
9 Lecture 10-14

9.1 Chapter 4 Energy (con)

9.1.1 Energy of Interaction of Two Particles

We would like to extend our discussion to a system of multiple particles. We will
start by considering just two particles. We shall assume that the interaction be-
tween two particles is translationally invariant. This means that if we translate
the system to a new position, without changing the relative positions of the two
particles, the interaction between the two particles remains the same. This is
consistent with our physical intuition, and we will assume that this property is
always maintained. As an example we will examine the gravitational interaction
between two particles with masses m1 and m2. The force on m1 due to

�!
F 12 is

expressed as a function of �!r 1 and �!r 2 as

�!
F 12 = �

Gm1m2

j�!r j2
br = �Gm1m2

j�!r j3
�!r ; (1)

where
�!r = �!r 1 ��!r 2: (2)

Rewriting this interaction as a function of �!r 1 ��!r 2 yields

�!
F 12 =

�!
F (�!r 1 ��!r 2) = �

Gm1m2

j�!r 1 ��!r 2j3
(�!r 1 ��!r 2) : (3)

Here �!r 1 and �!r 2 are measured from the same arbitrary origin. In this form
it is easily seen that translating the system by an amount �!s (�!r 1 ! �!r 1 � �!s
and �!r 2 ! �!r 2 � �!s ) leaves the interaction unchanged. In this form it is also
easy to see that Newton�s third law is satis�ed as

�!
F 12 = �

�!
F 21: Before we leave

this expression it is also useful to note that the vector �!r 1��!r 2 originates from
the location of �!r 2 and terminates at �!r 1: This means that the gravitational
interaction of m2 on m1 points toward m2 meaning that this interaction is
attractive.
The result in equation (3) simpli�es our discussion. We can learn almost

everything of interest about
�!
F 12 by �xing

�!r 2 a convenient point, namely the
origin. For example if the force

�!
F 12 on particle 1 is conservative then it must

satisfy
r1 �

�!
F 12 = 0: (4)

If the curl does vanish, then we can de�ne a potential energy via

�!
F 12 = �r1U (�!r 1) ; (5)

where r1 is the operator

r1 = bx @

@x1
+ by @

@y1
+ bz @

@z1
= br1 @

@r1
+ b�1 1

r1

@

@�1
+ b�1 1

r1 sin �1

@

@�1
: (6)
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This gives the force when particle 2 is at the origin. To �nd it with particle 2
being at some arbitrary location we merely replace �!r 1 with �!r 1 � �!r 2 and we
have �!

F 12 = �r1U (�!r 1 ��!r 2) : (7)

Notice that we didn�t have to change the operator r1 since partial derivatives
are not impacted by (e¤ectively) adding a constant to �!r 1:
To �nd the reaction force we can merely change the sign of

�!
F 12, as is clear

in equation (3), or we can simply replace r1 by r2 which yields
�!
F 21 = �r2U (�!r 1 ��!r 2) = �

�!
F 12 (8)

Equations (7) and (8) are an elegant result that generalizes to multiple particle
systems. To emphasize this result we will rewrite them as

Force on particle 1 = �r1U
Force on particle 2 = �r2U:

(9)

So there is a single potential energy function U , from which we can derive both
forces. To �nd the force on particle 1, we merely take the gradient of U with
respect to the coordinates of particle 1, and to �nd the force on particle 2, we
take the gradient of U with respect to the coordinates of particle 2.
Before we generalize this result to multiple particle systems, let us consider

the conservation of energy for our two-particle system. From the work-KE
theorem the work done on particle 1 during a short time period dt is

dT1 =
�!
F 12 � d�!r 1; (10)

while the work done on particle 2 is

dT2 =
�!
F 21 � d�!r 2: (11)

Adding these two expressions we �nd the change in the total kinetic energy as

dT = dT1 + dT2 =
�!
F 12 � d�!r 1 +

�!
F 21 � d�!r 2: (12)

Since
�!
F 21 = �

�!
F 12 we see that

dT =
�!
F 12 � (d�!r 1 � d�!r 2) =

�!
F 12 � d (�!r 1 ��!r 2) : (13)

Substituting �r1U for
�!
F 12 yields

dT = �r1U (�!r 1 ��!r 2) � d (�!r 1 ��!r 2) : (14)

Now replacing �!r 1 ��!r 2 with the relative coordinate �!r we �nd

dT = �rU � d�!r = �dU: (15)
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Moving �dU to the other side of the equation allows us to conclude

d (T + U) = 0: (16)

That is the total energy,

E = T + U = T1 + T2 + U; (17)

of our two particle system is conserved. It is important to note that the total
energy of our two particle system contains the kinetic energy of both particles
(of course), but only one potential energy, the potential energy of the interaction
between the two particles. Here U accounts for the work done by both of the
forces

