Chapter 11

(b)

Jovian Planet Systems

Topics

- Jovian Planets Compared
- Jupiter
- Saturn
- Discovery of Uranus and Neptune
- Jovian Atmospheres and Interiors
- Jovian Moons

Jovian Planets Compared

Planet	$\mathbf{R} / \mathbf{R}_{\mathbf{E}}$	$\mathbf{M} / \mathbf{M}_{\text {E }}$	
Jupiter	11.21	317.8	
Saturn	9.45	95.2	
Uranus	4.01	14.5	
Neptune	3.88	17.1	

Jovian Planet Properties

- Compared to the terrestrial planets, the Jovians:
- are much larger \& more massive
- are composed mostly of Hydrogen, Helium, \& Hydrogen compounds
- have no solid surfaces
- rotate more quickly
- have slightly "squashed" shapes
- have many moons
- have ring systems

Why are the Jovian Planets so Different?

- They formed beyond the frost line to form large, icy planetesimals which were massive enough to...
- Capture H / He far from Sun to form gaseous planets.
- Each Jovian planet formed its own "miniature" solar nebula.
- Moons formed out of these disks.

Jupiter

- Namesake of Jovian planets
- nearsest and largest
- 3rd brightest object in night sky
- known since ancient times
- 2nd most massive object in SS

Zone-Belt Circulation System

Caused byJupiter's rapid rotation (9 hr) and internal heat source

Great red spot

Saturn

Saturn's Belt System

Discovery of Uranus

- 1781 by William Herschel (England)
- serendipidous discovery
- survey of the sky using a Newtonian reflector he built himself

NASA Voyager 2

Discovery of Neptune

- Existence predicted by John Adams (1845) and Urbain Leverrier
(1846)
- analyzed Uranus' orbit, which showed gravitational influence of unseen planet
- Telescopic

confirmation by Johann Galle (1846)

Jupiter's Atmosphere

- H (86\%), He (14\%)
- small amounts of CH_{4}, $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ which freeze to form ice layers
- => we think this is similar to composition of solar nebula
- H \& He retained by Jupiter's high gravity

Saturn's Atmosphere

- H (93\%), He (7\%)
- trace amounts of CH_{4}, $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ which freeze to form ice layers
- haze layer mutes belted appearance
- thicker cloud layers due to S's weaker gravity rel. to J.

Atmospheres of Uranus and Neptune

- Similar in composition to Jupiter's (H/He)
- relatively more methane than ammonia due to lower temperatures
- methane responsible for blueish color (absorbs red light)

Uranus' Extreme Seasons

Neptune's Weather

- Dark Spot: atmospheric cyclone similar to J's Great Red Spot
- comes and goes
- methane gives planet its blue-green color
- white clouds are methane ice crystals

Jupiter's Interior

Depth 100 km Temperature 300 K Pressure 10 atm

Depth $20,000 \mathrm{~km}$ Temperature $11,000 \mathrm{~K}$ Pressure $3 \times 10^{6} \mathrm{~atm}$

Jovian Interiors

 Compared
Jovian Moons

- Total number: 90 (and counting)
- Three sizes:
- Small: < 300 km
- Medium: 300 km -1500 km
- Large: > 1500 km
- Medium and large moons orbit in the same direction and plane as the solar system
- Small ones in various orbits=>captured

Jovian Moons: A Host of Diverse Worlds

The Large Jovian Moons

- Jupiter
- Io
sulfur volcanoes
- Europa world of water ice (and liquid?)
- Ganymede active ice world
- Callisto dead \& dirty ice world
- Saturn
- Titan has a thick atmosphere $\left(\mathrm{N}_{2} \& \mathrm{CH}_{4}\right)$
- Neptune
- Triton nitrogen volcanoes, retrograde orbit

The Jovian Moons

- The moons of Jupiter become less dense as you get farther from Jupiter
- "mini Solar System"
- Gravitational tidal heating keeps the interiors of the inner moons hot.

Small Jovian Moons:

Indistinguishable from Asteroids

Io:
 Most Geologically Active Body in SS

10x the volcanic activity of Earth

Cause: tidal heating

Volcanos on IO

Galileo mission

d The reddich color surnounding this volcano comes trom sulfur gas eapelled from the liva.

- This photo shows a shield volicano on lo that may be made of basaltic lava.

9 This enhanctod-color photo shows fallout (dark patch) from a volcanic plume on lo. The fallout region covers an area the sisv of Arisona. (The crange ring is the fallout from another volcaro.

Europa: Icy Moon

a Europa's icy crust is criss-crossed with cracis.
b Some regions show jumbled crust with icebergs, apparently froten in slush

Europa: Ocean World?

Tidal heating may generate
Enough heat to keep water liquid beneath the frozen surface

Surface disrupted by undersea volcanoes

Artist conception

Ganymede Largest moon in solar system

Craters imply surface older than Europa Grooved surface

Callisto

Frozen ice ball

Mixture of ice and rock

Heavily cratered, implying old surface

Concentric cracks from large impact, dredging up deeper material

Callisto Close Up

Dark material in valleys interpreted as result of early volcanic activity

Titan: A Moon with an Atmosphere

Titan in Infrared Light

- Temperatures are warm enough for liquid water to exist
- Dark spots may be oceans
- NASA Cassini mission to Titan will map surface and pro atmosphere

Tethys

lapetus

Saturn's Brood of Medium Sized Moons

Calculating Relative Surface Gravity

Let m be mass of test body and M and R be mass and radius of planet, respectively. G is Newton's constant.
Then:
$F_{\text {Jupiter }}=G m M_{\text {Jupiter }} / R_{\text {Jupiter }}^{2}$
$F_{\text {Earth }}=G m M_{\text {Earth }} / R_{\text {Earth }}^{2}$
$\therefore \frac{F_{\text {Jupiter }}}{F_{\text {Earth }}}=\frac{G m M_{\text {Jupiter }} / R_{\text {Jupiter }}^{2}}{G m M_{\text {Earth }} / R_{\text {Earth }}^{2}}=\frac{\left(M_{\text {Jupiter }} / M_{\text {Earth }}\right)}{\left(R_{\text {Jupiter }} / R_{\text {Earth }}\right)^{2}}$
$=\frac{317.8}{(11.21)^{2}}=2.53$
(see Table 2B, Appendix A)

