
12 Lecture 10-21

12.1 Chapter 5 Oscillations (con)

Complex Solutions for a Sinusoidal Driving Force We shall consider
the case when the driving force f (t) is a sinusoidal function of the form

f (t) = fo cos!t; (1)

where fo is the amplitude of the driving force (actually F (t) =m) and ! is the
angular frequency of the driving force. It is important to distinguish between
the frequency of the forcing function, !; from the natural frequency of the
oscillator, !o: These are entirely independent frequencies, although we shall see
that the oscillator responds most when ! = !o: The driving force for many
driven oscillators is approximately sinusoidal, a parent pushing a child on a
swing, the EMF produced in the electronic components in your radio circuits
etc. With this in mind we will assume that the equation of motion (??) takes
the form

d2x

dt2
+ 2�

dx

dt
+ !2ox = fo cos!t: (2)

Solving this equation is simpli�ed with the following trick: For any solution of
this equation, there must also be a solution of the same equation but with the
cosine forcing function replaced by a sine function. After all these two only
di¤er by a shift in the origin in time. Accordingly there must be a solution to

d2y

dt2
+ 2�

dy

dt
+ !2oy = fo sin!t: (3)

Suppose we now de�ne the complex function

z (t) = x (t) + iy (t) : (4)

If we now multiply equation (3) by i and add it to equation (2) we obtain

d2z

dt2
+ 2�

dz

dt
+ !2oz = foe

i!t: (5)

Although at �rst glance this may not appear to be much of an improvement,
but it is. A sine or cosine function changes from one to the other during the
di¤erential process, but that is not the case with exp (i!t) : This makes it much
easier to solve for z (t) and once we do, we only have to take the real part to
�nd the solution of equation (2).
The most obvious trial solution for z (t) is

z (t) = Cei!t; (6)

where C is an as yet undetermined constant. Substituting this trial solution
into equation (5) results in�

�!2 + 2i�! + !2o
�
Cei!t = foe

i!t: (7)
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Our trial is a solution if and only if

C =
fo

�!2 + 2i�! + !2o
; (8)

and we have succeeded in �nding a particular solution for the equation of motion.
Before we take the real part of z (t) = Cei!t it is convenient to write the

complex coe¢ cient in the form C = Ae�i�; where both A and � are real. To
�nd A2 we multiply C by its complex conjugate and

A2 = CC� =
f2o

(!2o � !2)
2
+ 4�2!2

: (9)

We will see in a moment that A is the amplitude of the oscillations caused by
the driving force f (t) : Thus this result is the most important of this discussion
as it shows how the amplitude depends on the various parameters. In particular
note how A is a maximum when !o ' ! as this minimizes the denominator. In
other words the oscillator responds best to the driving force when its frequency
matches the natural frequency of the oscillator.
Before we proceed we need to �nd the phase angle �. From the de�nition

C = Ae�i� we see that

foe
i� = A

�
!2o � !2 + 2i�!

�
: (10)

Now both fo and A are real so that the phase angle is the same as the phase of
the complex number !2o � !2 + 2i�! which is

tan � =
2�!

!2o � !2
! � = tan�1

�
2�!

!2o � !2

�
: (11)

We have now found the solution, it is the real part of

z (t) = Cei!t = Aei(!t��); (12)

or
x (t) = A cos (!t� �) ; (13)

where A and � are given by equation (9) and equation (11) respectively.
The solution in equation (13) is just one particular solution for the equation

of motion. As we have seen, for the general solution we must add the any
solution to the homogeneous equation. So our general solution is

x (t) = A cos (!t� �) + C1ert + C2e�rt: (14)

