Shortest Distance Between Two Points on the Surface of

a Cone Given a cone with a half angle α whose axis of symmetry is the z axis, using polar cylindrical coordinates, the distance between two points that are differentially separated is

$$
d s=\sqrt{d z^{2}+d \rho^{2}+\rho^{2} d \phi^{2}} .
$$

z and ρ are related via $z=\rho / \tan \alpha$, which implies $d z=d \rho / \tan \alpha=\cot \alpha d \rho$. Hence

$$
\begin{aligned}
d s & =\sqrt{\cot ^{2} \alpha d \rho^{2}+d \rho^{2}+\rho^{2} d \phi^{2}}=\sqrt{d \rho^{2} / \sin ^{2} \alpha+\rho^{2} d \phi^{2}} \\
d s & =\frac{1}{\sin \alpha} \sqrt{d \rho^{2}+\sin ^{2} \alpha \rho^{2} d \phi^{2}}
\end{aligned}
$$

The distance between two points can be represented in two different ways.
(1) In this method the total distance is given by

$$
L=\frac{1}{\sin \alpha} \int_{1}^{2} \sqrt{1+\sin ^{2} \alpha \rho^{2} \phi^{\prime 2}} d \rho,
$$

where $\phi^{\prime}=d \phi / d \rho$. This integrand, f, is independent of ϕ. Hence the EulerLagrange equation is

$$
\frac{\partial f}{\partial \phi}=\frac{d}{d \rho} \frac{\partial f}{\partial \phi^{\prime}}=\frac{d}{d \rho} \frac{\sin \alpha \rho^{2} \phi^{\prime}}{\sqrt{1+\sin ^{2} \alpha \rho^{2} \phi^{\prime 2}}}=0
$$

This implies

$$
\frac{\sin \alpha \rho^{2} \phi^{\prime}}{\sqrt{1+\sin ^{2} \alpha \rho^{2} \phi^{\prime 2}}}=\rho_{o},
$$

where ρ_{o} is a constant. Solving for ϕ^{\prime} results in

$$
\begin{aligned}
& \sin ^{2} \alpha \rho^{4} \phi^{\prime 2}=\rho_{o}^{2}\left(1+\sin ^{2} \alpha \rho^{2} \phi^{2}\right) \\
& \left(\rho^{2}-\rho_{o}^{2}\right) \sin ^{2} \alpha \rho^{2} \phi^{\prime 2}=\rho_{o}^{2} \\
& \frac{d \phi}{d \rho}=\frac{\rho_{o}}{\sin \alpha \rho \sqrt{\rho^{2}-\rho_{o}^{2}}}
\end{aligned}
$$

This leads to the integral

$$
\sin \alpha \int d \phi=\left(\phi-\phi_{o}\right) \sin \alpha=\rho_{o} \int \frac{d \rho}{\rho \sqrt{\rho^{2}-\rho_{o}^{2}}}
$$

This integral is easily performed with the substitution

$$
\rho=\rho_{o} / \cos \theta \rightarrow \rho^{2}-\rho_{o}^{2}=\rho_{o}^{2} \tan ^{2} \theta, \text { and } d \rho / d \theta=\rho_{o} \tan \theta / \cos \theta
$$

The integral now becomes

$$
\begin{aligned}
\left(\phi-\phi_{o}\right) \sin \alpha & =\rho_{o} \int\left(\rho_{o} \cos \theta\right)^{-1} \frac{\rho_{o} \tan \theta}{\cos \theta \rho_{o} \tan \theta} d \theta=\int d \theta=\theta \\
\left(\phi-\phi_{o}\right) \sin \alpha & =\cos ^{-1}\left(\rho_{o} / \rho\right)
\end{aligned}
$$

Choosing the initial point to lie at $\phi_{o}=0$, the curve for the shortest distance is

$$
\rho \cos (\phi \sin \alpha)=\rho_{o} .
$$

Some care must be taken here as it is necessary that the range in ϕ is less than π or else it is shorter to go the opposite way around the cone.
(2) In this method the total distance is given by

$$
L=\frac{1}{\sin \alpha} \int_{1}^{2} \sqrt{\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}} d \phi
$$

where $\rho^{\prime}=d \rho / d \phi$. Since the integrand, f, is independent of the independent variable ϕ the first integral of the Euler- Lagrange equation is

$$
f-\rho^{\prime} \frac{\partial f}{\partial \rho^{\prime}}=\rho_{o}
$$

a constant. The expression becomes

$$
\frac{1}{\sin \alpha} \sqrt{\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}}-\frac{\rho^{\prime}}{\sin \alpha} \frac{\rho^{\prime}}{\sqrt{\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}}}=\rho_{o}
$$

Multiplying by $\sqrt{\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}}$ and squaring both sides of the equation leads to

$$
\begin{aligned}
\frac{1}{\sin \alpha}\left(\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}\right)-\frac{\rho^{\prime 2}}{\sin \alpha} & =\rho_{o} \sqrt{\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}} \\
\sin ^{2} \alpha \rho^{4} & =\rho_{o}^{2}\left(\rho^{\prime 2}+\sin ^{2} \alpha \rho^{2}\right) \\
\left(\rho^{2}-\rho_{o}^{2}\right) \sin ^{2} \alpha \rho^{2} & =\rho_{o}^{2} \rho^{\prime 2} \\
\sin \alpha \rho \sqrt{\rho^{2}-\rho_{o}^{2}} & =\rho_{o} \rho^{\prime}=\rho_{o} \frac{d \rho}{d \phi}
\end{aligned}
$$

Separating and Integrating this expression yields

$$
\left(\phi-\phi_{o}\right) \sin \alpha=\rho_{o} \int \frac{d \rho}{\rho \sqrt{\rho^{2}-\rho_{o}^{2}}} .
$$

This is the same integral as that obtained in method (1), hence the same curve,

$$
\rho \cos (\phi \sin \alpha)=\rho_{o}
$$

