11 Lecture 10-19
11.1 Chapter 5 Oscillations (con)

11.1.1 Two-Dimensional Oscillators

In two dimensions the possibilities for oscillations are much richer than in one
dimension. The simplest is that of an isotropic oscillator for which the restor-
ing force is proportional to the displacement from equilibrium with the same
constant in all directions:

F = k7. (1)
In component form this equation becomes F, = —kz, F,, = —ky, and (for three
dimensions F, = —kz). The four identical springs as shown in Figure 5.5 produce

a restoring force resulting in an isotropic oscillator. At equilibrium (figure 5.5
(b)) the length of the springs is £ which is not necessaryily equal to
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Figure 5.5 (a) A restoring force that is proportional to 7 defines an isotropic
harmonic oscillator. (b) A mass at the center of 4 springs (in this arrangement)

iy
would experience a net force F' = —k7 in the plane of the springs.

their natural unstretched length ¢,. If the mass is displaced a small distance to
a position (z,y) from the origin the potential energy of the four springs is

vien = (o) s (Yemoa-c))
+%k (( (C+a)° +y _eo)2 4 (m_%)?) |

Since z,y << £ we can expand the square roots in a binomial expansion and
find

Ulz,y) = %k ((€-w+y2/20-0)" + (0= y+a2/20 - 1,)%)

1
5k (((+a+92/20=0) + (C+y+a?/20—1,)°).



Expanding and summing these terms while ignoring terms of order x*/¢? and
y* /0% the potential energy for the system becomes

Uley) = 2 ((#2+52) (1= 0/20 + (€= £,)°)
Ulr) = %kefﬂ"? + U,, where ke =2k (20— 4,) /L.

Note that this combination of springs produces a stable equilibrium as long as
20—1,>0.

A particle that is subject to this kind of force in two dimensions satisfies the
two independent equations

r=—w?z and y = —wy, (2)

where as usual w? = k/m. The solutions for these two equations were discussed
in the last section and are

x(t) = Agcos(wt—0dg), (3a)
y(t) = Aycos(wt—dy), (3b)

where the four constants are determined by the initial conditions of the problem.
By redefining the time origin we can eliminate one of the phases. Thus the
simplest form for the general solution is

x(t) = Agcoswt, (4a)
y(t) = Aycos(wt—9), (4b)

where § = J, — J, and is the relative phase of the x and y oscillations.

The behavior of the solutions 4a and 4b depends on the values of the three
constants, A, Ay, and §. If either A, or A, is zero, then the particle executes
simple harmonic motion along one of the axes. If neither A, nor A, is zero, the
motion depends critically on the relative phase §. If § = 0, then both = and y
rise and fall in step along a line passing through the origin with slope A,/A,
as shown in Figure 5.6(a). If 6 = /2, then z and y oscillate out of step. When
x is at an extreme, y is zero and vice versa. The resulting curve is an ellipse
with semimajor and semiminor axes A, and A, as shown in Figure 5.6(b). For
other values of § the curves determined by y (t) and « (¢) are slanting ellipses as
shown in Figure 5.6(c) for § = 7/4. What would you expect for § = 77

(@) 5=0 (b) & = 72 () & = /4



Figure 5.6 Motion of a two-dimensional isotropic oscillator as given by
equations 5.38 (a) & (b) for relative phases (a) § =0, (b) § = 7/2, and (c)
0 =m/4.

In an anisotropic oscillator, the restoring force constants are different for the
different directions:

Fy=—kyx, Fy=—kyy, and F,=—kz. (5)

For simplicity we will again only consider this problem in two dimensions. The
solutions to Newton’s EOM are similar to the isotropic case and we have

z(t) = Agcoswgt, (6a)
y (1) Ay cos (wyt —9) . (6b)

Because of the two different frequencies, there is a much richer variety of possible
motions. If w,/w, is a rational number, it is fairly easy to see (as an exercise
for the student) that the motion is periodic. The resulting path is a Lissajou
figure and an example for w,/w, = 2 is shown in Figure 5.7(a). In that figure
you can see that x goes back and forth twice for each time that y does so once.
If w, /wy is an irrational number then the motion is more complicated and never
repeats itself. This case is illustrated for w, /w, = v/2 in figure 5.7(b).

(a) =2 w, (b) w, =2 w,

Figure 5.7 Possible paths for anisotropic oscillators with (a) w, = 2w, and (b)
Wz = V2w,. The motion in (b) is called quasi-periodic as it is periodic in
either x or y but 7 () is not periodic.

