
10 Lecture 10-16

10.0.1 Virial Theorem

Before we begin our discussion of oscillating systems we will have a short expose
of the Virial Theorem for a single particle. Consider the quantity (usually called
the virial G) as G = �!p � �!r : The time rate of change of G is given by

dG

dt
=

��!p � �!r +�!p �
��!r = �!F � �!r + 2T;

where T is the kinetic energy. Now if the force is a central conservative force
(usually the case) then it is given by

�!
F = �rU (r) ;

where U is the potential energy which is a function only of the distance between
the object source of the force. Additionally if the potential is of the form

U = krn;

then

�rU (r) = �@U
@r
br = �nkrn�1br:

The time derivative of G can now be written

dG

dt
= 2T � nkrn�1br � �!r = 2T � nkrn�1br � rbr = 2T � nU:

Taking the average of this equation results in�
dG

dt

�
= lim

�!1

1

�

Z �

0

dG

dt
dt = 2 hT i � n hUi

lim
�!1

1

�
(G (�)�G (0)) = 2 hT i � n hUi :

For any object in a bound orbit G itself is bounded, i.e. it has a maximum value
as it oscillates between its minimum and maximum values. This means its
average over a long time period must vanish. This results in the virial theorem
for a single particle, which is stated as

hT i = n

2
hUi :

We have already veri�ed this for perfectly circular orbits. In that case hT i = T
a constant and hUi = U a constant. Taking the time average we see that this
expression is more generally true.
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10.1 Chapter 5 Oscillations

Almost any system that is displaced from a position of stable equilibrium ex-
hibits oscillations. If the displacement is small the oscillations are almost always
of the type called simple harmonic. Oscillations and particularly simple har-
monic oscillations, are therefore extremely widespread. Their importance to
society ranges from a simple pendulum clock to atomic oscillations. It is for
these reasons that we shall study simple harmonic oscillations (SHO) and then
go on to damped and driven oscillations.

10.1.1 Hooke�s Law

Hooke�s law asserts that the force exerted by a spring has the form

Fx (x) = �kx; (1)

where x is the displacement of the spring from equilibrium and k (a positive
number) is the force constant. The fact that k is positive means that the
equilibrium at x = 0 is stable. This is easily seen from the form of the potential
energy

U (x) =
1

2
kx2: (2)

The second derivative of this parabola is simply k and for k > 0 we have a
position of stable equilibrium.
Now consider an arbitrary conservative one-dimensional system with a po-

tential energy U (x) : Further suppose that the system has a position of stable
equilibrium at x = xo: A Taylor�s series about this position is

U (x) = U (xo) + U
0 (xo) (x� xo) +

1

2
U 00 (xo) (x� xo)2 + � � � (3)

As long as x near xo then these three terms should be a good approximation
to the potential. Since the system is at equilibrium at x = xo; U 0 (xo) vanishes.
For convenience we can almost always choose the origin to coincide with xo.
Additionally we can rede�ne the reference point for the potential energy so that
U (0) = 0: To a good approximation the arbitrary potential takes the form
Hooke�s law

U (x) =
1

2
kx2; (4)

at least for small displacements from equilibrium. Note that if U 00 (xo) were less
than zero, then the point of equilibrium would be unstable. For the time being
we will such systems.
Hooke�s law comes up in many situations as it is not necessary for the coor-

dinate to be a rectangular coordinate such as x. Consider again the problem of
a cube balanced on a cylinder. The potential energy was given by

U (�) = mg [(r + b) cos � + r� sin �] : (5)
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If � is small then we can make the approximations sin � ' � and cos � ' 1��2=2;
so that

U (�) ' mg
�
(r + b)

�
1� �2=2

�
+ r�2

�
= mg (r + b) +

1

2
mg (r � b) �2: (6)

Apart from the constant this potential has the form of k�2=2 with an e¤ective
�spring constant� k = mg (r � b) : Notice that the equilibrium is stable only
when k = mg (r � b) > 0; which is what we found previously.
From our earlier plots of the potential energies, the general features of any

one dimensional system can be understood from Figure 5.1 which plots a par-
abolic potential as a function of x. If a particle has a total energy E > 0,

Figure 5.1 Potential energy U (x) = 1
2kx

2. A particle with energy E = 1
2kA

2

oscillates between two turning points at x = �A:

it is trapped and oscillates between x = �A: Since the kinetic energy is zero at
the turning points the total energy of the particle is E = 1

2kA
2: Note that due

to the symmetry of the potential the two turning points are equidistant from
the origin.

