Chapter 12

Remnants of Rock and Ice Asteroids, Comets, and Pluto

Motivation

- Asteroids and comets--"junk of the solar system"—are pristine samples of the early solar nebula
- Their study can tell us about what the solar system was like 4.5 Byr ago
- Impacts had a large effect on planets in the past, and may still occur
- Pluto, discovered only in 1930, is better understood as an icy planetesimal from the Kuiper belt rather than a planet

Definitions

- <u>Asteroid</u>: a rocky leftover planetesimal orbiting the Sun.
- <u>Comet</u>: an icy leftover planetesimal orbiting the Sun—regardless of its size or whether or not it has a tail.
- <u>Meteor</u>: a flash of light in the sky caused by a particle entering the atmosphere, whether the particle comes from an asteroid or a comet.
- <u>Meteorite</u>: any piece of rock that fell to the ground from space, whether from an asteroid, a comet, or even another planet.

Asteroids "Starlike"

Discovered starting ~200 yrs ago

Located in the asteroid belt between Mars and Jupiter

Trojan asteroids preceed and follow Jupiter in its orbit

About 100,000 with size > 1 km

Largest is Ceres, d=940 km

Next largest is Pallas, d=540 km

Asteroids Up Close

 Gaspra (16 km across). Photographed by the Galileo spacecraft on its way to Jupiter.

16 km

59 km

d Eros (40 km). The NEAR spacecraft orbited Eros for a year before landing on it.

40 km

Ida Animation

http://solarviews.com

Origin of Asteroid Belt

- A planet that failed or shattered planet?
- Evidence points to the former, although it may be both (cf. Meteorites)
- Gravitational perturbations by Jupiter kept the planetesimals "stirred up", preventing coalescence into large protoplanet
- Evidence of this are the Kirkwood gaps

Kirkwood Gaps

Determining Asteroid Composition

- Measure brightness of asteroid at optical and infrared wavelengths
- Ratio of brightnesses indicates composition
- Three classes:
 - Carbonaceous
 - Rocky
 - Metallic

Landing on an Asteroid: NEAR

- Landed on near-Earth asteroid Eros (d=40 km) on 12 February 2001
- Images and movies available from website
- <u>http://near.jhuapl.edu/</u>

Meteorites "of the air"

- Meteors are rocks from space
- Largest ones originate in the asteroid belt
- Smaller ones come from comet tails
- Most burn up in the atmosphere before reaching Earth
- Those that survive are called meteorites

A Giant Meteorite

www.meteorites.com

Kinds of Meteorites [1]

Stony primitive meteorite: age 4.6 Byr

Kinds of Meteorites [2]

Carbonaceous primitive meteorite: age 4.6 Byr

Kinds of Meteorites [3]

Differentiated iron meteorite: age <4.6 Byr

Kinds of Meteorites [4]

Differentiated stony meteorite: age <4.6 Byr

Origin of Meteorites

- Primitive meteorites have compositions similar to asteroids, and presumably formed there
- Asteroid collisions knocked them out of orbit
- Processed meteorites have compositions similar to planet cores, mantles or crusts
- Remnants of a shattered planet large enough to have differentiated

Comets "hair"

Hyakutaki 1996

Ikeya-Seki 1965

Anatomy of a Comet

Gas coma begins to form around nucleus when comet is about 5 AU from Sun. Nucleus warms and begins to sublime.

Comet Orbits

Tail forms, pushed out by solar wind and radiation; distance is now about 1 AU.

Earth's orbit

solar wind

solar radiation

Larger particles (not visible) are unaffected by sunlight.

Solar heating diminishes; coma and tail disappear between 3 and 5 AU from Sun.

Dust tail is pushed by sunlight.

Plasma tail is swept back by solar wind. Tail points away from Sun.

Comet Reservoirs

Kuiper belt: about 30-100 AU

Neptune's orbit

Oort cloud: extends out to about 50,000 AU

Kuiper Belt and Oort Cloud

- Existence inferred from orbits of comets
- Two classes:
 - Kuiper Belt: (30-100 AU)
 - roughly coplanar with SS, orbit Sun in same direction as planets
 - Make frequent returns
 - Estimate 100,000 objects with d>100 km
 - Oort Cloud: (up to 50,000 AU)
 - orbits in random planes and directions
 - May make only one pass
 - Estimate 1 trillion comets

Kuiper Belt Web Site

• <u>http://www.ifa.hawaii.edu/faculty/jewitt/kb.html</u>

- Over 400 objects now known
- Largest: d>1000 km

Pluto: Planet or KB Object?

Orbit, mass, and composition similar to largest KB objects

Pluto's Moon Charon

Hubble Space Telescope image

Pluto Surface Features

Pluto is only planet not visited by space probe

Cosmic Collisions

Comet Shoemaker-Levy 9 Impact with Jupiter, July 16-22 1994 http://www.jpl.nasa.gov/sl9/

Cosmic Collisions

- With so much debris in the solar system, collisions with planets occur
- In 1994, comet Shoemaker-Levy 9 collided with Jupiter with an energy of a million Hbombs
- In 1908, something (a comet) struck Tunguska, Siberia, flattening the forest for miles around
- 65 million years ago, a 10 km object struck Yucatan, Mexico, leading to mass extinctions including dinosaurs

SL9 Impact: Artist Conception

SL9 Comet: Multiple Nuclei

 Close encounter with Jupiter in 1992 broke up comet nucleus into chain of fragments

Hubble Space Telescope Image

SL9 Impact Fireball

Infrared Image Shows Heat Generated by Impacts

Aftermath: Scars in Cloud Deck

8 yr later, these blemishes have disappeared

Terrestrial Impacts

Meteor Crater, AZ

Happened 50,000 yr ago

Crater 1 km across, 200 m deep

50 m diameter object (est.)

Impact energy similar to a 20 megaton H-bomb

Tunguska, June 30, 1908

http://www-th.bo.infn.it/tunguska/

Size Matters!

- K.E. = ½ M V²
- M is proportional to volume ~ D^3
- Therefore, a 500 m object would have 1000 times the impact energy of the 50 m Meteor Crater object
- Q: Has anything like this ever happened?
- A: yes, the dinosaur killer!

Dinosaur Killer

Don Dixon

Evidence for Worldwide Catastrophe 65 Myr ago

Sedimentary layer of ash and soot rich in Iridium found worldwide

Age dating: 65 Myr coincides with disappearance of dinosaurs

Impact Site: Yucatan

- Map shows gravitational anomalies and a circular depression
- Size suggests a 10 km object punctured Earth's crust

Artist Conception

Don Dixon

NEO Impact Hazard

- NEO=Near Earth Objects
- NEO Website: <u>http://impact.arc.nasa.gov</u>
- How likely is a catastrophic collision with a rogue asteroid?
- Very unlikely
- However, Tunguska event predicted once per millenium

Over 1000 NEOs (red dots) cataloged and tracked

List of PHA (potentially Hazardous asteroids) is maintained

List of close approaches is posted

Size-Frequency Distribution

A Catastrophic Event