Because the solutions to the homogeneous equation die out exponentially, they
are called transients or transient solutions. The depend on the initial condi-
tions (or any set of boundary conditions) of the problem but are eventually
irrelevant. The long term solution is dominated by the particular solution, i.e.
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the cos (!t� �) term. Thus the particular solution is the one of interest for our
following discussions.
Before we discuss examples of the solution in equation (14), it is important

that you understand as to what type of system that this applies, namely any
oscillator with a linear restoring force and a linear resistive force. It is the
solution to a second order linear di¤erential equation. Because nonlinear dif-
ferential equations are di¢ cult to solve (often requiring numerical techniques),
until recently most text books focused on linear equations to the point of ig-
noring nonlinear systems. As we shall see in chapter 12 on nonlinear mechanics
and chaos, oscillators that are nonlinear can behave in ways that are astonishing
di¤erent from equation (14). One important reason for studying linear oscilla-
tors is to give you some background against which to study nonlinear oscillators
later on.
The details of the general solution (just as with the homogeneous solution)

depend on the strength of the damping parameter �. Consider for example a
weakly damped oscillator where � < !o. For this case the general solution can
be written as

x (t) = A cos (!t� �) +Atre��t cos (!1t� �tr) : (15)

The term on the right is the transient term and to emphasize this fact we
have added the subscript tr to distinguish Atr and �tr from A and �. These
constants of the transient motion are arbitrary constants and determined from
the initial conditions. The factor e��t makes clear that the transient term
decays exponentially and is indeed irrelevant to the long term behavior - hence
the term transient. The �rst term is the particular solution and the constants
A and � are certainly not arbitrary, they were determined to satisfy the motion
of the system in the presence of a particular forcing function. If you change the
forcing function then A and � will be required to change accordingly. This term
oscillates with the frequency ! and amplitude A for as long as the driving force
is maintained.
To better understand these e¤ects examine the response of a linear damped

oscillator in Figure 5.11. Here we plot the response of a driven underdamped
oscillator whose natural frequency is �ve times that of the driving frequency,
!o = 5!; and the decay constant is given by � = !o=20: We have chose the
initial conditions to be xo = vo = 0: For the �rst three cycles or so the e¤ects
of the transients are clearly visible. However after that the motion is virtually
indistinguishable from a pure cosine oscillating (albeit slightly out of phase) at
the drive frequency. That is the transients have died out and only the long term
motion remains.
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Figure 5.11 (a) The driving force for a damped linear oscillator is a pure cosine
function. (b) The resulting motion for the initial conditions xo = vo = 0. The
long term motion oscillates at the drive frequency. This sinusoidal motion is

called an attractor.

Because the transient motion depends on the initial conditions, i.e. xo and
vo; di¤erent initial conditions would result in di¤erent initial motion. After a
short time however the motion settles down into the same sinusoidal motion
of the particular solution, irrespective of the initial conditions. For this reason
the motions of the particular solution are sometimes called an attractor - the
motions of di¤erent initial conditions are �attracted�to the particular solution.
We shall see that for nonlinear oscillators there can be several di¤erent attractors
and that for some values of the parameters the motion of an attractor can be
far more complicated than simple harmonic oscillation of the drive frequency.

12.1.1 Resonance

We have already commented that a driven oscillator responds best when driven
at a frequency ! that is close to its natural frequency !o: We now have the
solutions necessary to consider this e¤ect in some detail. As we just discovered
in equation (13), apart from the transient motions, the system�s response to the
driving force is

x (t) = A cos (!t� �) ;
with an amplitude given by

A2 =
f2o

(!2o � !2)
2
+ 4�2!2

: (16)

One obvious feature of this expression is that the amplitude of the response
is proportional to the amplitude of the forcing function, A / fo; a result that
should be expected for a linear oscillator. More interesting however, is the de-
pendence of the amplitude on the frequencies, ! and !o; as well as the damping
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constant �: The most interesting case is when the damping constant is small.
If the frequencies ! and !o are very di¤erent then the �rst term in the denomi-
nator is large and the amplitude of the oscillations is small. On the other hand
if ! ' !o; then the amplitude of the oscillations can be very large. This means
that we can vary either ! or !o and �nd dramatic changes in the amplitude
of the oscillator�s motion. This is shown in Figure 5.12, where we plot the
amplitude as a function of the natural frequency of the system, !o.