10.1.2 Simple Harmonic Motion - SHO

Consider a mass m attached to spring with spring constant k, From Newton�s
equation of motion we have

d2x

dt2
= � k

m
x = �!2x; (7)

where !2 is de�ned to be !2 = k=m: Replacing x with �; this is the same
equation that governed the skateboard in a trough (at least for small values of
�). There are several ways to write these solutions. They are have their own
advantages and you should be familiar with all of them.

3



Exponential Solutions Equation (7) is a second order, linear, homogeneous
di¤erential equation and has two independent solutions. We will consider the
solutions of the form

x (t) = ei!t and x (t) = e�i!t: (8)

A simple substitution readily veri�es that both of these functions satisfy equa-
tion (7). Since the EOM is linear and homogeneous the most general solution
is a linear superposition of these two independent solutions, i.e.

x (t) = C1e
i!t + C2e

�i!t: (9)

Sine and Cosine Solutions The exponential solutions are so easily handled,
they are often the solution of choice. But they do have one drawback. They
are complex and we know that the displacement of the particle is real. The
initial conditions have to force a real solution in a totally natural way. However
before we discuss that let�s consider the sine and cosine solutions. From Euler�s
formula we know that

e�i!t = cos!t� i sin!t: (10)

Substituting these solutions into equation (9) and grouping terms yields

x (t) = (C1 + C2) cos!t+ i (C1 � C2) sin!t;
x (t) = B1 cos!t+B2 sin!t; (11)

where B1 = C1 + C2 and B2 = i (C1 � C2) : This form of the solution makes
it clear why the di¤erential equation is that of a simple harmonic oscillator.
Additionally, since B1 and B2 are both real, we see that the constraints on C1
and C2; so that x (t) is real, is that they must be the complex conjugate of each
other, namely C1 = (B1 � iB2) =2 and C2 = C�1 = (B1 + iB2) =2.
The coe¢ cients B1 and B2 can both be easily determined from the initial

conditions. If initially the mass is stationary at x = A then we �nd

x (t) = A cos!t: (12)

If instead, we launch the cart at x = 0 with a velocity vo; we �nd

�
x (t) = vo cos!t! x (t) =

vo
!
sin!t:

As seen in �gure 5.2, both of these solutions oscillate at the same frequency
with a period of � = 2�=! = 2�

p
m=k and are out of phase with each other by

�=2:
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Figure 5.2 (a) Oscillations in which the cart is released from from rest xo at
t = 0 obey a cosine curve. (b) Oscillations that at equilibrium have an initial
velocity v = vo obey a sine curve. Both curves have the same frequency.

Phase Shifted Cosine Solution The general solution in equation (11) can
be rewritten as

x (t) = A cos (!t� �) : (13)

To see this we expand the cosine function and �nd

x (t) = A cos � cos!t+A sin � sin!t: (14)

Equating B1 = A cos � and B2 = A sin � makes it clear that these are identical
solutions. The advantage of this form is that the amplitude of the oscillations
is

A =
q
B21 +B

2
2 ; (15)

with a phase shift given by

� = tan�1B2=B1: (16)

Solution as the Real Part of a Complex Exponential As we already
noted C1 and C2 must be the complex conjugate of each other,

C2 = C
�
1 : (17)