�!
F 12 and

�!
F 21:

Elastic Collisions As an application of these ideas, consider an elastic colli-
sion. We will de�ne an elastic collision as a collision between two particles that
interact via a conservative force (so we can de�ne a potential energy of inter-
action) that goes to zero as j�!r 1 ��!r 2j ! 1: Since the force goes to zero, the
potential energy approaches a constant which we will usually de�ne to be zero
(remember our reference point �!r 0). For example, the two particles could be an
electron and a proton or two billiard balls. We can include billiard balls in this
discussion because as it turns out billiard balls are designed so that they behave
like almost perfect springs when they come into contact with each other. Clearly
lumps of putty or other similar objects interact via nonconservative forces and
the collisions between these types of objects (deform easily) are not elastic.
In an elastic collision between two particles the total energy is conserved,

i.e. T + U = T1 + T2 + U = E; where E is a constant. Additionally U ! 0 as
their separation becomes large. If we use the subscripts i and f to denote their
initial and �nal conditions when they are far apart then we have

Ti = Tf ! (T1 + T2)i = (T1 + T2)f : (18)

In other words an elastic collision is one in which two particles come together
and reemerge with their total kinetic energy unchanged. Note, however, that
the total kinetic energy is not conserved throughout the interaction. As they
approach each other their potential energy is nonzero and consequently their
kinetic energy is changing. It is only when they are well removed from each
other (and therefore their potential energy is negligible) that their total kinetic
energy is conserved.
Our discussion seems to imply that elastic collisions are very common as

all that is required is two particles interacting with a conservative force. The
problem is that we require two particles to enter and leave the collision. For
example if we �re one of the billiard balls with enough energy, it may shatter
the second billiard ball. Similarly, if we �re an electron with su¢ cient energy
at an atom, the atom may break up or at least go into an excited state. Even
the collision of two genuine particles such as an electron and a proton, we
know that new particles may be created. Clearly at high enough energies the

3



assumption that two particles come together and reemerge breaks down even
if all the underlying forces are conservative. Never-the-less at reasonably low
energies there are many situations where the collisions are perfectly elastic.
As an example of an elastic collision, consider the collision between two

particles of equal mass (electrons or billiard balls). If one of the particles is at
rest (particle 2) then from the conservation of momentum we have

�!v 1 = �!v 01 +�!v 02; (19)

where we denote the velocities after the collision with a prime. Since we have
an elastic collision we can also state that

�!v 21 = �!v 021 +�!v 022 : (20)

Squaring equation (19) yields

�!v 21 = �!v 021 +�!v 022 + 2�!v 01 � �!v 02: (21)

Subtracting equation (20) from this results we �nd

�!v 01 � �!v 02 = 0: (22)

So unless one of the velocities is zero they exit the collision perpendicular to
each other. This result is useful in interpreting scattering experiments. When
an unknown projectile hits a stationary target particle, the fact that the two
emerge at 90� is taken as evidence that the collision was elastic and the two
particles had equal masses.

9.1.2 Energy of a Multiple Particle System

For a multiple particle system withN particles, the total kinetic energy is simply

T = T1 + T2 + � � � =
NX
�=1

T�: (23)

To de�ne the potential energy, we must �rst examine the forces on the particles.
First we consider the internal forces of the particles acting on each other. We
shall take for granted that each of the interparticle forces

�!
F �� are una¤ected

by the presence of any of the other particles. Of course other particles can exert
additional forces on the � particle, but we are claiming that only the force of
the � particle on the � particle contributes to

�!
F �� : One could imagine a world

where this is not true (for example a three body interaction), but experiment
seems to con�rm our assumption. Thus we can treat the pair of forces

�!
F �� and�!

F �� exactly as we did for the two body problem. Now provided the forces are
conservative we can de�ne a potential energy

U�� = U (
�!r � ��!r �) : (24)
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The corresponding forces are then

�!
F �� = �r�U (�!r � ��!r �) and

�!
F �� = �r�U (�!r � ��!r �) : (25)

Being careful to only include the potential energy between distinct pairs of
particles, the total potential energy is then given by

U int =
X
�

X
�>�

U�� (26)

where again
U�� = U (

�!r � ��!r �) : (27)

If the forces are central (as is usually the case) then, remembering our assump-
tion about them being conservative, U�� just depends on the magnitude of�!r � ��!r � and

U�� = U (j�!r � ��!r � j) : (28)

Hence U�� = U�� and the total energy potential becomes

U int =
X
�

X
�>�

U�� =
1

2

X
�;� 6=�

U�� (29)

If there is a conservative external �eld, e.g. N charged particles in an electric
�eld, then each of the N particles has a potential energy associated with this
�eld. The total potential energy is then

U = U int + U ext =
X
�

U ext� +
1

2

X
�;� 6=�

U�� (30)