Figure 5.12 The amplitude squared of a driven oscillator as a function of the
natural frequency, !o; with the driving frequency, !; �xed.

Although the behavior is dramatic, the qualitative features are what you
might have expected. In the absence of any forcing function the oscillator vi-
brates at its natural frequency !o (actually a slightly lower frequency !1 when
we allow for damping). If we drive the oscillator at its natural frequency then it
responds very well, but if ! is far from !o then it hardly responds at all. This
phenomena so clearly represented in Figure 2 is called resonance.
One of the simplest examples that we experience in our daily lives is the

parent pushing on a swing. The parent always gives the child a push at exactly
the same frequency that the swing oscillates, i.e. the parent plays the role of
a resonant forcing function. Additional examples are numerous with another
common occurrence being the tuning circuits inside your radio as you dial in to
di¤erent radio stations.
The details of the resonance are a bit more complicated than they seem with

just a cursory examination. For example the exact location of the maximum
response depends on whether we vary !o while holding ! �xed or vice versa.
The amplitude is a maximum when the denominator,

denominator =
�
!2o � !2

�2
+ 4�2!2; (17)

is a minimum. So if we vary !o while holding ! �xed, as we do when we
are tuning our radio to a given carrier frequency, then as �gure 2 showed, the
denominator is a minimum when !o = !: However if we vary ! while holding !o

5



�xed then minimizing the denominator requires us to di¤erentiate the expression
in equation (17). We �nd that the minimum occurs when

! = !2 =

q
!2o � 2�2: (18)

However when � << !o (which usually the most interesting case), the di¤erence
between !2 and !o is negligible.
We have discussed so many frequencies that it is useful to review them. First

there is the natural frequency of the oscillator (undamped) !o =
p
k=m: Next

we considered damping which reduced the frequency that the system oscillated

to !1 =
q
!2o � �2: Then we added a forcing function which oscillated at !. In

principle this frequency is independent of either of the other two. However due
to the usual interest in resonance it is often close to !o. In fact if we hold !
�xed while varying !o the maximum response occurs when ! = !o: Finally as
we just saw, if we vary ! while holding !o �xed then the response is a maximum
when ! = !2:
In any case, the maximum amplitude of the driven oscillator is found when

! ' !o and is then given by
A ' fo

2�!o
: (19)

In this expression it is clear that smaller values of the damping constant, �; lead
to larger values of the maximum amplitude of oscillation.

Width of the Resonance; Q factor As we can see in �gure 5.13, if we make
the damping constant � smaller, not only does the resonant peak get higher,
but it also gets narrower. This idea is expressed in the de�nition of the width

Figure 5.13 Amplitude as a function of the driving frequency ! for di¤erent
values of the damping parameter �:
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or more precisely, full width at half maximum/FWHM. FWHM is the interval
between two points on the resonance curve where A2 is equal to half its max-
imum height. It is a simple exercise for the student to show that the two half
maximum points are at ! ' !o � �: Hence the full width at half maximum is

FWHM ' 2�: (20)

The sharpness of the resonance peak is indicated by the ratio of its width, 2�,
to its position !o: For many purposes, we want a very sharp resonance, to it is
common practice to de�ne a quality factor Q as a reciprocal of this ratio,

Q = !o=2�: (21)

A large Q indicates a narrow resonance, and vice versa. For example, clocks
depend on the resonance in an oscillator (a pendulum or a quartz crystal) to
regulate the mechanism to a well de�ned frequency. This requires that the width
2� be very small compared to its natural frequency. In other words a good clock
requires a high Q. The Q for a typical pendulum may be around 100 while that
for a quartz crystal around 10,000. Thus a quartz crystal watches keep much
better time than a typical grandfather clock.

The Phase at Resonance As we found in equation (11) the phase di¤erence
by which the oscillator�s motion lags behind the driving force is

� = tan�1
�

2�!

