Chapter 1: Our Place in the Universe

© 2005 Pearson Education Inc., publishing as Addison-Wesley

Topics

- Our modern view of the universe
- The scale of the universe
- Cinema graphic tour of the local universe
- Spaceship earth

1.1 A Modern View of the Universe

Our goals for learning:

- What is our physical place in the Universe?
- How did we come to be?
- How can we know what the Universe was like in the past?
- Can we see the entire universe?

What is our physical place in the universe?

- Our "Cosmic Address"

publishing as Addison-Wesley

Star

A large, glowing ball of gas that generates heat and light through nuclear fusion

publishing as Addison-Wesley

Planet

A moderately large object which orbits a star; it shines by reflected light. Planets may be rocky, icy, or gaseous in composition.
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Moon (or satellite)

An object that orbits a planet.

© 2005 Pearson Education Inc., publishing as Addison-Wesley

Asteroid

A relatively small and rocky object that orbits a star.

© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Comet

A relatively small and icy object that orbits a star.

© 2005 Pearson Education Inc., publishing as Addison-Wesley

Solar (Star) System

A star and all the material that orbits it, including its planets and moons

Nebula

An interstellar cloud of gas and/or dust
© 2005 Pearson Education Inc., publishing as Addison-Wesley

Galaxy

A great island of stars in space, all held together by gravity and orbiting a common center

Universe

The sum total of all matter and energy; that is, everything within and between all galaxies

- Our Cosmic Origins

How did we come to he?

14 billion years ago

Evolution of the Universe: Large Scale Structure and Galaxy Formation

Grand Challenge Cosmology Consortium Michael Norman, NCSA
Brian O'Shea, NCSA
Greg Bryan, Princeton
HDTV Visual Excerpt from "Runaway Universe"
Courtesty NOVA/WGBH, PBS
Thomas Lucas Productions

How can we know what the universe was

 like in the past?- Light travels at a finite speed ($300,000 \mathrm{~km} / \mathrm{s}$).

Destination	Light travel time
Moon	1 second
Sun	8 minutes
Sirius	8 years
Andromeda Galaxy	2.5 million years

- Thus, we see objects as they were in the past:

The farther away we look in distance, the further back we look in time.
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Example:

This photo shows the Andromeda Galaxy as it looked about $21 / 2$ million years ago.
Question: When will be able to see what it looks like now?

Definition: a light-year

- The distance light can travel in one year. - About 10 trillion km (6 trillion miles).

- At great distances, we see objects as they were

when the universe was much younger.

If the universe is 14 billion years old and we try to look to a distance of, say, 15 billion light-years, we are trying to look to a time before the universe existed-which means we cannot see anything at this distance, even in principle.

[^0]© 2005 Pearson Education Inc., publishing as Addison-Wesley

Can we see the entire universe?

If the universe is 14 billion years old and we try to look to a distance of, say, 15 billion light-years, we are trying to look to a time before the universe existed-which means we cannot see anything at this distance, even in principle.

[^1]© 2005 Pearson Education Inc., publishing as Addison-Wesley

Thought Question

Why can't we see a galaxy 15 billion light-years
away?
(Assume universe is 14 billion years old.)
A. Because no galaxies exist at such a great distance.
B. Galaxies may exist at that distance, but their light would be too faint for our telescopes to see.
C. Because looking 15 billion light-years away means looking to a time before the universe existed.
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Thought Question

Why can't we see a galaxy 15 billion light-years away? (Assume universe is 14 billion years old.)
A. Because no galaxies exist at such a great distance.
B. Galaxies may exist at that distance, but their light would be too faint for our telescopes to see.
C. Because looking 15 billion light-years away means looking to a time before the universe existed.

What have we learned?

- What is our place in the Universe?
- Earth orbits the Sun
- There are 100 billion other stars in the Milky Way
- There are about 40 other galaxies in the Local Group.

- The Local Group is part of the Local Supercluster.
- The Local Supercluster is one small piece of the Universe.
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

What have we learned?

- How did we come to be?
- Big Bang starts the expansion of the universe.
- Early universe contained only the elements hydrogen and helium.
- All other elements were made in stars and recycled into new generations of stars within galaxies.
- We are "star stuff"

What have we learned?

