
8 Lecture 10-12

8.1 Chapter 4 Energy (con)

8.1.1 Curvilinear One-Dimensional Systems

When an object is con�ned to travel along any one-dimensional curved path, we
simply de�ne the distance along curved path to be s. Then the kinetic energy
still takes the simple form

T =
1

2
m
�
s
2
; (1)

as compared to m
�
x
2
=2 for a straight track. As the object travels along this

curved path there are normal forces required to keep the object on the path.
However, normal forces do no work and do not impact the total mechanical
energy of the system. Any tangential component of the force does do work and
in an analogous way to that used for the linear one-dimensional problem we can
show

Ftan = m
��
s: (2)

Again note the analogy with Fx = m
��
x along a straight track. Further if all the

forces that have tangential components with our track are conservative then we
can de�ne a corresponding potential energy U (s) such that Ftan = �dU=ds:
The entire discussion that we have been involved in still applies and the total
mechanical energy E = T + U (s) is conserved.
Some of the examples that can be treated in this manner are more involved

than an object traveling along a curved track. Consider a cube balanced on
a cylinder in Figure 4.8. A hard rubber cylinder (no slip condition applies) of
radius r is held �xed with its axis horizontal, and a wooden cube of side 2b is
balanced on top of the cylinder. The center of the cube is directly above the axis
of the cylinder and four of its sides are parallel to the axis as well (see Figure
4.8). The cube cannot slide on the cylinder but it can, of course, rock back and
forth. The goal in this example will be to �nd the e¤ective potential energy
and determine the conditions required for stable equilibrium for the cube. As a
single parameter we can de�ne the distance s along the surface of the cylinder.
However it is a bit more convenient to de�ne the angle � that determines the
point of contact between the cylinder and the cube. The constraining forces, the
normal force and frictional force, simply constrain the cube to rock on cylinder.
Since they do no work we will not consider them explicitly. We will de�ne the
potential energy to be U = mgh; where h is the distance above the center of
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Figure 4.8. A cube of side 2b and center C is placed on a �xed horizontal
cylinder of radius r and center O. It is originally placed so that C is directly

above O: The cube can roll from side to side without slipping.

the cylinder. This problem can be analyzed using the geometry shown in Figure
4.8. The length of the line OB is r + b. In terms of the angle �; the potential
energy is given by

U (�) = mgh = mg ((r + b) cos � + CB sin �) : (3)

Now imagine an additional point A that is the bisector of the bottom of the
cube. This point is in contact with the cylinder when the cube is perfectly
balanced on the cylinder, � = 0. As the cube rocks on the cylinder the distance
from A to the point of contact between the cube and cylinder is equal to CB
and given by r�: Thus the potential energy can be written as

U (�) = mgh = mg ((r + b) cos � + r� sin �) : (4)

The derivative of U (�) is found to be

dU

d�
= mg (�b sin � + r� cos �) : (5)

This vanishes at � = 0; con�rming our physical intuition that the system is in
equilibrium at this point. To determine if this equilibrium is a position of stable
equilibrium, we merely have to di¤erentiate one more time to �nd�

d2U

d�2

�
�=0

= mg [�b cos � + r cos � � r� sin �]�=0 = mg (r � b) (6)

So we see that if the cube is smaller than the cylinder, r > b; so that d2U=dx2 >
0; the system is stable. Any small perturbation to the cube and it will rock back
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and forth atop the cylinder. Conversely if the cube is larger than the cylinder,
b > r; so that d2U=dx2 < 0; the system is unstable. Any small perturbation will
result in the cube rolling o¤ the cube.

Further Generalizations There are many systems that can be described as
one dimensional. All that is required is just one parameter to describe the sys-
tem�s position. As an additional example we will consider the Atwood machine
in Figure 4.9 that involves two masses, an inextensible string, and a massless
pulley (although it is straightforward to include the mass of the pulley). The
two masses move up and down, but a nonslip condition between the inextensible
string and the pulley ensures us that when one of the masses moves up the other
moves down by exactly the same distance. Thus the description of the system
can be speci�ed by a single parameter, for example the distance x of m1 below
the pulley�s center as shown

Figure 4.9. An Atwood machine consistine of two masses m1 and m2 with a
massless pulley and string. Since the length of the string is �xed, the position
of the whole system is speci�ed by the distance x of m1 below any convenient
�xed level. The tension in the string FT is the same all along the string.

in Figure 4.9. Thus this system is again one-dimensional.
Since the gravitational force is conservative, we can de�ne potential energies

U1 and U2 for the gravitational energies. The work done by the tension in the
string on the two masses is W ten