!2o � !2

�
:

It is a useful exercise to follow this phase as a function of !: For ! << !o the
phase is very small meaning that the oscillations are almost perfectly in step
with the driving force. However � increases as ! is increased toward !o: When
! = !o the phase satis�es the expression tan � =1, which occurs when � = �=2:
So at resonance the oscillations lag the forcing function by 90�: Once ! > !o;
tan � becomes negative,.but with a large amplitude as long as � is just slightly
greater than �=2: As ! continues to increase the magnitude of tan � continues to
decrease until it approaches 0 and � ! �: In particular, once ! >> !o then the
oscillations are almost perfectly out of step with the driving force. All of this is
illustrated in �gure 5.14. Additionally in �gure 5.14, we see that the change in
the phase is more abrupt for smaller �:
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Figure 5.14 The phase shift � increases from 0 to � as the driving frequency !
passes through resonance. If you drive a simple pendulum manually by moving
your hand slowly from side to side the pendulum will eventually move in step

with your hand. If you move your hand more quickly than the natural
frequency of the pendulum it will move oppositely to your hand.

In the resonances of classical mechanics, the behavior of the phase is usually
less important than that of the amplitude, �gure 5.13. However in atomic and
nuclear scattering experiments it is the phase shift that is often the quantity
of primary interest. Such collisions are governed by quantum mechanics, but
there is a corresponding phenomenon of resonance. When the incident beam of
particles matches the energy di¤erence between two di¤erent levels in an atom
or nucleus then a resonance occurs and the phase shift increases rapidly from 0
to �:

An Example Consider a massless damped spring that is attached to the
ceiling. If an attached mass is released then the equation of motion (x positive
in the downward direction) is

m
d2x

dt2
+ b

dx

dt
+ kx = mg ! d2x

dt2
+ 2�

dx

dt
+ !2ox = g: (22)

Further assume that the spring is critically damped so that !2o = �2: By
observation we note that the particular solution for this equation is simply
xp = g=!2o = g=�2: Adding the homogeneous solutions leads the the general
solution

x (t) = C1e
��t + C2te

��t + g=�2; (23)

subject to the initial conditions x (t = 0) =
�
x (t = 0) = 0: The condition x (t = 0) =

0 yields C1 = �g=�2: Whereas the condition
�
x (t = 0) = 0 leads to C2 = �g=�:

Hence the complete solution is

x (t) =
g

�2
�
1� e��t

�
� g

�
te��t: (24)
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If the �nal resting place is :5m below the point of release then

g

�2
= :5! � =

p
2g; (25)

and we have

x (t) =
1

2

�
1� e�

p
2gt
�
�
p
g=2te�

p
2gt: (26)

In problem 5.28 they ask for the position of the mass 1 sec after it is released.
From equation (26) and a value for g of g = 9:8m= sec2; we have

x (t) = :4676m: (27)

or just 3:24cm above the �nal resting spot.
Now consider this problem from a slightly di¤erent point of view. As-

sume that the intitial position is x0 = �:5m above the equilibirum position
of x (t!1) = 0: Note that x is still positive in the downward direction. Basi-
cally we are de�ning x0 = x� x0 (or x = x0 + x0) where x0 = �g=�2 = �:5m:
Ignoring the primes (for convenience) the equation of motion is now

d2x

dt2
+ 2�

dx

dt
+ �2x = 0;

with the initial condition x0 = g=�
2 = �:5m; �x (t = 0) = 0: The solution for a

critically damped oscillator is

x (t) = C1e
��t + C2te

��t:

From the initial condition for x; x = x0 = �:5 we �nd C1 = �:5: The velocity
is now given by

�
x (t) = ��

�
�:5e��t + C2te��t

�
+ C2e

��t:

Evaluating this expression at t = 0 yields

�
x (t = 0) = ��=2 + C2 = 0! C2 = �=2:

Our solution for the position of the mass on the spring is

x (t) = �1
2
(1 + �t) e��t = �1

2

�
1 +

p
2gt
�
e�

p
2gt:

This is di¤erent from the earlier solution by exactly 1=2 which is as it had to
be.
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