- How can we know what the universe was like in the past?
- Light takes time to travel through space (the speed of light $=\mathrm{c}=300,000 \mathrm{~km} / \mathrm{s}$). Thus, when we look farther away, we see light that has taken a longer time to reach us.
- Can we see the entire universe?
- No - age limits the size of the observable universe. For a 14 billion year old universe, our observable universe is 14 billion light-years in radius.

1.2 The Scale of the Universe

Our goals for learning:

- How big is Earth compared to our solar system?
- How far away are the stars?
- How big is the Milky Way Galaxy?
- How big is the Universe?
- How do our lifetimes compare to the age of the Universe?

How big is Earth compared to our solar system?

Let's reduce the size of the solar system by a factor of 10 billion; the Sun is now the size of a large grapefruit (14 cm diameter).

How big is Earth on this scale?
A. an atom
B. a ball point
C. a marble
D. a golf ball

Let's reduce the size of the solar system by a factor of

 10 billion; the Sun is now the size of a large grapefruit (14 cm diameter).How big is Earth on this scale?
A. an atom
B. a ball point
C. a marble
D. a golf ball

The scale of the solar system

- On a 1-to-10 billion scale:
- Sun is the size of a large grapefruit (14 cm)
- Earth is the size of a ball point, 15 meters away.

(c) 2005 Pearson Education, Inc., publishing as Addison Wesley
© 2005 Pearson Education Inc., publishing as Addison-Wesley

How far away are the stars?
On our 1-to-10 billion scale, it's just a few minutes walk to Pluto.

How far would you have to walk to reach Alpha Centauri?
A. 1 mile
B. 10 miles
C. 100 miles
D. the distance across the U.S. (2500 miles)
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Answer: D, the distance across the U.S.

© 2005 Pearson Education Inc., publishing as Addison-Wesley

How big is the Milky Way Galaxy?

The Milky Way has about 100 billion stars.

On the same ten billion-toone scale....

How To Use

Thought Question

Suppose you tried to count the more than 100 billion stars in our galaxy, at a rate of one per second...

How long would it take you?

A. a few weeks
B. a few months
C. a few years
D. a few thousand years

Suppose you tried to count the more than 100 billion stars in our galaxy, at a rate of one per second...

How long would it take you?
A. a few weeks
B. a few months
C. a few years
D. a few thousand years
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

How big is the Universe?

- The Milky Way is one of about 100 billion galaxies.
- 10^{11} stars/galaxy x 10^{11} galaxies $=10^{22}$ stars

As many stars as grains of (dry) sand on all Earth's beaches...
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

- Now let's step through the Universe in powers of 10:

© 2005 Pearson Education Inc., publishing as Addison-Wesley

Virtual Voyage: Milky Way to the Virgo Cluster

HDTV Visual Excerpt from "Runway Universe" Courtesy NOVA/WGBH, PBS
Tom Lucas Productions

© 2005 Pearson Education Inc., publishing as Addison-Wesley

How do our lifetimes compare to the age of the Universe?

- The Cosmic Calendar: a scale on which we compress the history of the universe into 1 year.

© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Cosmic Calendar

小析1

twer	HPExay	［1\％
HTH4T		－ب\％「＂
C $0^{\text {a }}$	73t	
	mindulat	It It mirmer
4\＃－4tix		
－	it마풒	¢7\％
H4	［15］	14
HTYT\％	－＋TM｜	1＋4\％\％
4 BH	minturemil	
4itrerir	Aminitite	mintimintur
	mitimernat	
［ife		［ \boldsymbol{H}_{4}
Tilim！	｜rimil	2－191T
1		6troter
	tet	
Hit	－ 4 ¢ ${ }_{\text {e }}$	［iftime
－		Mititerer
－		
	3	1810

[^2]Dec．17：Cambrian explosion

Dec．16：rise of dinosaurs
Dec．30：extinction of dinosaurs
© 2005 Pearson Education Inc．，
publishing as Addison－Wesley

Cosmic Calendar

© 2005 Pearson Education Inc., publishing as Addison-Wesley

What have we learned?