1 and W ten
2 : This means that we can write the

change in mechanical energy for the two masses as

�T1 +�U1 =W
ten
1 ; (7)

and
�T2 +�U2 =W

ten
2 (8)
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Now, with a massless pulley, the tension is the same all along the string. Addi-
tionally when one mass moves up the other moves down. Thus the total work
done by the tension vanishes. Thus adding equations (5) and (6) yields

�(T1 + U1 + T2 + U2) = �E = 0; (9)

where E is the total mechanical energy in the system. That is, the total me-
chanical energy

E = T1 + U1 + T2 + U2 (10)

is conserved. The beauty of this result is that all reference to the constraining
forces of the string and pulley has disappeared.
A careful discussion of constrained systems is far easier in the Lagrangian

formulation which we will consider later in the course. Thus we shall postpone
any further discussion of issues related to constraints until that time.

8.1.2 Central Forces

A three-dimensional situation that has some of the simplicity of one-dimensional
problems is a particle that is subject to a central force. By de�nition that means
that the force is everywhere directed toward a �xed �force center�. De�ning the
force center to be the origin, a central force takes the form

�!
F (�!r ) = f (�!r ) br: (11)

Two obvious examples of a central force are the Coulomb force and the gravi-
tational force,

�!
F C (

�!r ) = k qQ
r2
br or �!F G (

�!r ) = �GmM
r2

br: (12)

The negative sign for the gravitational force indicates that this force is always
attractive, whereas the sign of the Coulomb force depends on the sign of the
interacting charges, i.e. charges of opposite sign attract while those with the
same sign repel. First, both the Coulomb force and the gravitational force are
conservative (We have already shown thatr��!F G = 0:). Second these forces are
spherically symmetric (rotationally invariant). This means that the magnitude
of the force depends only on the magnitude of the distance from the origin. We
can write this property as

f (�!r ) = f (r) : (13)

A feature of central forces is that if the force is conservative then it is auto-
matically spherically symmetric, and, conversely, if a central force is spherically
symmetric then it is conservative. Before we show this it is useful to review
spherical polar coordinates.
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Spherical Polar Coordinates In spherical polar coordinates the position P
determined by the vector �!r is given by the coordinates (r; �; �) as de�ned in
Figure 4.10. The magnitude of the distance from the origin is r = j�!r j, � is the
angle measured from the z axis, and �; often referred to as the azimuthal angle,
is the angle from the x axis to the projection of �!r onto the x� y plane.

Figure 4.10. Spherical coordinates (r; �; �) of point P are de�ned so that r is
the distance from from the origin to P , � is the angle between OP and the z
axis, and � is the angle of between OQ from the x axis where Q is the

projection of P onto the xy plane.

The Cartesian coordinates are found from the relations

x = r sin � cos�; y = r sin � sin�; and z = cos �: (14)

It is often useful to note that on the Earth, � is the angle of latitude, � is the
angle of longitude, and z coincides with the north polar axis. The spherical unit
vectors are de�ned in the usual way. First br is the unit vector pointing in the
direction of increasing radial distance while � and � are held �xed. Similarlyb� points in the direction of increasing � while r and � are held �xed. Finally,b� points in the direction of increasing � while r and � are held �xed. These
unit vectors can be expanded in terms of the Cartesian unit vectors with the
relations br = sin � cos�bx+ sin � sin�by + cos �bz; (15a)b� = cos � cos�bx+ cos � sin�by � sin �bz; (15b)b� = � sin�bx+ cos�by: (15c)

A little algebra also shows that these unit vectors are mutually orthogonal.
Additionally they satisfy the cross product br � b� = b� with the obvious cyclic
permutations being satis�ed as well.
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Now these unit vectors form a complete set and any vector can be expanded
in this basis via �!

A = Arbr +A�b� +A�b�: (16)

Then the dot product of
�!
A and

�!
B is given by

�!
A � �!B = ArBr +A�B� +A�B�; (17)

while the cross product is

�!
A ��!B = (A�B� �A�B�) br + (A�Br �ArB�)b� + (ArB� �A�Br) b�: (18)

The Gradient in Spherical Polar Coordinates In Cartesian coordinates
the gradient is de�ned as

rf = bx@f
@x

+ by @f
@y
+ bz @f

@z
: (19)

Using the chain rule we could �nd the gradient in spherical coordinates but that
would be cumbersome. There is a much easier way. We have already shown
that the change in potential energy is found from

dU = ��!F � d�!r ; (20)

where
�!
F = �rU: This means that we can write

dU = rU � d�!r ; (21)

which is true for any arbitrary scaler function, f . To �nd d�!r ; we note that
the position vector �!r = rbr = r (sin � cos�bx+ sin � sin�by + cos �bz) : Now the
Cartesian unit vectors are constant so that from the chain rule

d�!r =
@�!r
@r
dr +

@�!r
@�
d� +

@�!r
@�

d�;

d�!r = (sin � cos�bx+ sin � sin�by + cos �bz) dr
+r (cos � cos�bx+ cos � sin�by � sin �bz) d�
+r sin � (� sin�bx+ cos�by) d�:

From the spherical unit vectors that we found in equations (29a,b,c) we �nd

d�!r = brdr + rb�d� + r sin �b�d�: (22)

Note that we could have also written this down by decomposing any di¤erential
displacement from �!r into the br, b�; and b� directions. Then with the appropriate
radius for the � and � direction arrive at equation (36). Now we can evaluate
the dot product in equation (35) for an arbitrary scalar function f , which yields

df = rf � d�!r = (rf)r dr + (rf)� rd� + (rf)� r sin �d� (23)
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Meanwhile our arbitrary scalar function f is simply a function of r; �; and �; so
that from the chain rule

df =
@f

@r
dr +

@f

@�
d� +

@f

@�
d�: (24)

Comparing equations (37) and (38) allows us to identify the components of rf
as

(rf)r =
@f

@r
; (rf)� =

1

r

@f

@�
; and (rf)� =

1

r sin �

@f

@�
; (25)

or

rf = br @f
@r
+ b�1

r

@f

@�
+ b� 1

r sin �

@f

@�
: (26)

In similar ways we can �nd the curl and other operators of vector calculus,
all of which are more complicated in spherical coordinates than in Cartesian
coordinates. They are listed in the back of Taylor�s book.

Conservative and Spherically Symmetric, Central Forces To show that
a central force is conservative if and only if it is spherically symmetric, we will
make use of spherical polar coordinates. First we will assume that the central
force

�!
F (�!r ) is conservative and show that it must be spherically symmetric.

Since it is conservative, it can be expressed as �rU which we just showed has
the form

�rU = �br @U
@r

� b�1
r

@U

@�
� b� 1

r sin �

@U

@�
: (27)

Since
�!
F (�!r ) is a central force, only its radial component can be nonzero. This

requires @U=@� = @U=@� = 0; or U is spherically symmetric. This leads directly
to the result

�!
F (�!r ) = �br @U

@r
: (28)

Since U is spherically symmetric, the same must be true of @U=@r; and we see
that

�!
F (�!r ) is indeed spherically symmetric. The other half of the proof, that

a spherically symmetric central force is necessarily conservative, is left as an
exercise for the student. (Hint, remember that a conservative force satis�es
r��!F = 0.)
Now because a central force

�!
F (�!r ) is spherically symmetric, it has a mag-

nitude that depends only on r = j�!r j. Additionally, although �!F (�!r ) is not
actually one-dimensional as its direction depends on � and �; we shall see that
any problem involving this kind of force is mathematically equivalent to a related
one-dimensional problem.
As an application of these principles, consider a particle moving in a perfectly

circular orbit in the �eld of a central attractive force with potential energy
U (r) = krn: Since a central force conserves angular momentum, the motion of
the particle must remain in a �xed plane which we de�ne to be the equatorial
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plane in Figure 6. With this in mind, using spherical coordinates we can express
the kinetic energy of a particle in the presence of a central force as

T =
1

2
m
�
r
2
+
1

2
mr2

�
�
2

; (29)

where � is the azimuthal angle. We found that the angular momentum for a sin-

gle particle (as measured from the origin of the force) is ` = mr2
�
�
2

: Substituting

for
�
� in equation (43) we �nd

T =
1

2
m
�
r
2
+

`2

2mr2
: (30)

The total energy is then

T + U =
1

2
m
�
r
2
+

`2

2mr2
+ krn = E: (31)

Here we have taken advantage of the conservation of angular momentum to
replaced the kinetic energy term due to the angular velocity by a term that
only depends on the radial coordinate, `2=

�
2mr2

�
. This expression for the

total energy is now of the form

T + Ueff = E; (32)

where

Ueff =
`2

2mr2
+ krn: (33)

For a circular orbit the radius is �xed,
�
r = 0; and the particle�s radial location

must occur at a minimum in the e¤ective potential. Hence

dUeff (rcir)

dr
= � `2

mr3cir
+ nkrn�1cir = 0;

rncir =
`2

mnkr2cir
: (34)

In terms of this radius, the total energy for our particle in a circular orbit reduces
to

E =
`2

2mr2cir
+ krncir =

`2

2mr2cir
+

`2

mnr2cir
=
n

2
U + U; (35)

where the potential energy is now expressed as U = `2=mnr2cir: Thus the kinetic
energy in a circular orbit is related to the potential energy via

T =
n

2
U: (36)

This is a statement of the virial theorem for circular orbits.
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