Thus our original solution, equation (9), can be written as

x (t) = C1e
i!t + C�1e

�i!t; (18)

where we note that the second term on the right is the complex conjugate of
the �rst term on the right. For any complex number z = x+ iy; we have

z + z� = (x+ iy) + (x� iy) = 2x = 2Re (z) ; (19)

where Re (z) denotes the real part of z. Thus equation (18) can be written as

x (t) = 2Re
�
C1e

i!t
�
= Re

�
2C1e

i!t
�
= Re

�
Cei!t

�
; (20)

5



where we have de�ned C = 2C1: In terms of the real numbers B1 and B2 we
know that

2C1 = C = B1 � iB2 = A cos � � iA sin � = Ae�i�: (21)

This allows to write the answer as simply

x (t) = Re
�
Aei(!t��)

�
(22)

This result is shown in �gure 5.3 which is in agreement with equation (13).

Figure 5.3 The position x (t) of the cart is the real part of the complex number
Aei(!t��): As the complex number moves around the circle the position of the

cart oscillates back and forth on the x axis with amplitude A.

The complex number moves counterclockwise with angular velocity ! around
a circle of radius A. It real part is a projection onto the real axis. While the
complex number rotates around the circle the real part oscillates back and forth
with angular frequency ! and amplitude A. Speci�cally

x (t) = A cos (!t� �) ; (23)

As an example of simple harmonic motion consider a bottle partially �lled
with sand �oating in water. At equilibrium it is submerged to a depth of do:
From the principle of Archimedes we know that at equilibrium

mg = �gAdo; (24)

where � is the density of water and A is the cross sectional area of the bottle. If
we push it to a depth of d = do + x; the bottle experiences a restoring force of

F = ��gA (d� do) = ��gAx; (25)
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where we are measuring x positive in the downward direction. Newton�s EOM
becomes

m
��
x = �Ado

��
x = ��gAx;

��
x = � g

do
x: (26)

Which is our equation for simple harmonic motion. If do = 20cm then the
period of oscillation is

� = 2�
p
do=g = 2�

p
:2=9:8 = :9 sec : (27)

Energy Considerations Before we move on from this discussion it is time
to summarize the energy of an oscillator. Consider Figure 5.1 once again. (now
Figure 5.4). As we have seen a general solution for the motion of the particle is

Figure 1: Potential energy U (x) = 1
2kx

2. A particle with energy E = 1
2kA

2

oscillates between two turning points at x = �A:

x (t) = A cos (!t� �) with the velocity being given by �
x (t) = �A! sin (!t� �) :

Thus the potential energy is simply

U =
1

2
kx2 =

1

2
kA2 cos2 (!t� �) ; (28)

and the kinetic energy is

T =
1

2
m
�
x
2
=
1

2
m!2A2 sin2 (!t� �) ;

=
1

2
kA2 sin2 (!t� �) : (29)

So both T and U oscillate between 0 and 1
2kA

2; with their oscillations perfectly
out of step. When T is a maximum U is zero and vice-versa. The sum of T and
U is simply

E = T + U =
1

2
kA2; (30)

which is a constant as it had to be.
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Expectation Values and the Virial Theorem For an SHO of period
the average value of a variable f is expressed as

hfi = 1

�

Z �

0

f (t) dt:

Alternatively for a nonoscillating system we could use the same expression while
letting � ! 1: With this de�nition we �nd that the average value of the po-
tential energy for an SHO is

hUi = 1

2
k


x2 (t)

�
=
1

2
kA2



cos2 (!t� �)

�
=
1

2
kA2

1

�

Z �

0

�
1

2
+
1

2
cos 2 (!t� �)

�
dt:

(31)
The integral over the cosine function vanishes leading to the result

hUi = 1

2

�
1

2
kA2

�
=
1

2
E: (32)

Meanwhile the average value of the kinetic energy is

hT i = 1

2
m

�
�
x
2
(t)

�
=
1

2
mA2!2



sin2 (!t� �)

�
=
1

2
kA2

�
1

2
� 1
2
cos 2 (!t� �)

�
:

(33)
Using the same argument that was used in evaluating the average potential
energy we �nd

hT i = 1

2

�
1

2
kA2

�
= hUi = 1

2
E: (34)

Hence
hT + Ui = hEi = E;

as it had to be. Remembering the virial theorem that we proved for circular
orbits, T = nU=2; we notice that on average for an SHO that

hT i = n

2
hUi = hUi ;

as n = 2 for an SHO. So on average our SHO satis�es the same relation.

