Formulas:

$\vec{F}_{2}=\frac{q_{1} q_{2}}{r_{21}{ }^{2}} \hat{\mathrm{r}}_{21}$ Coulomb's law ; $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{F}} / \mathrm{q}_{0}$ electric field $; \overrightarrow{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\int \frac{\rho\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right)\left(\hat{\mathrm{r}}-\hat{\mathrm{r}}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} \mathrm{dx} \mathrm{x}^{\prime} \mathrm{dy} \mathrm{y}^{\prime} \mathrm{dz}$ $\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=4 \pi q_{\text {enc }}=4 \pi \int \rho d v \quad$ Gauss' law $\quad 1$ charge at the origin $: \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=\frac{\mathrm{q}}{\mathrm{r}^{2}} \hat{r}$

Linear, surface, volume charge density : $d q=\lambda d s, \quad d q=\sigma d A \quad, d q=\rho d V$
Electric field of : charge : $E=\frac{q}{r^{2}} ; \quad$ line of charge $: E=\frac{2 \lambda}{r} ; \quad$ sheet of charge : $E=2 \pi \sigma$
Potential of single charge $\mathrm{q}: \phi(\vec{r})=\frac{q}{r}$; charge distribution: $\phi(\vec{r})=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{dx}^{\prime} \mathrm{dy}^{\prime} \mathrm{dz}^{\prime}$
$\phi(x, y, z)-\phi\left(x_{0}, y_{0}, z_{0}\right)=-\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{E} \cdot d \vec{s} \quad ; \quad \vec{E}=-\nabla \phi \quad ; \quad \nabla^{2} \phi=-4 \pi \rho \quad ; \quad \operatorname{div} \vec{E}=4 \pi \rho$
$\operatorname{div} \vec{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z} \quad ; \quad \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} ; \quad u=\frac{E^{2}}{8 \pi}$ electric energy density
energy of 3 charges: $U=\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{2} q_{3}}{r_{23}}+\frac{q_{1} q_{3}}{r_{13}}$; energy of q in potential $\phi: U=q \phi(x, y, z)$
Electric field right next to a conducting surface: $\mathrm{E}=4 \pi \sigma$
Capacitors: $\mathrm{Q}=\mathrm{CV}$; Parallel plates: $C=\frac{A}{4 \pi s} \mathrm{~A}=$ area, s=dist. betw. plates; $U=\frac{Q^{2}}{2 C}$ energy
$I=\int \vec{J} \cdot d \vec{a}, \quad I=\frac{d q}{d t}, \quad \vec{J}=n q \vec{u} \quad ; \quad d i v \vec{J}=-\frac{\partial \rho}{\partial t} \quad ;$ Power: $P=I^{2} R \quad ; \quad P=\varepsilon I$
$\mathrm{V}=\mathrm{IR}, \vec{J}=\sigma \vec{E} \quad ; \quad \vec{E}=\rho \vec{J} \quad ; \quad R=\rho \frac{L}{A} ; \sigma=\frac{n e^{2} \tau}{m_{e}} ; Q(t)=C \varepsilon\left(1-e^{-t / R C}\right)$
Ampere's law: $\oint_{C} \vec{B} \cdot d \vec{s}=\frac{4 \pi}{c} I_{e n c}=\frac{4 \pi}{c} \int_{S} \vec{J} \cdot d \vec{a}$; Biot-Savart law: $d \vec{B}=\frac{I d \ell \times \hat{r}}{c r^{2}}$
$\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J} ; \quad \vec{\nabla} \cdot \vec{B}=0 ; \vec{\nabla} \times \vec{E}=0$ (electrostatics); $\vec{\nabla} \times \vec{A}=\vec{B} ; \vec{\nabla} \cdot \vec{A}=0$
Lorentz force: $\vec{F}=q\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)$; force on wire: $d \vec{F}=\frac{I}{c} \overrightarrow{d \ell} \times \vec{B}$; cyclotron: $\omega=\frac{q B}{m c}$
Field of: long wire: $B=\frac{2 I}{c r} \hat{\varphi}$; ring: $\vec{B}=\frac{2 \pi b^{2} I}{c\left(b^{2}+z^{2}\right)^{3 / 2}} \hat{z}$; solenoid: $\vec{B}=\frac{4 \pi I n}{c} \hat{z}$
Faraday law: $\varepsilon=\oint_{c} \vec{E} \cdot d \vec{s}=-\frac{1}{c} \frac{\partial}{\partial t} \Phi_{B}=-\frac{1}{c} \frac{\partial}{\partial t} \int \vec{B} \cdot d \vec{a} \quad ; \quad \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
Inductance: $\varepsilon_{21}=-M_{21} \frac{\partial I_{1}}{\partial t} \quad ; \quad M_{21}=\frac{\Phi_{21}}{I_{1}} \quad ; \quad M_{21}=M_{12}=M \quad ; \quad \varepsilon=-L \frac{\partial I}{\partial t} \quad ; \quad L=\frac{\Phi}{I}$

