less than the Goldschmidt discontinuous solution of 2�R2. Now the
area of revolution for the soap bubble is given by

A =

Z R=2

�R=2
2�y

p
1 + y02dx; (29)

where y is given by equation (24). The result of this integral can be obtained
in a straightforward manner with the result

A = �yo (R+ yo sinhR=yo) : (30)

The total area for the �rst solution, the shallow curve, is

A1 = :8483�R
2 (1 + :8483 sinh 1:179) = 1:907�R2; (31)

while the area for the second solution, the deep curve, is

A2 = :2350�R
2 (1 + :2350 sinh 4:255) = 2:180�R2: (32)

We see that the area for the shallow curve is less than the area for the deep
curve, hence it is the minimum area. Note that the second solution is only a
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stationary solution, and additionally it is larger than the Goldschmidt discon-
tinuous solution. Physically due to the energy of surface tension this solution
will likely never exist in nature. As shown in �gure 6.8 the area of the deep
curve is not only greater than the area of the shallow curve it is also greater
than the Goldschmidt discontinuous solution for all values of the separation of
the two rings.

Figure 6.8. Area of the shallow and deep curves versus the Goldschmidt
discontinuous solution.

The real point to be made here is that, as with a geodesic on a sphere, you
always have to be careful when you interpret the solutions to the Euler-Lagrange
equations as you are only guaranteed for them to be stationary solutions.
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