11.1.2 Damped Oscillations

We now return to the one dimensional oscillator, but this time with the possi-
bility that there are resistive or drag effects that will dampen these oscillations.
Here we will assume that the resistive force is proportional to v, specifically,
? = —bv. When the we studied the effects of wind resistance, this form of
the drag only applied for small Reynolds number (i.e. usually small velocities).
However not only does this form lead to a linear differential equation, it also
appears in other contexts and therefore is well worth studying.



Consider then a mass on a spring in the presence of a linear resistance.
Newton’s EOM then becomes
d*x dx
ﬁ +b— gt + kx = 0. (7)
One of the really nice things about physics is the way that the same mathe-
matical equation can arise in totally different scenarios. Thus the understanding
of the solutions to an equation in one arena carries over immediately to the
other. Consider for a moment a series LRC circuit. The voltage across an in-
ductor given by Vi, = Ldi/dt, a resistor Vg = Ri, and a capacitor Vo = ¢/C.
Here ¢ is the current in the circuit and is related to ¢ the charge by ¢ = dg/dt.
Summing the voltages around a loop containing an inductor, resistor, and a

capacitor leads to ,
dq  ,dgq
Lﬁ +R— it + 6 0. (8)
This has exactly the same form as equation (7) for a damped oscillator. This
means that anything we learn from the solutions of the damped oscillator will

apply immediately to an LRC circuit.

Returning to the equation for the damped oscillator we divide by the mass
and define 3 = b/2m. We will keep the definition w? = k/m. The equation

describing a damped oscillator then becomes
d2
d?

It is useful to notice that both 8 and w, have the units of inverse time or

equivalently frequency.

Equation (9) is another second order, linear, homogeneous differential equa-
tion. Thus if we can find two independent solutions z (t) and x5 (¢), then any
solution must have the form

+ﬂ—+wx—0 (9)

x (t) = Chx (t) + Coxo (t) . (10)
As a trial solution we will consider the form
z(t)=e". (11)

Substituting this trial solution into equation (9), we find that this form can only
be a solution if (and only if)

r? +2Br +w? =0, (12)

which is sometimes called the auzillary equation. The solutions to this quadratic

equation are
7“1:—6—1—\/62—0.)3 and rgz—ﬁ—\/ﬁ’Q—wg. (13)

A general solution must then be
z(t) =e Pt (Clevﬁz_wgt —|—C’26_V’62_“’3t) . (14)

This solution is too messy to be illuminating, but by examining it in various
ranges of the damping constant 3 we can begin to see what equation (14) entails.



Undamped Oscillation If there is no damping, i.e. 8 = 0, then the solution
reduces to _ '
x (t) = Cre™et 4 Coe ol (15)

which are (at least by now) the familiar solutions for the undamped oscillator.

Weak Damping We now consider the limit
wo > B3, (16)

a condition often called underdamping. In this case the square root term is
imaginary which allows us to write

w1 = /w2 — % < w,. (17)

Here w; is a frequency, less than the natural frequency w,. In the case of very
weak damping w, >> 3, wy is very close to w,. The solution can be written as

x(t) = e Pt (C’lew11t + C’ge*i““t) . (18)

This solution is a product of two factors. The first is an exponential decay.
The second term which is inside the brackets is exactly the form of a simple
harmonic oscillator. From our brief study of that system we can write the
solution as

x (t) = Ae Pt cos (wit — 6) . (19)

This solution is that of a simple harmonic oscillator with a frequency of w; with
an exponentially decaying amplitude and is shown in figure 5.8.

A ¥
Ay

_':"1. -+

Figure 5.8 Underdamped oscillations are simple harmonic oscillations with an
exponentially decaying amplitude.

Thus, for underdamped oscillations, 5 can be thought of as a decay parameter,
a measure of the rate at which the oscillations die out. The larger 8 the more
rapidly the more rapid the decay, at least as we shall see for the case § < w,.