- How big is the Earth compared to our solar system?
- On a scale of 1-to-10 billion, the Sun is about the size of a grapefruit. The Earth is the size of a ball point about 15 m away. The distance between planets are huge compared to their sizes.
- How far away are the stars?
- On the same scale, the stars are thousands of km away.
- How big is the Milky Way Galaxy?
- It would take more than 3,000 years to count the stars in the Milky Way Galaxy at a rate of one per second. The Milky Way Galaxy is about 100,000 light-years across.

What have we learned?

- How big is the universe?
- 100 billion galaxies in the observable Universe.
- 14 billion light-years in radius.
- As many stars as grains of sand on Earth's beaches.
- How do our lifetimes compare to the age of the universe?
- On a cosmic calendar that compresses the history of the Universe into one year, human civilization is just a few seconds old, and a human lifetime is a fraction of a second.

1.3 Spaceship Earth

Our goals for learning:

- How is Earth moving in our solar system?
- How is our solar system moving in the Galaxy?
- How do galaxies move within the Universe?
- Are we ever sitting still?

How is Earth moving in our solar system?

- Contrary to our perception, we are not "sitting still."
- We are moving with the Earth in several ways, and at surprisingly fast speeds...

> The Earth rotates around its axis once every day.
© 2005 Pearson Education, Inc., publishing as Addison Wesley
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Earth orbits the Sun (revolves) once every year:

- at an average distance of $1 \mathrm{AU} \approx 150$ million km .
- with Earth's axis tilted by 23.5° (pointing to Polaris)
- and rotating in the same direction it orbits, counterclockwise as viewed from above the North Pole.

© 2005 Pearson Education, Inc., publishing as Addison Wesley
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

Our Sun moves randomly relative to the other stars in the local Solar neighborhood...

- typical relative speeds of more than $70,000 \mathrm{~km} / \mathrm{hr}$
- but stars are so far away that we cannot easily notice their motion
... And orbits the galaxy every 230 million years.

More detailed study of the Milky Way's rotation reveals one of the greatest mysteries in astronomy:

© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

How do galaxies move within the universe?

Galaxies are carried along with the expansion of the Universe. But how did Hubble figure out that the universe is expanding?

© 2005 Pearson Education Inc., publishing as Addison-Wesley

Hubble discovered that:

- All galaxies outside our Local Group are moving away from us.
- The more distant the galaxy, the faster it is racing away.

Conclusion: We live in an expanding universe.

Are we ever sitting still?

1. Rotation

$1,000 \mathrm{~km} / \mathrm{hr}$ or more around axis,
with one rotation taking 1 day

2. Orbit of Sun

$100,000 \mathrm{~km} / \mathrm{hr}$ around Sun, with one orbit taking 1 year

3. Motion Within Local Solar Neighborhood
$70,000 \mathrm{~km} / \mathrm{hr}$ relative to nearby stars
4. Rotation of the Milky Way Galaxy $800,000 \mathrm{~km} / \mathrm{hr}$ around galactic center, with one galactic rotation taking about 230 million years

5. Motion Within Local Group

$300,000 \mathrm{~km} / \mathrm{hr}$ toward Andromeda Galaxy
© 2005 Pearson Education Inc., publishing as Addison-Wesley

What have we learned?

- How is Earth moving in our solar system?
- Earth rotates on its axis once each day and orbits around the Sun once each year at an average distance of 1 A.U. (≈ 150 million km).

© 2005 Pearson Education, Inc., publishing as Addison Wesley

What have we learned?

- How is our solar system
 moving in the Milky Way Galaxy?
- Stars in the Local Neighborhood move randomly relative to each other.
- Our Solar System orbits the center of the Milky Way Galaxy about every 230 million years: the entire Galaxy rotates.
© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

What have we learned?

- How do galaxies move within the universe?
- All galaxies beyond the Local Group are moving away from us with expansion of the Universe: the more distant they are, the faster they're moving.

© 2005 Pearson Education Inc.,
publishing as Addison-Wesley

What have we learned?

- Are we ever sitting still?
 - No!

[^0]: © 2005 Pearson Education, Inc., publishing as Addison Wesley

[^1]: © 2005 Pearson Education, Inc., publishing as Addison Wesley

[^2]:

