hw1

Solutions for 1.7, 1.12, 1.25

1.7

source: $(2,8,7)$, field: $(4,6,8)$, so

$$
\begin{aligned}
& \vec{r}=(4-2,6-8,8-7)=(2,-1,1) \\
& r=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{6} \\
& \hat{r}=\vec{r} / r=\frac{1}{\sqrt{6}}(2,-1,1)
\end{aligned}
$$

1.12

$h(x, y)=10\left(2 x y-3 x^{2}-4 y^{2}-18 x+28 y+12\right)$
(a) and (b): necessary condition of hill top is $\partial h / \partial x=10(2 y-6 x-18)=0$ and $\partial h / \partial y=10(-8 y+2 x+$ 28) $=0$
solve, $\Rightarrow x=-2, y=3$, at which point $h(x, y)=720$
(c): The gradient at arbitrary point (x, y) is:
$\nabla h=10(2 y-6 x-18,-8 y+2 x+28)$
The slope along direction \hat{n} is $\hat{n} \cdot \nabla h$. At the point $(1,1)$, the gradient is $(-220,220)$, thus the slope along an arbitrary direction $\hat{n}=\left(n_{x}, n_{y}\right)$ is $\hat{n} \cdot \nabla h=-220 n_{x}+220 n_{y}$

The steepest slope is along the direction of the gradient, $\nabla h /|\nabla h|=(-1,1) / \sqrt{2}$, i.e., toward northwest.

1.25

Below, $\nabla^{2} \equiv \Delta$
(a). $\nabla T_{a}=(2(x+y), 2 x, 3), \Delta T_{a}=2$
(b). $\partial^{2} T_{b} / \partial x^{2}=-T_{b}$, etc., $\Rightarrow \Delta T_{b}=-3 T_{b}=-3 \sin x \sin y \sin z$
(c). $\partial_{x}^{2} \rightarrow(-5)^{2}=25, \partial_{y}^{2} \rightarrow-\left(4^{2}\right)=-16, \partial_{z}^{2} \rightarrow-\left(3^{2}\right)=-9$, thus
$\Delta T_{c}=(25-16-9) T_{c}=0$
(d). $\Delta v_{x}=2, \Delta v_{y}=6 x, \Delta v_{z}=0$, thus
$\Delta \vec{v}=2 \hat{x}+6 x \hat{y}$
1.33. $\nabla \times \vec{v}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \partial x & \partial y & \partial z \\ x y & 2 y z & 3 z x\end{array}\right|=-(2 y, 3 z, x)$

Stokes : $\oint \vec{v} \cdot d \vec{l}=\int \nabla \times \vec{v} \cdot d \vec{a}$
LHS:

$$
\begin{aligned}
\oint^{\prime}=\int_{A \rightarrow B} & +\int_{B \rightarrow C}+\int_{C \rightarrow A} \\
\int_{A \rightarrow B} \vec{v} \cdot d \vec{l} & =\left.\int_{0}^{2} \vec{v} \cdot \hat{y} d y\right|_{x=z=0} \\
& =0\left(\left.\because \vec{v} \cdot \hat{y}\right|_{z=0}=0\right) \\
\int_{C \rightarrow A} \vec{v} \cdot d \vec{l} & =\left.\int_{2}^{0} \vec{v} \cdot \hat{z} d z\right|_{x=y=0}=0 \quad\left(\because v_{z}=0\right) \\
\int_{B \rightarrow C} \vec{v} \cdot d \vec{l} & =\left.\int_{y}\left(v_{z} \hat{z}+v_{y} \hat{y}\right)\right|_{x=0} \cdot d l \\
& =\int_{2}^{0}(4 \underbrace{\left(4-2 y^{2}\right.}) d y \\
& =\frac{2}{3} v_{y} y^{3}-\left.2 y^{2}\right|_{0} ^{2}=\frac{16}{3}-8=-\frac{8}{3}
\end{aligned}
$$

direction of $d \vec{a}$ by
RHS: $(\nabla \times \vec{v}) \cdot \hat{x}=-2 y$.

$$
\begin{aligned}
& \Rightarrow \int(\nabla x \vec{v}) \cdot d \vec{a}=\int_{0}^{2} d y \int_{0}^{2-y} d z(-2 y) \\
& =\int_{0}^{2} d y \cdot\left(2 y^{2}-4 y\right)=-\frac{8}{3}
\end{aligned}
$$

LItS $=$ RItS. Verified
1.42

$$
\begin{aligned}
& \vec{v}=v_{s} \hat{s}+v_{\varphi} \hat{\varphi}+v_{z} \hat{z} \\
& v_{s}=s\left(2+\sin ^{2} \varphi\right) \\
& v_{\varphi}=s \sin \varphi \cos \varphi=\frac{s}{2} \sin 2 \varphi \\
& v_{z}=3 z
\end{aligned}
$$

(a)

$$
\begin{aligned}
\nabla \cdot \vec{v} & =\frac{1}{s} \partial_{s}\left(s v_{s}\right)+\frac{1}{s} \partial_{\varphi} v_{\varphi}+\partial_{z} v_{z} \\
& =2\left(\sin ^{2} \varphi+2\right)+\cos 2 \varphi+3 \\
& =8
\end{aligned}
$$

(b) $\int \nabla \cdot \vec{v} d V=8 \times \frac{1}{4} \times\left(\pi \cdot 2^{2}\right) \times 5=40 \pi$
cylindrical wall.

$$
\begin{aligned}
& \oint \vec{v} \cdot d \vec{A}=\left.\int_{0}^{5} d z \int_{0}^{\frac{2}{2}} d \varphi(\vec{v} \cdot \hat{s}) s\right|_{s=2} \\
&+\int_{0}^{2} d \varphi \int_{0}^{2} s d s\left(\left.v_{z}\right|_{z=5}-\left.v_{z}\right|_{z=0}\right) \\
&+\left.\int_{0}^{5} d z \int_{0}^{2} d s[\underset{v}{v} \cdot(-\hat{\varphi})]\right|_{\varphi=0} \\
&+\left.\int_{0}^{5} d z \int_{0}^{2} d s[\stackrel{\rightharpoonup}{v} \cdot \hat{\varphi}]\right|_{\varphi}=\frac{2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =25 \pi+15 \pi+0+0=40 \lambda \\
& \Rightarrow \int \nabla \cdot \vec{v} d V=\oint_{\partial V} \vec{v} \cdot d \vec{A} .
\end{aligned}
$$

(C).

$$
\begin{aligned}
& \frac{1}{s} \partial_{\varphi} v_{z}-\partial_{z} v_{\varphi}=0-0=0 \\
& \partial_{z} v_{s}-\partial_{s} v_{z}=0-0=0 \\
& \frac{1}{s}\left[\partial_{s}\left(s v_{\varphi}\right)-\partial_{\varphi} v_{s}\right]=\frac{1}{s}\left[2 v_{\varphi}-2 s \sin 2 \varphi\right]=0 \\
& \Rightarrow \nabla \times \vec{v}=0
\end{aligned}
$$

1.44 (a)

$$
\begin{aligned}
& \int_{-2}^{2}(2 x+3) \delta(3 x) d x \\
= & \frac{1}{3} \int_{-2}^{2}(2 x+3) \delta(x) d x \\
= & 1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{2}\left(x^{3}+3 x+2\right) \delta(1-x) d x \\
= & \left.\left(x^{3}+3 x+2\right)\right|_{x=1} \\
= & 6
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{-1}^{1} 9 x^{2} \delta(3 x+1) d x \\
= & \frac{1}{3} \int 9 x^{2} \delta\left(x+\frac{1}{3}\right)=\left.\frac{1}{3} \quad 9 x^{2}\right|_{x=-\frac{1}{3}} \\
= & \frac{1}{3}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{-\infty}^{a} \delta(x-b) d x & = \begin{cases}1 & a>b \\
0 & a<b\end{cases} \\
& =\theta(a-b)
\end{aligned}
$$

1.47 (a)

$$
\begin{aligned}
& \int\left(r^{2}+\vec{r} \cdot \vec{a}+a^{2}\right) \delta^{3}(\vec{r}-\vec{a}) d \tau \\
& =\left.\left(r^{2}+\vec{r} \cdot \vec{a}+a^{2}\right)\right|_{\vec{r}=\vec{a}} \\
& =3 a^{2}
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
\int_{V}|\vec{r}-\vec{b}|^{2} \delta^{3}(5 \vec{r}) d z & \delta^{3}(5 r) & =\delta(5 x) \delta(5 y) \delta(5 z) \\
& =\frac{1}{5} \delta(x) \frac{1}{5} \delta(y) \frac{1}{5} \delta(z) \\
=\left.\frac{1}{125}|\vec{r}-\vec{b}|^{2}\right|_{\vec{r}=0} & & =\frac{1}{125} \delta(\vec{r}) \\
=\frac{b^{2}}{125} &
\end{array}
$$

(c) $\int_{V}\left(r^{4}+r^{2}(\vec{r} \cdot \vec{c})+c^{4}\right) \delta^{3}(\vec{r}-\vec{c}) d \tau$.

$$
\vec{c}=(5,3,2) \quad \Rightarrow \quad c=\sqrt{25+9+4}=\sqrt{38}>6
$$

i.e., \vec{C} lies outside V.

$$
\Rightarrow \int \cdots=0
$$

(d) $\int_{V} \vec{r} \cdot(\vec{d}-\vec{r}) \delta^{3}(\vec{e}-\vec{r}) d \tau$
$\vec{e}=(3,2,1)$. Let $\vec{c}=(2,2,2)$ be the center of sphere

$$
\Rightarrow|\stackrel{\rightharpoonup}{e}-\stackrel{\rightharpoonup}{c}|=|(1,0,-1)|=\sqrt{2}<1.5
$$

$\Rightarrow \vec{e}$ inside the sphere

$$
\begin{aligned}
\Rightarrow \int \vec{\cdots} & =\left.\vec{r} \cdot(\vec{d}-\vec{r})\right|_{\vec{r}=\vec{e}}=(3,2,1) \cdot(-2,0,2) \\
& =-4 .
\end{aligned}
$$

149 (a) $\cdot \vec{F}_{1}=x^{2} \hat{z}$

$$
\begin{aligned}
\nabla \cdot \vec{F}_{1} & =\nabla\left(x^{2}\right) \cdot \hat{z}+x^{2} \nabla \cdot \hat{z} \\
& =2 \vec{x} \cdot \hat{z}+0 \\
& =0 \\
\nabla \times \vec{F}_{1} & =\nabla\left(x^{2}\right) \times \hat{z}+x^{2} \nabla \times \hat{z} \\
& =2 \vec{x} \times \hat{z}+0 \\
& =-2 \times \hat{y}
\end{aligned}
$$

$\Rightarrow \vec{F}_{1}=\nabla \times \vec{A}$, where e.g., $\vec{A}=\frac{x^{3}}{3} \hat{y}$

- $\vec{F}_{2}=x \hat{x}+y \hat{y}+z \hat{z}=\vec{r}$

$$
\begin{aligned}
\nabla \cdot \vec{f}_{2} & =\partial_{x} x+\partial_{y} y+\partial_{z} z=3 \\
\nabla \times \vec{F}_{2} & =\nabla \times \vec{r} \\
& =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial x & \partial_{y} & \partial_{z} \\
x & y & z
\end{array}\right|=0 .
\end{aligned}
$$

$\Rightarrow \vec{F}_{2}=\nabla \varphi$, where e.g.,

$$
\varphi=\frac{1}{2} \vec{r} \cdot \vec{r}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

(b)

$$
\begin{aligned}
\vec{F}_{3} & =y z \hat{x}+z x \hat{y}+x y \hat{z} \\
& \Rightarrow \nabla \cdot \vec{F}_{3}=\nabla \times \vec{F}_{3}=0 .
\end{aligned}
$$

- Scalar potential:

$$
\varphi=x y z \Rightarrow \nabla \varphi=\stackrel{\rightharpoonup}{F}_{3}
$$

- Vector potentríl

Let's assume $\vec{A}_{1}=f_{1}(x y) \hat{y}$
such that $\nabla \times \vec{A}_{1}=x y \hat{z}$

$$
\begin{aligned}
\nabla \times \vec{A}_{1} & =\nabla f_{1} \times \hat{y}+f_{1} \underbrace{\nabla \times \hat{y}}_{=0} \\
& =\partial_{\times} f_{1} \nabla x \times \hat{y} \\
& =\hat{x} \times \hat{y}=\hat{z} \\
\Rightarrow \partial_{\times} f_{1} & =\times y
\end{aligned}
$$

$\Rightarrow f_{1}=\frac{1}{2} x^{2} y \quad$ to within an arbitrary function of y only.

$$
\Rightarrow \vec{A}_{1}=\frac{1}{2} x^{2} y \hat{y}=\frac{1}{2} x^{2} \vec{y}
$$

Then, by cyclic permutation of $x y z$, can find $\vec{A}_{2}=\frac{1}{2} y^{2} \vec{z}$ such that $\nabla \times A_{2}=y z \hat{x}$ and $\quad \vec{A}_{3}=\frac{1}{2} z^{2} \vec{x}, \quad \nabla \times A_{3}=z \times \hat{y}$

So $\quad \vec{A}=\vec{A}_{1}+\vec{A}_{2}+\vec{A}_{3}=\frac{1}{2}\left(x^{2} \vec{y}+y^{2} \vec{z}+z^{2} \vec{x}\right)$
1.62(a). Driect calculation:

$$
\begin{aligned}
\nabla \cdot\left(\frac{\hat{r}}{r}\right) & =\nabla\left(\frac{1}{r}\right) \cdot \hat{r}+\frac{1}{r} \nabla \cdot \hat{r} \\
& =-\frac{1}{r^{2}}+\frac{1}{r} \cdot \frac{2}{r} \\
& =\frac{1}{r^{2}}
\end{aligned}
$$

- Using Div. The.

$$
\begin{aligned}
& \int^{R}\left(\nabla \cdot \frac{\hat{r}}{r}\right) d V=4 z \int^{R} r^{2}\left(\nabla \cdot \frac{\hat{r}}{r}\right) d r \\
= & \left.\oint \frac{\hat{r}^{2}}{r} \cdot \hat{r} r^{2} d \Omega\right|_{r=R}=42 R \\
\Rightarrow & \int^{R} r^{2}\left(\nabla \cdot \frac{\hat{r}}{r}\right) d r=R \\
\Rightarrow & \nabla \cdot \frac{\hat{r}}{r}=\frac{1}{r^{2}}
\end{aligned}
$$

- In general,

$$
\begin{aligned}
\nabla \cdot\left(r^{n} \hat{r}\right) & =\nabla\left(r^{n}\right) \cdot \hat{r}+r^{n} \nabla \cdot \hat{r} \\
& =n r^{n-1}+r^{n} \cdot \frac{2}{r} \\
& =(n+2) r^{n-1}
\end{aligned}
$$

For $n+2 \neq 0, \nabla \cdot\left(r^{n} \hat{r}\right)$ is regular, so there's no $\delta-f^{n}$ at $r=0$.
For $n+2=0$, i.e, $n=-2$, it becomes singular, and $\nabla \cdot\left(\frac{\hat{r}}{r^{2}}\right)=4 z \delta(\vec{r})$
(b)

$$
\begin{aligned}
\nabla \times\left(r^{n} \hat{r}\right) & =\nabla\left(r^{n}\right) \times \hat{r}+r^{n} \underbrace{\nabla \times \hat{r}}_{=0} \\
& =n r^{n-1} \underbrace{\hat{r} \times \hat{r}}_{=0}+0 \\
& =0 .
\end{aligned}
$$

