(will be included with the midterms and the final)

VECTOR DERIVATIVES

Cartesian. $\quad d \mathbf{l}=d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}} ; \quad d \tau=d x d y d z$
Gradient : $\quad \nabla t=\frac{\partial t}{\partial x} \hat{\mathbf{x}}+\frac{\partial t}{\partial y} \hat{\mathbf{y}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\quad \nabla \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Curl: $\quad \nabla \times \mathbf{v}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}$
Laplacian : $\quad \nabla^{2} t=\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$
Spherical. $\quad d \mathbf{l}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}} ; \quad d \tau=r^{2} \sin \theta d r d \theta d \boldsymbol{\phi}$
Gradient : $\quad \nabla t=\frac{\partial t}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}$
Divergence: $\quad \nabla \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
Curl: $\quad \nabla \times \mathbf{v}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta v_{\phi}\right)-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{\mathbf{r}}$

$$
+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r v_{\phi}\right)\right] \hat{\theta}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\phi}}
$$

Laplacian: $\quad \nabla^{2} t=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial \phi^{2}}$
Cylindrical. $\quad d \mathbf{l}=d s \hat{\mathbf{s}}+s d \phi \hat{\boldsymbol{\phi}}+d z \hat{\mathbf{z}} ; \quad d \tau=s d s d \phi d z$
Gradient : $\quad \nabla t=\frac{\partial t}{\partial s} \hat{\mathbf{s}}+\frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\quad \nabla \cdot \mathbf{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z}$
Curl $: \quad \nabla \times \mathbf{v}=\left[\frac{1}{s} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{\mathbf{s}}+\left[\frac{\partial v_{s}}{\partial z}-\frac{\partial v_{z}}{\partial s}\right] \hat{\boldsymbol{\phi}}+\frac{1}{s}\left[\frac{\partial}{\partial s}\left(s v_{\phi}\right)-\frac{\partial v_{s}}{\partial \phi}\right] \hat{\mathbf{z}}$
Laplacian : $\quad \nabla^{2} t=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial t}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