Now, as a rigid body moves, the positions �!r � of the atoms can of course
move but the distance j�!r � ��!r � j between any two atoms cannot change. There-
fore, the internal potential energy does not change. Basically it is a constant
and can be ignored. Thus in applying energy considerations to rigid bodies we
totally ignore U int and only consider the potential due to external �elds, U ext .
This latter energy is often a very simple function and energy considerations as
applied to a rigid body are often straightforward.
As an example of this, consider a cylinder of mass M and radius R rolling

without slipping down an incline as shown in Figure 4.11. Its kinetic energy is
a combination of translational and rotational terms,

T =
1

2
mv2 +

1

2
I!2; (31)

where I is the momentum of inertia and as we have shown I = mR2=2:
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Figure 4.11. A uniform cylinder starts from rest and rolls without slipping
through a total vertical height h = Yfin � Yin:

Since the cylinder rolls without slipping v = R!; and the total kinetic energy is

T =
1

2
mv2 +

1

2

�
1

2
mR2

�
v2

R2
=
3

4
mv2 (32)

There are three external forces on the cylinder, the normal force of the incline,
frictional forces, and gravity. The normal force does no work and as long as the
cylinder does not slip neither does the force of friction. We are left with the
gravitational force and it is conservative. If the particle starts from rest and
descends a height h then from the conservation of energy

�T +�U = 0; (33a)
3

4
mv2 �mgh = 0; (33b)

so that
v=
p
4gh=3: (34)

As a �nal example consider a hydrogen atom in which an electron, which
we will label as electron 1, is in a circular orbit of radius r around a proton. A
second electron approaches this atom from afar with kinetic energy T2: After the
collision, the original bound electron is knocked free and the second electron is
captured into a circular orbit of radius r0 and we wish to determine the kinetic
energy of the �rst electron when it is far from the proton. Since the Coulomb
force is of the form U = kr�1; we know from the virial theorem for circular
orbits that the kinetic energy is given by T = nU=2 = �U=2 and the total
energy is E = T +U = U=2: Assuming that the proton is �xed, the total energy
for this three particle system when the second electron is far away is

E =
1

2
mv21 �

ke2

r
+
1

2
mv22 =

1

2
U1 + T2 = �

ke2

2r
+ T2: (35)
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Long after the collision the energy is

E0 =
1

2
mv022 �

ke2

r0
+
1

2
mv021 =

1

2
U2 + T

0
1 = �

ke2

2r0
+ T 01: (36)

By the conservation of energy we have

T 01 = T2 �
ke2

2

�
1

r
� 1

r0

�
= T2 +

ke2

2

�
1

r0
� 1
r

�
(37)

9.1.3 Review for Chapter 4

The change in the kinetic energy of a particle as it moves from point 1 to point
2 is given by

�T =

Z 2

1

�!
F � d�!r �W (�!r 1 ! �!r 2) ; (38)

where W is the work done by the total force,
�!
F , over the path from point 1

to point 2. The integral that de�nes the work done is a path integral and in
general is path dependent. A force is conservative if (i)

�!
F =

�!
F (�!r ) ; i.e. it is

independent of time, velocity, or any other variable, and (ii) the work done is
path independent. From Stokes theorem this implies that the curl of the force
vanishes, r��!F = 0: If

�!
F is conservative then the work done only depends on

the endpoints and we can de�ne a potential energy as

U (�!r ) =W (�!r o ! �!r ) = �
Z �!r

�!r o

�!
F � d�!r ; (39)

so that U (�!r o) = 0:
If all of the forces are conservative with corresponding potential energies

then the total mechanical energy

E = T + U1 + � � �+ Un (40)

is conserved, hence the name conservative force. More generally if there are
nonconservative forces then �E = Wnc; the work done by the nonconservative
forces.
A force

�!
F (�!r ) is a central force if the force originates (or terminates) from

a force center. If this center is taken to be the origin, usually convenient, then

�!
F (�!r ) = f (�!r ) br: (41)

A central force is spherically symmetric, f (�!r ) = f (r) ; if and only if it is
conservative.
For one-dimensional systems energy diagrams that are plots of the potential

energy can be very useful in qualitatively understanding the motion of a particle.
Points where the energy of the particle equals the potential energy, E = U; are
turning points, and since the force is given by �dU=dx, the particle always

7



experiences a force "in the downward direction". Points where dU=dx = 0
are locations of equilibrium. If d2U=dx2 > 0 then it is a position of stable
equilibrium as opposed to the condition d2U=dx2 < 0 which denotes a position
of unstable equilibrium.
For a multiparticle system in the presence of conservative forces the total

potential energy is

U = U int + Uext =
1

2

X
�;� 6=�

U�� +
X

Uext� : (42)

The net force on particle � is

�!
F � = �r�U; (43)

and the total energy is conserved.
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