L-R circuit: $I=\frac{\varepsilon_{0}}{R}\left(1-e^{-(R / L) t}\right)$; Energy: $U=\frac{1}{2} L I^{2}$; density u $=\frac{\mathrm{B}^{2}}{8 \pi}$
RLC circuit: $V(t)=e^{-(R / 2 L) t}(A \cos \omega t+B \sin \omega t) \quad ; \quad \omega=\sqrt{\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}$
Alternating current: $\varepsilon=\varepsilon_{0} \cos \omega t ; \quad I=I_{0} \cos (\omega t+\varphi) ; \tan \varphi=\frac{1 /(\omega C)-\omega L}{R}$
$I_{0}=\frac{\varepsilon_{0}}{\sqrt{R^{2}+(\omega L-1 /(\omega C))^{2}}}$; Power: $\langle P\rangle=\frac{1}{2} \varepsilon_{0} I_{0} \cos \varphi$
Ampere-Maxwell law: $\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t} ; \oint_{C} \vec{B} \cdot d \vec{s}=\frac{4 \pi}{c} I_{e n c}+\frac{1}{c} \frac{\partial}{\partial t} \int \vec{E} \cdot d \vec{a}$
Displacement current: $\vec{J}_{d}=\frac{1}{4 \pi} \frac{\partial \vec{E}}{\partial t}$; electromagnetic waves: $\mathrm{v}=\mathrm{c}, \mathrm{E}_{0}=\mathrm{B}_{0}, \mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
Electric dipole: $\vec{p}=\int d v^{\prime} \rho\left(\vec{r}^{\prime}\right) \overrightarrow{r^{\prime}} ; \varphi(\vec{r})=\frac{\vec{p} \cdot \vec{r}}{r^{3}} ; E_{r}=\frac{2 p}{r^{3}} \cos \theta ; E_{\theta}=\frac{p}{r^{3}} \sin \theta$
Energy and torque in external E field: $U=-\vec{p} \cdot \vec{E} ; \quad \vec{\tau}=\vec{p} \times \vec{E}$
Polarization: $E^{\prime}=-4 \pi P \quad ; \quad \frac{P}{E}=\frac{\varepsilon-1}{4 \pi}$; capacitor w/dielectric: $C=\varepsilon C_{0}$
Magnetic dipole: $\vec{m}=\frac{I}{c} \vec{a} \quad ; \quad U=-\vec{m} \cdot \vec{B} \quad ; \quad \vec{\tau}=\vec{m} \times \vec{B}$
3 problems, 10 points each:

Problem 1 (10 pts)

A capacitor with circular plates of radius R and distance between the plates d is discharged by connecting the centers of the plates with a straight conducting wire as shown in the figure. The point P is at distance $\mathrm{R} / 10$ from the axis in the center of the gap between the capacitor plates. $\mathrm{Q}>0$. $\mathrm{I}>0$ denotes the magnitude of the current.
(a) Give an expression for the electric field at point P in terms of the charge on the capacitor plates Q, R, and d.
(b) Give expressions for $\vec{\nabla} \times \vec{B}$ at point P and for the displacement current \vec{J}_{d} at point P , in terms of the current I in the wire, R, and d. Do they point it the +x or in the -x direction? Explain.
(c) Give an expression for the magnetic field at point P in terms of I, R and d. Assume $\mathrm{d} \gg \mathrm{R} / 10$. Hint: you need to include two separate contributions, watch their sign.

Problem 2 (10 pts)
An electromagnetic wave in free space at time $\mathrm{t}=0$ is described by the electric field $\vec{E}(x, y, z, t=0)=E_{0} e^{-z^{2} / a^{2}} \hat{y}$ with $\mathrm{a}=10^{8} \mathrm{~m}$.
(a) Find the magnitude of the electric field at $x=y=z=0$ at time $t=1 s$, in terms of E_{0}.
(b) What are the possible directions that the associated magnetic field \vec{B} points to?
(c) What are the possible directions of propagation of this wave?
(d) Find an expression for $\frac{\partial \vec{B}}{\partial t}(x, y, z, t=0)$. The answer should be in terms of $\mathrm{E}_{0}, \mathrm{a}, \mathrm{c}$, and z.

Problem 3 (10 pts)

In the figure, charge $2 q$ is at $y=a$, charge q is at $y=-a$ and charge $-3 q$ is at $y=0$. All are at $x=0$. Charge Q is at $y=0, x=d$. The distance $d \gg a$.
(a) Find the dipole moment of the 3 charges near the origin, \vec{p} (magnitude and direction).
(b) Using the result of (a), find an expression for the net force exerted on the charge Q by the 3 charges near the origin, \vec{F}_{Q}. Give both magnitude and direction of the force. You may assume the dipole \vec{p} is at the origin.
(c) Using a general principle and the result of (b), give an expression for the force exerted on the dipole \vec{p} by the charge Q, \vec{F}_{p}. Explain how you would verify this result by a calculation if you had enough time.

