Physics 100A
Professor Clifford Surko

Useful formulas:
For a sphere

$$
\begin{aligned}
V & =(4 \pi / 3) R^{3} \\
A & =4 \pi R^{2}
\end{aligned}
$$

sphencal shells some magnitude
$|\sigma|$.

Please note: Be sure to state clearly the reasoning behind your answers. Answers without explanation or supporting work will receive little or no credit.

1. Consider the functions

$$
\vec{F}_{1}=\left(z^{2}-a y\right) \hat{x}-a x \hat{y}+2 x z \hat{z}
$$

and

$$
\vec{F}_{2}=\left(z^{2}-a y\right) \hat{x}-2 a x \hat{y}+2 a z \hat{z}
$$

where a is a constant and x, y and z are Cartesian coordinates.
(a) Calculate $\nabla \times \vec{F}_{1}$.
(b) Calculate $\nabla \bullet \vec{F}_{1}$.
(c) Can \vec{F}_{2} be written as the gradient of some scalar function $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$? If so, find V. If not, explain clearly why it cannot.
2. This problem relates to Fig. 1 on the formula page. Two concentric spherical shells of charge with radii a and b have the same magnitude of charge density per unit area, σ, on each shell, with $+\sigma$ on the one with radius a, and $-\sigma$ on the one with radius b, as shown.
(a) Find the electric field, $\vec{E}(\vec{r})$ for $0 \leq \mathrm{r} \leq \infty$.
(b) Find the electrical potential, $\mathrm{V}(\mathrm{r})$ everywhere, assuming $\mathrm{V}=0$ at $\mathrm{r}=\infty$.
(c) Make a careful sketch of $\mathrm{V}(\mathrm{r})$ labeling the magnitude of V at $\mathrm{r}=\mathrm{a}, \mathrm{b}$, and 0 , and labeling zero on each axis.
3. This problem relates to Fig. 2 on the formula page. Two line charges with charge per unit length $+/-\lambda$ are located at $\mathrm{x}=0$, and $\mathrm{y}=+a$ and $\mathrm{y}=-a$, respectively, and oriented in the direction perpendicular to the plane of the figure, as shown.
(a) Find the magnitude and direction of the electric field, $\vec{E}(x, y)$, as a function of position along the x axis [i.e., find $\vec{E}(x, 0)]$.
(b) Sketch the electric field, $\vec{E}(x, y)$, in the (x, y) plane, indicating the directions that the field points along these lines.
(c) Find an expression for the electrical potential $\mathrm{V}(\mathrm{x}, \mathrm{y})$ everywhere in the (x, y) plane assuming $\mathrm{V}=0$ at $\mathrm{x}=\mathrm{y}=0$. Use it to find the electrical potential along the x axis [i.e., find $V(x, 0)$].