10.1.3 Two-Dimensional Oscillators

In two dimensions the possibilities for oscillations are much richer than in one
dimension. The simplest is that of an isotropic oscillator for which the restor-
ing force is proportional to the displacement from equilibrium with the same
constant in all directions: �!

F = �k�!r : (35)

In component form this equation becomes Fx = �kx; Fy = �ky; and (for
three dimensions Fz = �kz): In an exercise for the student, the four identical
springs as shown in Figure 5.5 produce a restoring force resulting in an isotropic
oscillator.
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Figure 5.5 (a) A restoring force that is proportional to �!r de�nes an isotropic
harmonic oscillator. (b) A mass at the center of 4 springs (in this arrangement)

would experience a net force
�!
F = �k�!r in the plane of the springs.

A particle that is subject to this kind of force in two dimensions satis�es the
two independent equations

��
x = �!2x and ��

y = �!2y; (36)

where as usual !2 = k=m. The solutions for these two equations were discussed
in the last section and are

x (t) = Ax cos (!t� �x) ; (37a)

y (t) = Ay cos (!t� �y) ; (37b)

where the four constants are determined by the initial conditions of the problem.
By rede�ning the time origin we can eliminate one of the phases. Thus the
simplest form for the general solution is

x (t) = Ax cos!t; (38a)

y (t) = Ay cos (!t� �) ; (38b)

where � = �y � �x and is the relative phase of the x and y oscillations.
The behavior of the solutions 38a and 38b depends on the values of the three

constants, Ax; Ay; and �: If either Ax or Ay is zero, then the particle executes
simple harmonic motion along one of the axes. If neither Ax nor Ay is zero, the
motion depends critically on the relative phase �: If � = 0; then both x and y
rise and fall in step along a line passing through the origin with slope Ay=Ax
as shown in Figure 5.6(a). If � = �=2; then x and y oscillate out of step. When
x is at an extreme, y is zero and vice versa. The resulting curve is an ellipse
with semimajor and semiminor axes Ax and Ay as shown in Figure 5.6(b). For
other values of � the curves determined by y (t) and x (t) are slanting ellipses as
shown in Figure 5.6(c) for � = �=4: What would you expect for � = �?
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Figure 5.6 Motion of a two-dimensional isotropic oscillator as given by
equations 5.38 (a) & (b) for relative phases (a) � = 0; (b) � = �=2; and (c)

� = �=4:

In an anisotropic oscillator, the restoring force constants are di¤erent for the
di¤erent directions:

Fx = �kxx; Fy = �kyy; and Fz = �kz: (39)

For simplicity we will again only consider this problem in two dimensions. The
solutions to Newton�s EOM are similar to the isotropic case and we have

x (t) = Ax cos!xt; (40a)

y (t) = Ax cos (!yt� �) : (40b)

Because of the two di¤erent frequencies, there is a much richer variety of possible
motions. If !x=!y is a rational number, it is fairly easy to see (as an exercise
for the student) that the motion is periodic. The resulting path is a Lissajou
�gure and an example for !x=!y = 2 is shown in Figure 5.7(a). In that �gure
you can see that x goes back and forth twice for each time that y does so once.
If !x=!y is an irrational number then the motion is more complicated and never
repeats itself. This case is illustrated for !x=!y =

p
2 in �gure 5.7(b).

Figure 5.7 Possible paths for anisotropic oscillators with (a) !x = 2!y and (b)
!x =

p
2!y: The motion in (b) is called quasi-periodic as it is periodic in

either x or y but �!r (t) is not periodic.
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