Strong Damping Now we will consider the case when
B8 > wo, (20)

a condition often referred to as overdamping. In this case the term inside the
square root is positive so that the exponents are all real. The solution is now

2 (t) = Cre (IVIR)t | gy (V) (21)

Here we have two exponential solutions but of which decrease in time. The
system is so damped that there are no oscillations. The first term on the right
in equation (21) decays more slowly than the second term. Hence in the over-
damped case, the long term behavior of the motion is determined by the expo-

nent in the first term,
decay parameter = 8 — /% — w2. (22)

In fact, careful inspection of equation (22) shows that - contrary to what one
might expect - the rate of decay of overdamped motion gets smaller as the
damping constant increases. Figure 5.9 shows an example of the motion when
the mass is given a kick from the origin at ¢ = 0. Initially it moves out to a
maximum displacement and then decays slowly back, returning to the origin as
t — 0.

wiii1]
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Figure 5.9 An example of overdamped motion in which the oscillator starts out
with a velocity v = v, and decays back toward the origin.

Critical Damping The boundary between underdamping and overdamping
is called critical damping. This occurs when the damping constant is equal to
the natural frequency,

B = w,. (23)
This case has some interesting features, especially from a mathematical point
of view. When 8 = w, the two solutions we found in equation (14) reduces to

the same solution, namely
x(t)=e Pl (24)



Since there must be two independent solutions, we need to find another solution
by other means. Fortunately, it is not hard. As you can easily check, the function

z(t) =te P! (25)
is also a solution to the EOM. Thus the general solution is
X (t) = Cle_ﬁt + Cgte_ﬁt. (26)

Since both terms contain the same exponential decay factor, e=7*, they decay
at about the same rate with a decay parameter 8 = w,.

It is interesting to compare the decay rates, i.e. the decay parameter, for
the various types of damped oscillations. What we have learned is summarized
in the table below

damping [ decay parameter
none =0 0
under B<w, B
critical B=w, B

over B> w, B—\/62—w3

Figure 5.10 is a plot of the decay parameter as a function of g and it clearly
shows the motion dies out most quickly when 8 = w,, i.e. for critical damping.
There are many situations where one wants any oscillations to die out as quickly
as possible. For example when one wants the needle of an analog meter to settle
down as quickly as possible for accurate readings. Similarly when you are driving
a car over a bumpy road, you want the oscillations to die out quickly. In many
cases the best results are when the damping is close (or equal to) the critical
value.

4 decay
' paramecter
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Figure 5.10 The decay parameter for damped oscillations as a function of the
decay parameter 8. The motion dies out the most quickly for critical damping,

8= w,.



11.1.3 Driven Damped Oscillations

Any natural oscillation has some damping (no matter how small) and will even-
tually come to rest. Thus for the oscillations to continue they must be subject to
some external driving force. For example a child on a swing must have someone
to push the swing. In this section we will consider the effects of an external
driving force F (t). From Newton’s EOM we have

Pz dx
— = —kxr—b— + F (¢t 2
" a TE® (27)

which is usually written in the form

>z dx
— +b— +kz=F(t). 28
Just as with the case for the homogeneous equation, there is an analogy with
this equation in electricity and magnetism. For an oscillating current to persist
in an LRC circuit it is necessary to apply a driving EMF, £ (t). The equation
for an LRC circuit then becomes
d?*q dq
L— R Cqg=E(t 29
2 Tig TCa=E(), (29)
which is a perfect analogy to equation (28).
As in the undriven case, we divide equation (28) by m, replace b/m by 2.,
and k/m by w?2. With this notation equation (28) becomes

d2

dt2+ ﬁ—er x=f(t). (30)
Linear Differential Operators Before we discuss how to solve this equation,
we need to streamline the notation. We can define the differential operator D
as

J2
D= dt2+2ﬁ + w2 (31)
The meaning of this definition is that when D acts on x it results in
A
Dz = —7 + B (32)

With this convenient definition equation (30) is simply expressed as
Dz = f(t). (33)

However the notion of an operator like that in equation (31) proves to be a
powerful mathematical tool with many applications in physics. For our situation
the important thing is that D as we defined it is a linear operator in that

D (ax) =aDx and D (xy + x2) = Dx1 + Dxs. (34)



Combining these two properties yields
D (azy + bxe) = aDxy + bDxa, (35)

where a and b are constants and x; and x5 are arbitrary functions. Any operator
that satisfies this equation is a linear operator.

Without explicitly stating the fact, we used this property of linearity in our
study of undriven oscillators. For that case f (t) = 0 and we had

Dz = 0. (36)

The superposition asserts that if 1 and x5 are solutions to this equation then
S0 is ax1 + axs for any constants a and b. In this operator notation the proof is
this is very simple. Given that Dz; = 0 and Dxy = 0 we see immediately that

D (ax1 4 bxe) = aDx1 + bDze =0+ 0 =0, (37)

so that ax1 + bxs is also a solution.

Equation (36), Da = 0, for the undriven oscillator is called a homogeneous
equation, since every term involves x or derivatives of = exactly once. Equation
(33), Dx = f(t), is called an inhomogeneous equation since it contains the
inhomogeneous term f which does not involve z. We will now discuss the
solution to inhomogeneous equations.

Particular Solutions, Homogeneous Solutions, and Green’s Functions
If we had a function z, (t) that satisfied the inhomogeneous equation

Dz, = f, (38)

we would call this function z,, (t) a particular solution of the equation. Next let
us suppose that we also had a solution to the homogeneous equation

Dz, = 0. (39)

We call this function xp, (t) a homogeneous solution to the equation.
With these simple definitions we can prove a crucial result. First, if =, is a
particular solution satisfying equation (33) then z, + x, is another solution, for

D(zp+xp) =Dzxp+Dxp=f+0=f. (40)

Given one particular solution z, gives us a large number of other solutions
zp + 5. In fact we have found all the solutions. Since the function x} contains
two arbitrary constants, and we know that the general solution of any second
order differential equation contains exactly two arbitrary constants we know
that x, + xj is the general solution.

This result means that all we have to do is somehow find a single particular
solution z, (¢) of the equation of motion, equation (33), and we have every
solution in the form x (¢) =z, (t) + xp (1) .



With these definitions, consider the case where we have a solution to the
equation
DG (t,t)y=6(t—1t). (41)

Here G (t,t') is called the Green’s function for the operator D, and ¢ (¢t —t')
is the Dirac delta function. The Dirac delta function has the property that it
vanishes for all values of its argument whenever ¢ # t'. However it is infinite
when ¢ = ¢/ in such a manner that it satisfies the normalization condition

/OO S(t—t)dt' =1. (42)

Since the Dirac delta function is zero everywhere except for when ¢t = ¢/ we
could reduce the limits on this normalization integral to

t+e
/ S(t—t)dt' =1, (43)
t

—€

where € is vanishingly small as again the delta function only contributes when
t = t’. With this simple definition of a Dirac delta function, we note that
this Green’s function is simply a particular solution for a very specific forcing
function, namely § (¢t —¢'). As with any particular solution, we can add the
solutions to the homogeneous equation to the Green’s function it remains a
Green’s function for the operator D. One of the advantages (the one that is
of interest to us here) is that having a Green’s function for any linear operator
D allows to obtain the particular solution for an arbitrary forcing function.
Consider the integral

u(t) = / G(t,t) f()dt. (44)
—00
If we operate on the function u (t) that results from this integral we find

Du(t)=D / TGt f ) = / T pewey fiyar.  (45)

This last step comes from the fact that D is a linear operator that is operating
on the ¢ coordinate. Since the integral over ¢’ is basically a linear sum we are
free to bring D inside the integration. Once inside the integral it operates on
the Green’s function and we find

Du(t) = /OO5(t—t’)f(t’)dt’:/t+€5(t—t’)f(t’)dt’, (462)
—0o0 e t—e
Du(t) = f(t) /t_ S(t—t)dt = f(1). (46b)

Since the delta function vanishes for all values of t' except when ¢ = t, the
only value of f(¢') that contributes to the integration is when ¢ = t'. This

10



combined with the normalization of the delta function results in the identity
that we obtained in the above development

ro= [ su-oyrwar (47)

— 00

We see from equation (38) that the function w (¢) that we obtained in equation
(46Db) is a particular solution. This is a very important result, for it tells us
that if we have the Green’s function for the linear operator D, then all we
have to do to obtain a particular solution for an arbitrary forcing function is
perform the integral in equation (44). We should note however that as with any
particular solution we can always add a homogeneous solution to the Green’s
function and it remains a Green’s function. This is very valuable for this is often
necessary to obtain a Green’s function which satisfies the boundary conditions of
a given problem. This is accomplished by adding the appropriate homogeneous
solutions to the Green’s function.

We shall not pursue this approach any further for obtaining solutions to the
inhomogeneous equations with forcing functions, as the techniques for obtaining
the Green’s functions are a bit beyond the background of students in this class.
None-the-less, it is important to be aware of the possibilities that exist for
finding particular solutions.
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